MA4H4 Geometric Group Theory

Exercise sheet 3 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.ukl

Question 1 Let d be the distance on R defined by d(z,y) = | — y|P for p > 0. Show that this is a
metric for p < 1. Show that this is a length space if and only if p = 1.

Let p < 1, then we get: positivity d(z,y) > 0 for all x,y € R by definition, the identity property

d(z,y) =0z —y[" =0
Slz—yl =0
Sr=y,

reflexivity

d(z,y) =|z —y|?

=1~ 1Ply —al?
=d(y, z),
and lastly triangle inequality from
(d(x,y) + d(y, 2)"/P >d(z,y)"? + d(y, 2)'/P as 1/p>1
=z —yl+y— 2|
>d(z, z)l/p by triangle inqueality on R

giving d(z,y) + d(y, z) > d(z, z). This makes this a metric for p < 1.
If p = 1 then given z,y the path v: [0,|z — y|] = R, v(¢t) =z + ﬁt is a geodesic from z to y.

Suppose p < 1 and consider 0,1 € R with d(0,1) = 1. Suppose v : [0,1] — R is a geodesic from 0 to 1.

Then
1=;ZL1<7(Z;1) (%)

=1
Cli—1 g |V _ ,
= Z - — as 7y is a geodesic
, n n
=1
1>1/p
=N —_
n

giving us a contradiction, therefore it is a length space if and only if p = 1.
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Question 2 Let v : [a,b] — X be a geodesic. Show that length(y) = d(y(a)),v(b)).

Givena=ty<t; <...<t,=0b

S d(y(ti) () =3 Jtir — for all £, € [a,8] d(7(t), 7(w)) = [t — u]
i=1 i=1
=t, —to

=d(v(a),~(b))-
Hence length(y) = sup{>__, d(v(ti—1),v(t:))|a =to < t1 < ... <t, =b} =d(y(a),(b)).
Question 3 Suppose that v : [a,b] — X is a path. Prove that length(y) = d(v(a)), (b)) if and only if
d(y(t)),y(v)) = d(y(®)),v(uw)) + d(y(w)),y(v)) for all t,u,v € [a,b] with ¢ < u < v (call this property ).

If ~ is also injective, show that it can be reparameterised as a (unit speed) geodesic.

Assume property *, then

length(y) :sup{z d(y(tiz1),v(t:))|a =to < t1 < ... < t, =b}
i=1

=sup{d(v(a),y(b))|la=ty <t1 <...<t, =0b} by property *
=d(y(a),7(b))

giving us what is required.

Suppose that for some ¢, u, v € [a, b] with ¢ < u < v, we had d(y(¢),7(v)) < d(v(t),v(w)) +d(y(w),v(v))
then

d(v(a),v(b)) <d(v(a),v(t)) + d(v(t),y(v)) + d(v(v),7(b))
<d(y(a),y(t)) + d(v(t),y(u)) + d(y(u),v(v)) + d(v(v), ¥(b))
<length(y).

Hence if d(y(a), (b)) = length(vy) we have property .

Let s : [a,b] — [0,d(a,b)], where s(t) = d(v(a),v(t)), s is surjective. Suppose that s(t) = s(u) for
t < u, however by *

giving that ¢t = u as ~ is injective. Therefore s is a bijection, so set ¥ = yos71 : [0,d(a,b)] — X. Let
t,u € [0,d(a,b)] then

Ay (), 7(u)) =d(y(s~(t)),7(s™ (w))) definition of
=ld(y(a),7(s7 (1)) = d(v(a),7(s" (u)))] by *
=t — ul definition of s

giving that 7 is a unit speed geodesic.



Question 4 Show that a length space X is proper (complete and locally compact) if and only if all
closed balls are compact.

Suppose that all closed balls in X are compact. X is locally compact since every x € X has a compact
neighbourhood - the closed ball B(z, €). Suppose (2, )nen is a cauchy sequence, then there exists N € N
such that for all n,m > N we have d(z,,2,,) < 1 therefore (x,),>n is fully contained in B(xx1,1)
which is compact therefore contains the limit point of (z,)nen by the shift rule.

The opposite direction is called the Hopf-Rinow theorem. Suppose X is proper for some z € X
it suffices to show that B(x,r) is compact for any r. Let I = {r | B(z,r) is compact}, I is then an
interval containing atleast a small neighbourhood of 0 due to local compactness. Our goal is to show
that I is open and closed relative to [0, 00) and therefore I = [0, 00) and we have that all balls are compact.

Suppose 7 € I then use local compactness on y € B(x,r) to cover B(z,r) by finitely many open
neighbourhoods B(z;,r;) such that B(z;,r;) are compact, however these cover a ball B(x,r + ¢) with
0 > 0 which is therefore compact, showing r + § € I. So we get that I is open.

To prove that I is closed suppose we have [0, R) C I with R > 0. Then let (y,)nepn be any sequence
in B(z, R). Let (€;)ien be a decreasing sequence which converges to zero and ¢; < R. Then as X is a
length space there exists «; € B(z, R — ¢;) such that d(z%,y;) < €; (geodesic between z and y;). From

compactness of B(x, R —e1) the sequence (z);en has a convergent subsequence (m}(l 1y )ken- Next define

j(i + 1, k) inductively as follows suppose we have j(i, k) then (:c%lk)) keN has a convergent subsequence

(ac;J(rzlJrl 1y )ken due to compactness of B(z,R — €i11). Then set j(k) = j(k, k), the sequence (ac;.(k))keN
converges for all i € N, and we claim that (y;x))ren is cauchy. Let € > 0 and pick ¢; < ¢/3. Then for
sufficiently large k,1 we have d(z%,,2%)) < €/3. It follows that

A(Yjk)» Y50) <AWY5(00> T5ay) + @0y, 250)) + A0y 4509)
<e;+¢€/3+¢
<e.

Since X is complete we get that (y;())ren converges, giving that B(z, R) is compact therefore [0, R] C 1.
So I is open and closed therefore I = [0, 00) and every closed ball is compact.

Question 5 Suppose I' acts by isometries on a proper length space X. Show that the following are
equivalent:

1. The action is cocompact.
2. Some orbit is cobounded.
3. Every orbit is cobounded.

First show (1) = (3). Consider the open cover of X/I" given by B([z],1) for all € X, since the
action is cocompact there is a finite subcover U ; B([z;],1/2). Now take any point two points z,y € X,
then [y] and [z] are in one of the balls in our finite cover of X/T. Since the balls cover X/T to get to [z]
from [y] involves at worst crossing all of the balls once, so d([y], [x]) < n. That is there exists g € I such
that d(y, gz) < n, so the orbit of x is cobounded.

Note that (3) = (2) is immediate, so we show (2) = (1). Suppose that there exists o € X and R > 0
such that for all y € X there exists g € I' where d(y, gzo) < R. This is equivalent to saying for each
y € X there exists g € ' such that gy € B(z, R). Hence the image of B(x, R) under the quotient map is
the whole space X/T. Let UyecaU, be an open cover of X/T', the preimage of U, is an open cover of X
which via restriction gives an open cover Uye 24U, of B(z, R). However as the space is proper we know
B(z, R) is compact so we can choose a finite subcover U™, U, which when taking quotients again gives
us a finite subcover of X/T" namely U ,U,,.



Question 6 Show that quasi-isometry is an equivalence relation.

Note it is clearly reflexive as the identity is a quasi-isometry with constants 1 and 0. Suppose we have
f:X =Y and g:Y — Z quasi-isometries. Then we have the following

o kidx(z,a') — ko < dy(f(x), f(2") < ksdx(x,2") + kg with N(f(X),ks) =Y, and
o hdy(y,y') — 12 <dz(9(y),9(y')) < lsdy (y,y') + la with N(g(Y),15) = Z.

where combining these we get
Lhikidx (z,2")—(like+le) < dz(g9f(x), gf(2") < lsksdx (x,2")+(Isks+1s), with N(fg(X), kslz+la+ls) = Z.

So quasi-isometries are transitive, lastly show symmetric. Let f : X — Y be a quasi-isometry with
constants as above. For all y € Y there exists € X such that dy (y, f(z)) < ks, choose such an z for
each y and set g(x) = y. Then

dy (y,y') <dy (y, f(z)) + dy (f(z), f(2")) + dy (f(z'),¥)
<ksd.(9(y),9(y")) + (ks + 2ks)

dy (y,y') 2dy (f(z), f(2")) = dy (y, f(z)) — dy (f(z'),9)
>k1dx(9(y),9(y")) — (k2 + 2ks)

then rearanging this gives

ka + 2ks <

1 ko + 2k
< dx(9(y).9(y) < —dy(y,y) + =2,
kg kl

1
—dy (y,y') — "

ks
For any z € X gf(x) =2’ € X such that dy (f(z), f(z')) < ks

dx(.’L‘, g(f(x))) de(l‘, x/)
<kidy (f(x), f(z")) + k2
<kiks + ky.

Giving that g is a quasi-isometry and that we have symmetry.

Question 7 Show that the Cayley graphs of Z with respect to the generating sets {a,a?} and {a?, a®}
are quasi-isometric to R.

First let egr ge+1 = [0,1] be the edge from the generator a connecting ak to a*t! and let €qk gkl
[0,1] = A(Z,{a,a?}) =: T be the unit speed geodesic connecting a* to a**1. Define map f: R — T by
J(k+41) = egr qr+1 (1) where k € Z and i € [0, 1]. Then as the e,x ,x+1 are unit speed geodesics we get that
dr(f(z), f(y)) < dr(z,y) however also 1/2dg(x,y) < dr(f(z), f(y)) as they can at worst be connected by
a path 1/2|z — y| a® edges of length 1. Then I' = N(f(R), 1/2) as the only elements of I' not mapped to
are the a? edges which are at most 1/2 distance from a vertex.

Using similar notation as before let I' := A(Z, {a?, a%}) and e,r gr+e : [0,1] — T represent unit speed
geodesics. Then map f : I' — R by the following f(e,» 4x+:(i)) = k + ti. Note that this is surjective so
f(T) =R. To get the isometric inequality,

dr(z,y) =3 < dr(f(2), f(y)) < 3dr(z,y),

note as above the fastest the distances can change in comparison to R is by a factor of 3 coming from a
edges. To get the lower bound notice that going along a a® edge then going one and half ways through
a~? edge gets you back to the same point in R but not in I" however this worst that happens.
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Question 8 Let X be a geodesic space. A subset Y C X is called r-quasi-convex if for all z,y € Y,
any geodesic from z to y (in X) is in the r-neighbourhood of Y. We simply say Y is quasi-convex if it is
r-quasi-convex for some r > 0.

Question 8a Show that a finite subgroup of a f.g. group of I is quasi-convex inside any Cayley graph
of .

Let F' <T be a finite subgroup and S the generating set of I'. Then take m := maxscr|f|s, then

dsr,s)(f1, f2) < dser,s)(f1,1) +dsr,5)(1, f2) < 2m

so contained in N(F,m).

Question 8b Show that this also holds for finite index subgroups of T".

Let I be generated by S with G < T be of finite index and let the cosets be represented by ¢1G, ... c,G
set m = Maxi<i<n|ci|s. Any element of v € I' can be written as v = ¢;g where da(r,s)(7,9) < m. So we
have that G is m/2-dense in A(T, s), giving that any geodesic must lie in N(G, m/2).

Question 9a Consider Z? with generating set S; = {(0,1),(1,0)}. Show that the subgroup generated
by {(0,1)} is quasi-convex in A(Z2, S1).

Let T'y := A(Z?,S1) (note here that dr, could be realised by the induced metric on the latice when
viewing it as a subspace of R? with the l; metric). Observe that dr, ((0,a), (0,b)) = |b — a| with the only
geodesic being realised by the straight line on the y-axis connecting them. This makes the subgroup
((0,1)) 1/2-quasi-dense.

Question 9b Is the subgroup G generated by S = {(1,1)} quasi-convex in A(Z?2,S;)?

Note that dr, ((a,a), (b,b)) = 2|b — a| but a geodesic can be realised in many different ways. Choose
the triangle geodesic i.e the path (a,a) — (a,b) — (b,b) then the point (a,b) is distance at least |a — b
from G. Assuming it is R-quasi-convexity then examine the traingle geodesic from (0,0) to ([R], [R])
however the point (0, [R]) is distance [R| away from G contradicting quasi-convexity.

Question 9¢  Let Sy = {(0,1),(1,0),(1,1)}. Is G quasi-convex in A(Z?, S3)?

Let 'y = A(Z?,S5) then just like in question 9a dr,((a, a), (b,b)) = |b — a| which is realised only by a
geodesic which is the straight line from the generator (1,1), therefore making it 1/2-quasi-convex.

Question 9d Is the natural inclusion a quasi-isometric embedding from A(G,S) to A(Z?,S;) or
A(Z?,85)?

The natural map from I's := A(G, S) to I's is an inclusion map therefore an isometry. Suppose we
have the closest point contraction mapping of f : I's — I'y then this is a quasi-isometry as

dp3($,y) -1< dF2(f(x)vf(y)) < Qdfs(xvy)'

The lower inequality holds as you contract a length of at most 1 to a point, and the inequality comes
from the calculations above.



Question 9e Show that A(Z?,S;) and A(Z?, S3) are quasi-isometric. Is quasi-convexity a property
preserved under quasi-isometries?

Include i : T'y — T'g, then as 'y is a subgraph of I'y we have that dr, (z,y) < dr,(i(z),i(y)) and the
quickest short cut that can be made by (1,1) halves the distance, so we get

dr, (z,y) < dr,(i(z),i(y)) < dr, (2,y)/2.

The image is 1/2-dense as the only thing not mapped to are edges of length 1, giving N(i(T'y),1/2) = T's.

Quasi-convexity is not a property preserved by quasi-isometries from this example.



