
MA4H4 Geometric Group Theory

Exercise sheet 3 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.

Question 1 Let d be the distance on R defined by d(x, y) = |x − y|p for p > 0. Show that this is a
metric for p ≤ 1. Show that this is a length space if and only if p = 1.

Let p ≤ 1, then we get: positivity d(x, y) ≥ 0 for all x, y ∈ R by definition, the identity property

d(x, y) = 0⇔ |x− y|p = 0

⇔ |x− y| = 0

⇔ x = y,

reflexivity

d(x, y) =|x− y|p

=| − 1|p|y − x|p

=d(y, x),

and lastly triangle inequality from

(d(x, y) + d(y, z)1/p ≥d(x, y)1/p + d(y, z)1/p as 1/p ≥ 1

=|x− y|+ |y − z|
≥d(x, z)1/p by triangle inqueality on R

giving d(x, y) + d(y, z) ≥ d(x, z). This makes this a metric for p ≤ 1.

If p = 1 then given x, y the path γ : [0, |x− y|]→ R, γ(t) = x+ y−x
|y−x| t is a geodesic from x to y.

Suppose p < 1 and consider 0, 1 ∈ R with d(0, 1) = 1. Suppose γ : [0, 1]→ R is a geodesic from 0 to 1.
Then
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giving us a contradiction, therefore it is a length space if and only if p = 1.
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Question 2 Let γ : [a, b]→ X be a geodesic. Show that length(γ) = d(γ(a)), γ(b)).

Given a = t0 < t1 < . . . < tn = b

n∑
i=1

d(γ(ti−1), γ(ti)) =

n∑
i=1

|ti−1 − ti| for all t, u ∈ [a, b] d(γ(t), γ(u)) = |t− u|

=tn − t0
=d(γ(a), γ(b)).

Hence length(γ) = sup{
∑n
i=1 d(γ(ti−1), γ(ti))|a = t0 < t1 < . . . < tn = b} = d(γ(a), γ(b)).

Question 3 Suppose that γ : [a, b]→ X is a path. Prove that length(γ) = d(γ(a)), γ(b)) if and only if
d(γ(t)), γ(v)) = d(γ(t)), γ(u)) + d(γ(u)), γ(v)) for all t, u, v ∈ [a, b] with t ≤ u ≤ v (call this property ∗).
If γ is also injective, show that it can be reparameterised as a (unit speed) geodesic.

Assume property ∗, then

length(γ) = sup{
n∑
i=1

d(γ(ti−1), γ(ti))|a = t0 < t1 < . . . < tn = b}

= sup{d(γ(a), γ(b))|a = t0 < t1 < . . . < tn = b} by property ∗
=d(γ(a), γ(b))

giving us what is required.

Suppose that for some t, u, v ∈ [a, b] with t ≤ u ≤ v, we had d(γ(t), γ(v)) < d(γ(t), γ(u))+d(γ(u), γ(v))
then

d(γ(a), γ(b)) ≤d(γ(a), γ(t)) + d(γ(t), γ(v)) + d(γ(v), γ(b))

<d(γ(a), γ(t)) + d(γ(t), γ(u)) + d(γ(u), γ(v)) + d(γ(v), γ(b))

≤length(γ).

Hence if d(γ(a), γ(b)) = length(γ) we have property ∗.

Let s : [a, b] → [0, d(a, b)], where s(t) = d(γ(a), γ(t)), s is surjective. Suppose that s(t) = s(u) for
t ≤ u, however by ∗

s(u) =d(γ(a), γ(u))

=d(γ(a), γ(t)) + d(γ(t), γ(u))

=s(t) + d(γ(t), γ(u))

giving that t = u as γ is injective. Therefore s is a bijection, so set γ = γ ◦ s−1 : [0, d(a, b)] → X. Let
t, u ∈ [0, d(a, b)] then

d(γ(t), γ(u)) =d(γ(s−1(t)), γ(s−1(u))) definition of γ

=|d(γ(a), γ(s−1(t)))− d(γ(a), γ(s−1(u)))| by ∗
=|t− u| definition of s

giving that γ is a unit speed geodesic.
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Question 4 Show that a length space X is proper (complete and locally compact) if and only if all
closed balls are compact.

Suppose that all closed balls in X are compact. X is locally compact since every x ∈ X has a compact
neighbourhood - the closed ball B(x, ε). Suppose (xn)n∈N is a cauchy sequence, then there exists N ∈ N
such that for all n,m > N we have d(xn, xm) < 1 therefore (xn)n>N is fully contained in B(xN+1, 1)
which is compact therefore contains the limit point of (xn)n∈N by the shift rule.

The opposite direction is called the Hopf-Rinow theorem. Suppose X is proper for some x ∈ X
it suffices to show that B(x, r) is compact for any r. Let I = {r | B(x, r) is compact}, I is then an
interval containing atleast a small neighbourhood of 0 due to local compactness. Our goal is to show
that I is open and closed relative to [0,∞) and therefore I = [0,∞) and we have that all balls are compact.

Suppose r ∈ I then use local compactness on y ∈ B(x, r) to cover B(x, r) by finitely many open
neighbourhoods B(xi, ri) such that B(xi, ri) are compact, however these cover a ball B(x, r + δ) with
δ > 0 which is therefore compact, showing r + δ ∈ I. So we get that I is open.

To prove that I is closed suppose we have [0, R) ⊂ I with R > 0. Then let (yn)n∈bN be any sequence
in B(x,R). Let (εi)i∈N be a decreasing sequence which converges to zero and εi < R. Then as X is a
length space there exists xij ∈ B(x,R− εi) such that d(xij , yj) ≤ εi (geodesic between x and yj). From

compactness of B(x,R− ε1) the sequence (x1
j )j∈N has a convergent subsequence (x1

j(1,k))k∈N. Next define

j(i+ 1, k) inductively as follows suppose we have j(i, k) then (xi+1
j(i,k))k∈N has a convergent subsequence

(xi+1
j(i+1,k))k∈N due to compactness of B(x,R − εi+1). Then set j(k) = j(k, k), the sequence (xij(k))k∈N

converges for all i ∈ N, and we claim that (yj(k))k∈N is cauchy. Let ε > 0 and pick εi < ε/3. Then for
sufficiently large k, l we have d(xij(k), x

i
j(l)) < ε/3. It follows that

d(yj(k), yj(l)) ≤d(yj(k), x
i
j(k)) + d(xij(k), x

i
j(l)) + d(xij(l), yj(l))

≤εi + ε/3 + εi

≤ε.

Since X is complete we get that (yj(k))k∈N converges, giving that B(x,R) is compact therefore [0, R] ⊂ I.
So I is open and closed therefore I = [0,∞) and every closed ball is compact.

Question 5 Suppose Γ acts by isometries on a proper length space X. Show that the following are
equivalent:

1. The action is cocompact.

2. Some orbit is cobounded.

3. Every orbit is cobounded.

First show (1) ⇒ (3). Consider the open cover of X/Γ given by B([x], 1) for all x ∈ X, since the
action is cocompact there is a finite subcover ∪ni=1B([xi], 1/2). Now take any point two points x, y ∈ X,
then [y] and [x] are in one of the balls in our finite cover of X/Γ. Since the balls cover X/Γ to get to [x]
from [y] involves at worst crossing all of the balls once, so d([y], [x]) ≤ n. That is there exists g ∈ Γ such
that d(y, gx) ≤ n, so the orbit of x is cobounded.

Note that (3) ⇒ (2) is immediate, so we show (2) ⇒ (1). Suppose that there exists x0 ∈ X and R > 0
such that for all y ∈ X there exists g ∈ Γ where d(y, gx0) < R. This is equivalent to saying for each
y ∈ X there exists g ∈ Γ such that gy ∈ B(x,R). Hence the image of B(x,R) under the quotient map is
the whole space X/Γ. Let ∪α∈AUα be an open cover of X/Γ, the preimage of Uα is an open cover of X
which via restriction gives an open cover ∪α∈AUα of B(x,R). However as the space is proper we know
B(x,R) is compact so we can choose a finite subcover ∪ni=1Uαi which when taking quotients again gives
us a finite subcover of X/Γ namely ∪ni=1Uαi .
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Question 6 Show that quasi-isometry is an equivalence relation.

Note it is clearly reflexive as the identity is a quasi-isometry with constants 1 and 0. Suppose we have
f : X → Y and g : Y → Z quasi-isometries. Then we have the following

• k1dX(x, x′)− k2 ≤ dY (f(x), f(x′)) ≤ k3dX(x, x′) + k4 with N(f(X), k5) = Y , and

• l1dY (y, y′)− l2 ≤ dZ(g(y), g(y′)) ≤ l3dY (y, y′) + l4 with N(g(Y ), l5) = Z.

where combining these we get

l1k1dX(x, x′)−(l1k2+l2) ≤ dZ(gf(x), gf(x′)) ≤ l3k3dX(x, x′)+(l3k4+l4), with N(fg(X), k5l3+l4+l5) = Z.

So quasi-isometries are transitive, lastly show symmetric. Let f : X → Y be a quasi-isometry with
constants as above. For all y ∈ Y there exists x ∈ X such that dY (y, f(x)) ≤ k5, choose such an x for
each y and set g(x) = y. Then

dY (y, y′) ≤dY (y, f(x)) + dY (f(x), f(x′)) + dY (f(x′), y′)

≤k3dx(g(y), g(y′)) + (k4 + 2k5)

dY (y, y′) ≥dY (f(x), f(x′))− dY (y, f(x))− dY (f(x′), y′)

≥k1dX(g(y), g(y′))− (k2 + 2k5)

then rearanging this gives

1

k3
dY (y, y′)− k4 + 2k5

k3
≤ dX(g(y), g(y′)) ≤ 1

k1
dY (y, y′) +

k2 + 2k5

k1
.

For any x ∈ X gf(x) = x′ ∈ X such that dY (f(x), f(x′)) ≤ k5

dX(x, g(f(x))) =dX(x, x′)

≤k1dY (f(x), f(x′)) + k2

≤k1k5 + k2.

Giving that g is a quasi-isometry and that we have symmetry.

Question 7 Show that the Cayley graphs of Z with respect to the generating sets {a, a2} and {a2, a3}
are quasi-isometric to R.

First let eak,ak+1
∼= [0, 1] be the edge from the generator a connecting ak to ak+1 and let eak,ak+1 :

[0, 1]→ ∆(Z, {a, a2}) =: Γ be the unit speed geodesic connecting ak to ak+1. Define map f : R→ Γ by
f(k+ i) = eak,ak+1(i) where k ∈ Z and i ∈ [0, 1]. Then as the eak,ak+1 are unit speed geodesics we get that
dΓ(f(x), f(y)) ≤ dR(x, y) however also 1/2dR(x, y) ≤ dΓ(f(x), f(y)) as they can at worst be connected by
a path 1/2|x− y| a2 edges of length 1. Then Γ = N(f(R), 1/2) as the only elements of Γ not mapped to
are the a2 edges which are at most 1/2 distance from a vertex.

Using similar notation as before let Γ := ∆(Z, {a2, a3}) and eak,ak+t : [0, 1]→ Γ represent unit speed
geodesics. Then map f : Γ→ R by the following f(eak,ak+t(i)) = k + ti. Note that this is surjective so
f(Γ) = R. To get the isometric inequality,

dΓ(x, y)− 3 ≤ dR(f(x), f(y)) ≤ 3dΓ(x, y),

note as above the fastest the distances can change in comparison to R is by a factor of 3 coming from a3

edges. To get the lower bound notice that going along a a3 edge then going one and half ways through
a−2 edge gets you back to the same point in R but not in Γ however this worst that happens.
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Question 8 Let X be a geodesic space. A subset Y ⊂ X is called r-quasi-convex if for all x, y ∈ Y ,
any geodesic from x to y (in X) is in the r-neighbourhood of Y . We simply say Y is quasi-convex if it is
r-quasi-convex for some r ≥ 0.

Question 8a Show that a finite subgroup of a f.g. group of Γ is quasi-convex inside any Cayley graph
of Γ.

Let F ≤ Γ be a finite subgroup and S the generating set of Γ. Then take m := maxf∈F |f |S , then

dδ(Γ,S)(f1, f2) ≤ dδ(Γ,S)(f1, 1) + dδ(Γ,S)(1, f2) ≤ 2m

so contained in N(F,m).

Question 8b Show that this also holds for finite index subgroups of Γ.

Let Γ be generated by S with G ≤ Γ be of finite index and let the cosets be represented by c1G, . . . cnG
set m = max1≤i≤n|ci|S . Any element of γ ∈ Γ can be written as γ = cig where d∆(Γ,S)(γ, g) ≤ m. So we
have that G is m/2-dense in ∆(Γ, s), giving that any geodesic must lie in N(G,m/2).

Question 9a Consider Z2 with generating set S1 = {(0, 1), (1, 0)}. Show that the subgroup generated
by {(0, 1)} is quasi-convex in ∆(Z2, S1).

Let Γ1 := ∆(Z2, S1) (note here that dΓ1
could be realised by the induced metric on the latice when

viewing it as a subspace of R2 with the l1 metric). Observe that dΓ1
((0, a), (0, b)) = |b− a| with the only

geodesic being realised by the straight line on the y-axis connecting them. This makes the subgroup
〈(0, 1)〉 1/2-quasi-dense.

Question 9b Is the subgroup G generated by S = {(1, 1)} quasi-convex in ∆(Z2, S1)?

Note that dΓ1
((a, a), (b, b)) = 2|b− a| but a geodesic can be realised in many different ways. Choose

the triangle geodesic i.e the path (a, a) − (a, b) − (b, b) then the point (a, b) is distance at least |a − b|
from G. Assuming it is R-quasi-convexity then examine the traingle geodesic from (0, 0) to (dRe, dRe)
however the point (0, dRe) is distance dRe away from G contradicting quasi-convexity.

Question 9c Let S2 = {(0, 1), (1, 0), (1, 1)}. Is G quasi-convex in ∆(Z2, S2)?

Let Γ2 = ∆(Z2, S2) then just like in question 9a dΓ2((a, a), (b, b)) = |b− a| which is realised only by a
geodesic which is the straight line from the generator (1, 1), therefore making it 1/2-quasi-convex.

Question 9d Is the natural inclusion a quasi-isometric embedding from ∆(G,S) to ∆(Z2, S1) or
∆(Z2, S2)?

The natural map from Γ3 := ∆(G,S) to Γ2 is an inclusion map therefore an isometry. Suppose we
have the closest point contraction mapping of f : Γ3 → Γ2 then this is a quasi-isometry as

dΓ3
(x, y)− 1 ≤ dΓ2

(f(x), f(y)) ≤ 2dΓ3
(x, y).

The lower inequality holds as you contract a length of at most 1 to a point, and the inequality comes
from the calculations above.
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Question 9e Show that ∆(Z2, S1) and ∆(Z2, S2) are quasi-isometric. Is quasi-convexity a property
preserved under quasi-isometries?

Include i : Γ1 → Γ2, then as Γ1 is a subgraph of Γ2 we have that dΓ1
(x, y) ≤ dΓ2

(i(x), i(y)) and the
quickest short cut that can be made by (1, 1) halves the distance, so we get

dΓ1
(x, y) ≤ dΓ2

(i(x), i(y)) ≤ dΓ1
(x, y)/2.

The image is 1/2-dense as the only thing not mapped to are edges of length 1, giving N(i(Γ1), 1/2) = Γ2.

Quasi-convexity is not a property preserved by quasi-isometries from this example.
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