MA4H4 Geometric Group Theory

Exercise sheet 3 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.
Question 1 Let d be the distance on \mathbb{R} defined by $d(x, y)=|x-y|^{p}$ for $p>0$. Show that this is a metric for $p \leq 1$. Show that this is a length space if and only if $p=1$.

Let $p \leq 1$, then we get: positivity $d(x, y) \geq 0$ for all $x, y \in \mathbb{R}$ by definition, the identity property

$$
\begin{aligned}
d(x, y)=0 & \Leftrightarrow|x-y|^{p}=0 \\
& \Leftrightarrow|x-y|=0 \\
& \Leftrightarrow x=y,
\end{aligned}
$$

reflexivity

$$
\begin{aligned}
d(x, y) & =|x-y|^{p} \\
& =|-1|^{p}|y-x|^{p} \\
& =d(y, x),
\end{aligned}
$$

and lastly triangle inequality from

$$
\begin{array}{rlrl}
\left(d(x, y)+d(y, z)^{1 / p}\right. & \geq d(x, y)^{1 / p}+d(y, z)^{1 / p} & & \\
& =|x-y|+|y-z| & & \\
& \geq d(x, z)^{1 / p} & & \text { as } 1 / p \geq 1 \\
& \text { by triangle inqueality on } \mathbb{R}
\end{array}
$$

giving $d(x, y)+d(y, z) \geq d(x, z)$. This makes this a metric for $p \leq 1$.
If $p=1$ then given x, y the path $\gamma:[0,|x-y|] \rightarrow \mathbb{R}, \gamma(t)=x+\frac{y-x}{|y-x|} t$ is a geodesic from x to y.
Suppose $p<1$ and consider $0,1 \in \mathbb{R}$ with $d(0,1)=1$. Suppose $\gamma:[0,1] \rightarrow \mathbb{R}$ is a geodesic from 0 to 1 . Then

$$
\begin{aligned}
1 & =\sum_{i=1}^{n}\left(\gamma\left(\frac{i-1}{n}\right)-\gamma\left(\frac{i}{n}\right)\right) \\
& \leq \sum_{i=1}^{n}\left|\gamma\left(\frac{i-1}{n}\right)-\gamma\left(\frac{i}{n}\right)\right| \\
& =\sum_{i=1}^{n} d\left(\gamma\left(\frac{i-1}{n}\right), \gamma\left(\frac{i}{n}\right)\right)^{1 / p} \\
& =\sum_{i=1}^{n}\left|\frac{i-1}{n}-\frac{i}{n}\right|^{1 / p} \\
& =n\left(\frac{1}{n}\right)^{1 / p} \\
& <1
\end{aligned}
$$

giving us a contradiction, therefore it is a length space if and only if $p=1$.

Question 2 Let $\gamma:[a, b] \rightarrow X$ be a geodesic. Show that length $(\gamma)=d(\gamma(a)), \gamma(b))$.
Given $a=t_{0}<t_{1}<\ldots<t_{n}=b$

$$
\begin{aligned}
\sum_{i=1}^{n} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right) & =\sum_{i=1}^{n}\left|t_{i-1}-t_{i}\right| \quad \text { for all } t, u \in[a, b] d(\gamma(t), \gamma(u))=|t-u| \\
& =t_{n}-t_{0} \\
& =d(\gamma(a), \gamma(b)) .
\end{aligned}
$$

Hence length $(\gamma)=\sup \left\{\sum_{i=1}^{n} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right) \mid a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}=d(\gamma(a), \gamma(b))$.
Question 3 Suppose that $\gamma:[a, b] \rightarrow X$ is a path. Prove that length $(\gamma)=d(\gamma(a)), \gamma(b))$ if and only if $d(\gamma(t)), \gamma(v))=d(\gamma(t)), \gamma(u))+d(\gamma(u)), \gamma(v))$ for all $t, u, v \in[a, b]$ with $t \leq u \leq v$ (call this property $*$). If γ is also injective, show that it can be reparameterised as a (unit speed) geodesic.

Assume property *, then

$$
\begin{array}{rlrl}
\operatorname{length}(\gamma) & =\sup \left\{\sum_{i=1}^{n} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right) \mid a=t_{0}<t_{1}<\ldots<t_{n}=b\right\} & \\
& =\sup \left\{d(\gamma(a), \gamma(b)) \mid a=t_{0}<t_{1}<\ldots<t_{n}=b\right\} & & \text { by property } * \\
& =d(\gamma(a), \gamma(b)) &
\end{array}
$$

giving us what is required.
Suppose that for some $t, u, v \in[a, b]$ with $t \leq u \leq v$, we had $d(\gamma(t), \gamma(v))<d(\gamma(t), \gamma(u))+d(\gamma(u), \gamma(v))$ then

$$
\begin{aligned}
d(\gamma(a), \gamma(b)) & \leq d(\gamma(a), \gamma(t))+d(\gamma(t), \gamma(v))+d(\gamma(v), \gamma(b)) \\
& <d(\gamma(a), \gamma(t))+d(\gamma(t), \gamma(u))+d(\gamma(u), \gamma(v))+d(\gamma(v), \gamma(b)) \\
& \leq \operatorname{length}(\gamma)
\end{aligned}
$$

Hence if $d(\gamma(a), \gamma(b))=$ length (γ) we have property $*$.
Let $s:[a, b] \rightarrow[0, d(a, b)]$, where $s(t)=d(\gamma(a), \gamma(t)), s$ is surjective. Suppose that $s(t)=s(u)$ for $t \leq u$, however by $*$

$$
\begin{aligned}
s(u) & =d(\gamma(a), \gamma(u)) \\
& =d(\gamma(a), \gamma(t))+d(\gamma(t), \gamma(u)) \\
& =s(t)+d(\gamma(t), \gamma(u))
\end{aligned}
$$

giving that $t=u$ as γ is injective. Therefore s is a bijection, so set $\bar{\gamma}=\gamma \circ s^{-1}:[0, d(a, b)] \rightarrow X$. Let $t, u \in[0, d(a, b)]$ then

$$
\begin{aligned}
d(\bar{\gamma}(t), \bar{\gamma}(u)) & =d\left(\gamma\left(s^{-1}(t)\right), \gamma\left(s^{-1}(u)\right)\right) & & \text { definition of } \bar{\gamma} \\
& =\left|d\left(\gamma(a), \gamma\left(s^{-1}(t)\right)\right)-d\left(\gamma(a), \gamma\left(s^{-1}(u)\right)\right)\right| & & \text { by } * \\
& =|t-u| & & \text { definition of } s
\end{aligned}
$$

giving that $\bar{\gamma}$ is a unit speed geodesic.

Question 4 Show that a length space X is proper (complete and locally compact) if and only if all closed balls are compact.

Suppose that all closed balls in X are compact. X is locally compact since every $x \in X$ has a compact neighbourhood - the closed ball $\bar{B}(x, \epsilon)$. Suppose $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a cauchy sequence, then there exists $N \in \mathbb{N}$ such that for all $n, m>N$ we have $d\left(x_{n}, x_{m}\right)<1$ therefore $\left(x_{n}\right)_{n>N}$ is fully contained in $\bar{B}\left(x_{N+1}, 1\right)$ which is compact therefore contains the limit point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ by the shift rule.

The opposite direction is called the Hopf-Rinow theorem. Suppose X is proper for some $x \in X$ it suffices to show that $\bar{B}(x, r)$ is compact for any r. Let $I=\{r \mid \bar{B}(x, r)$ is compact $\}, I$ is then an interval containing atleast a small neighbourhood of 0 due to local compactness. Our goal is to show that I is open and closed relative to $[0, \infty)$ and therefore $I=[0, \infty)$ and we have that all balls are compact.

Suppose $r \in I$ then use local compactness on $y \in \bar{B}(x, r)$ to cover $\bar{B}(x, r)$ by finitely many open neighbourhoods $B\left(x_{i}, r_{i}\right)$ such that $\bar{B}\left(x_{i}, r_{i}\right)$ are compact, however these cover a ball $\bar{B}(x, r+\delta)$ with $\delta>0$ which is therefore compact, showing $r+\delta \in I$. So we get that I is open.

To prove that I is closed suppose we have $[0, R) \subset I$ with $R>0$. Then let $\left(y_{n}\right)_{n \in b N}$ be any sequence in $B(x, R)$. Let $\left(\epsilon_{i}\right)_{i \in \mathbb{N}}$ be a decreasing sequence which converges to zero and $\epsilon_{i}<R$. Then as X is a length space there exists $x_{j}^{i} \in \bar{B}\left(x, R-\epsilon_{i}\right)$ such that $d\left(x_{j}^{i}, y_{j}\right) \leq \epsilon_{i}$ (geodesic between x and y_{j}). From compactness of $\bar{B}\left(x, R-\epsilon_{1}\right)$ the sequence $\left(x_{j}^{1}\right)_{j \in \mathbb{N}}$ has a convergent subsequence $\left(x_{j(1, k)}^{1}\right){ }_{k \in \mathbb{N}}$. Next define $j(i+1, k)$ inductively as follows suppose we have $j(i, k)$ then $\left(x_{j(i, k)}^{i+1}\right)_{k \in \mathbb{N}}$ has a convergent subsequence $\left(x_{j(i+1, k)}^{i+1}\right)_{k \in \mathbb{N}}$ due to compactness of $\bar{B}\left(x, R-\epsilon_{i+1}\right)$. Then set $j(k)=j(k, k)$, the sequence $\left(x_{j(k)}^{i}\right)_{k \in \mathbb{N}}$ converges for all $i \in \mathbb{N}$, and we claim that $\left(y_{j(k)}\right)_{k \in \mathbb{N}}$ is cauchy. Let $\epsilon>0$ and pick $\epsilon_{i}<\epsilon / 3$. Then for sufficiently large k, l we have $d\left(x_{j(k)}^{i}, x_{j(l)}^{i}\right)<\epsilon / 3$. It follows that

$$
\begin{aligned}
d\left(y_{j(k)}, y_{j(l)}\right) & \leq d\left(y_{j(k)}, x_{j(k)}^{i}\right)+d\left(x_{j(k)}^{i}, x_{j(l)}^{i}\right)+d\left(x_{j(l)}^{i}, y_{j(l)}\right) \\
& \leq \epsilon_{i}+\epsilon / 3+\epsilon_{i} \\
& \leq \epsilon .
\end{aligned}
$$

Since X is complete we get that $\left(y_{j(k)}\right)_{k \in \mathbb{N}}$ converges, giving that $\bar{B}(x, R)$ is compact therefore $[0, R] \subset I$. So I is open and closed therefore $I=[0, \infty)$ and every closed ball is compact.

Question 5 Suppose Γ acts by isometries on a proper length space X. Show that the following are equivalent:

1. The action is cocompact.
2. Some orbit is cobounded.
3. Every orbit is cobounded.

First show $(1) \Rightarrow(3)$. Consider the open cover of X / Γ given by $B([x], 1)$ for all $x \in X$, since the action is cocompact there is a finite subcover $\cup_{i=1}^{n} B\left(\left[x_{i}\right], 1 / 2\right)$. Now take any point two points $x, y \in X$, then $[y]$ and $[x]$ are in one of the balls in our finite cover of X / Γ. Since the balls cover X / Γ to get to $[x]$ from $[y]$ involves at worst crossing all of the balls once, so $d([y],[x]) \leq n$. That is there exists $g \in \Gamma$ such that $d(y, g x) \leq n$, so the orbit of x is cobounded.

Note that $(3) \Rightarrow(2)$ is immediate, so we show $(2) \Rightarrow(1)$. Suppose that there exists $x_{0} \in X$ and $R>0$ such that for all $y \in X$ there exists $g \in \Gamma$ where $d\left(y, g x_{0}\right)<R$. This is equivalent to saying for each $y \in X$ there exists $g \in \Gamma$ such that $g y \in \bar{B}(x, R)$. Hence the image of $\bar{B}(x, R)$ under the quotient map is the whole space X / Γ. Let $\cup_{\alpha \in A} U_{\alpha}$ be an open cover of X / Γ, the preimage of U_{α} is an open cover of X which via restriction gives an open cover $\cup_{\alpha \in A} \overline{U_{\alpha}}$ of $\bar{B}(x, R)$. However as the space is proper we know $\bar{B}(x, R)$ is compact so we can choose a finite subcover $\cup_{i=1}^{n} \overline{U_{\alpha_{i}}}$ which when taking quotients again gives us a finite subcover of X / Γ namely $\cup_{i=1}^{n} U_{\alpha_{i}}$.

Question 6 Show that quasi-isometry is an equivalence relation.
Note it is clearly reflexive as the identity is a quasi-isometry with constants 1 and 0 . Suppose we have $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ quasi-isometries. Then we have the following

- $k_{1} d_{X}\left(x, x^{\prime}\right)-k_{2} \leq d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq k_{3} d_{X}\left(x, x^{\prime}\right)+k_{4}$ with $N\left(f(X), k_{5}\right)=Y$, and
- $l_{1} d_{Y}\left(y, y^{\prime}\right)-l_{2} \leq d_{Z}\left(g(y), g\left(y^{\prime}\right)\right) \leq l_{3} d_{Y}\left(y, y^{\prime}\right)+l_{4}$ with $N\left(g(Y), l_{5}\right)=Z$.
where combining these we get
$l_{1} k_{1} d_{X}\left(x, x^{\prime}\right)-\left(l_{1} k_{2}+l_{2}\right) \leq d_{Z}\left(g f(x), g f\left(x^{\prime}\right)\right) \leq l_{3} k_{3} d_{X}\left(x, x^{\prime}\right)+\left(l_{3} k_{4}+l_{4}\right)$, with $N\left(f g(X), k_{5} l_{3}+l_{4}+l_{5}\right)=Z$.
So quasi-isometries are transitive, lastly show symmetric. Let $f: X \rightarrow Y$ be a quasi-isometry with constants as above. For all $y \in Y$ there exists $x \in X$ such that $d_{Y}(y, f(x)) \leq k_{5}$, choose such an x for each y and set $g(x)=y$. Then

$$
\begin{aligned}
d_{Y}\left(y, y^{\prime}\right) & \leq d_{Y}(y, f(x))+d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)+d_{Y}\left(f\left(x^{\prime}\right), y^{\prime}\right) \\
& \leq k_{3} d_{x}\left(g(y), g\left(y^{\prime}\right)\right)+\left(k_{4}+2 k_{5}\right) \\
d_{Y}\left(y, y^{\prime}\right) & \geq d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)-d_{Y}(y, f(x))-d_{Y}\left(f\left(x^{\prime}\right), y^{\prime}\right) \\
& \geq k_{1} d_{X}\left(g(y), g\left(y^{\prime}\right)\right)-\left(k_{2}+2 k_{5}\right)
\end{aligned}
$$

then rearanging this gives

$$
\frac{1}{k_{3}} d_{Y}\left(y, y^{\prime}\right)-\frac{k_{4}+2 k_{5}}{k_{3}} \leq d_{X}\left(g(y), g\left(y^{\prime}\right)\right) \leq \frac{1}{k_{1}} d_{Y}\left(y, y^{\prime}\right)+\frac{k_{2}+2 k_{5}}{k_{1}}
$$

For any $x \in X g f(x)=x^{\prime} \in X$ such that $d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq k_{5}$

$$
\begin{aligned}
d_{X}(x, g(f(x))) & =d_{X}\left(x, x^{\prime}\right) \\
& \leq k_{1} d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)+k_{2} \\
& \leq k_{1} k_{5}+k_{2}
\end{aligned}
$$

Giving that g is a quasi-isometry and that we have symmetry.
Question 7 Show that the Cayley graphs of \mathbb{Z} with respect to the generating sets $\left\{a, a^{2}\right\}$ and $\left\{a^{2}, a^{3}\right\}$ are quasi-isometric to \mathbb{R}.

First let $e_{a^{k}, a^{k+1}} \cong[0,1]$ be the edge from the generator a connecting a^{k} to a^{k+1} and let $e_{a^{k}, a^{k+1}}$: $[0,1] \rightarrow \Delta\left(\mathbb{Z},\left\{a, a^{2}\right\}\right)=: \Gamma$ be the unit speed geodesic connecting a^{k} to a^{k+1}. Define map $f: \mathbb{R} \rightarrow \Gamma$ by $f(k+i)=e_{a^{k}, a^{k+1}}(i)$ where $k \in \mathbb{Z}$ and $i \in[0,1]$. Then as the $e_{a^{k}, a^{k+1}}$ are unit speed geodesics we get that $d_{\Gamma}(f(x), f(y)) \leq d_{\mathbb{R}}(x, y)$ however also $1 / 2 d_{\mathbb{R}}(x, y) \leq d_{\Gamma}(f(x), f(y))$ as they can at worst be connected by a path $1 / 2|x-y| a^{2}$ edges of length 1 . Then $\Gamma=N(f(\mathbb{R}), 1 / 2)$ as the only elements of Γ not mapped to are the a^{2} edges which are at most $1 / 2$ distance from a vertex.

Using similar notation as before let $\Gamma:=\Delta\left(\mathbb{Z},\left\{a^{2}, a^{3}\right\}\right)$ and $e_{a^{k}, a^{k+t}}:[0,1] \rightarrow \Gamma$ represent unit speed geodesics. Then map $f: \Gamma \rightarrow \mathbb{R}$ by the following $f\left(e_{a^{k}, a^{k+t}}(i)\right)=k+t i$. Note that this is surjective so $f(\Gamma)=\mathbb{R}$. To get the isometric inequality,

$$
d_{\Gamma}(x, y)-3 \leq d_{\mathbb{R}}(f(x), f(y)) \leq 3 d_{\Gamma}(x, y)
$$

note as above the fastest the distances can change in comparison to \mathbb{R} is by a factor of 3 coming from a^{3} edges. To get the lower bound notice that going along a a^{3} edge then going one and half ways through a^{-2} edge gets you back to the same point in \mathbb{R} but not in Γ however this worst that happens.

Question 8 Let X be a geodesic space. A subset $Y \subset X$ is called r-quasi-convex if for all $x, y \in Y$, any geodesic from x to y (in X) is in the r-neighbourhood of Y. We simply say Y is quasi-convex if it is r-quasi-convex for some $r \geq 0$.

Question 8a Show that a finite subgroup of a f.g. group of Γ is quasi-convex inside any Cayley graph of Γ.

Let $F \leq \Gamma$ be a finite subgroup and S the generating set of Γ. Then take $m:=\max _{f \in F}|f|_{S}$, then

$$
d_{\delta(\Gamma, S)}\left(f_{1}, f_{2}\right) \leq d_{\delta(\Gamma, S)}\left(f_{1}, 1\right)+d_{\delta(\Gamma, S)}\left(1, f_{2}\right) \leq 2 m
$$

so contained in $N(F, m)$.
Question 8b Show that this also holds for finite index subgroups of Γ.
Let Γ be generated by S with $G \leq \Gamma$ be of finite index and let the cosets be represented by $c_{1} G, \ldots c_{n} G$ set $m=\max _{1 \leq i \leq n}\left|c_{i}\right|_{S}$. Any element of $\gamma \in \Gamma$ can be written as $\gamma=c_{i} g$ where $d_{\Delta(\Gamma, S)}(\gamma, g) \leq m$. So we have that G is $m / 2$-dense in $\Delta(\Gamma, s)$, giving that any geodesic must lie in $N(G, m / 2)$.

Question 9a Consider \mathbb{Z}^{2} with generating set $S_{1}=\{(0,1),(1,0)\}$. Show that the subgroup generated by $\{(0,1)\}$ is quasi-convex in $\Delta\left(\mathbb{Z}^{2}, S_{1}\right)$.

Let $\Gamma_{1}:=\Delta\left(\mathbb{Z}^{2}, S_{1}\right)$ (note here that $d_{\Gamma_{1}}$ could be realised by the induced metric on the latice when viewing it as a subspace of \mathbb{R}^{2} with the l_{1} metric). Observe that $d_{\Gamma_{1}}((0, a),(0, b))=|b-a|$ with the only geodesic being realised by the straight line on the y -axis connecting them. This makes the subgroup $\langle(0,1)\rangle 1 / 2$-quasi-dense.

Question 9b Is the subgroup G generated by $S=\{(1,1)\}$ quasi-convex in $\Delta\left(\mathbb{Z}^{2}, S_{1}\right)$?
Note that $d_{\Gamma_{1}}((a, a),(b, b))=2|b-a|$ but a geodesic can be realised in many different ways. Choose the triangle geodesic i.e the path $(a, a)-(a, b)-(b, b)$ then the point (a, b) is distance at least $|a-b|$ from G. Assuming it is R-quasi-convexity then examine the traingle geodesic from $(0,0)$ to $(\lceil R\rceil,\lceil R\rceil)$ however the point $(0,\lceil R\rceil)$ is distance $\lceil R\rceil$ away from G contradicting quasi-convexity.

Question 9c Let $S_{2}=\{(0,1),(1,0),(1,1)\}$. Is G quasi-convex in $\Delta\left(\mathbb{Z}^{2}, S_{2}\right)$?
Let $\Gamma_{2}=\Delta\left(\mathbb{Z}^{2}, S_{2}\right)$ then just like in question 9 a $d_{\Gamma_{2}}((a, a),(b, b))=|b-a|$ which is realised only by a geodesic which is the straight line from the generator (1,1), therefore making it $1 / 2$-quasi-convex.

Question 9d Is the natural inclusion a quasi-isometric embedding from $\Delta(G, S)$ to $\Delta\left(\mathbb{Z}^{2}, S_{1}\right)$ or $\Delta\left(\mathbb{Z}^{2}, S_{2}\right)$?

The natural map from $\Gamma_{3}:=\Delta(G, S)$ to Γ_{2} is an inclusion map therefore an isometry. Suppose we have the closest point contraction mapping of $f: \Gamma_{3} \rightarrow \Gamma_{2}$ then this is a quasi-isometry as

$$
d_{\Gamma_{3}}(x, y)-1 \leq d_{\Gamma_{2}}(f(x), f(y)) \leq 2 d_{\Gamma_{3}}(x, y) .
$$

The lower inequality holds as you contract a length of at most 1 to a point, and the inequality comes from the calculations above.

Question 9e Show that $\Delta\left(\mathbb{Z}^{2}, S_{1}\right)$ and $\Delta\left(\mathbb{Z}^{2}, S_{2}\right)$ are quasi-isometric. Is quasi-convexity a property preserved under quasi-isometries?

Include $i: \Gamma_{1} \rightarrow \Gamma_{2}$, then as Γ_{1} is a subgraph of Γ_{2} we have that $d_{\Gamma_{1}}(x, y) \leq d_{\Gamma_{2}}(i(x), i(y))$ and the quickest short cut that can be made by $(1,1)$ halves the distance, so we get

$$
d_{\Gamma_{1}}(x, y) \leq d_{\Gamma_{2}}(i(x), i(y)) \leq d_{\Gamma_{1}}(x, y) / 2 .
$$

The image is $1 / 2$-dense as the only thing not mapped to are edges of length 1 , giving $N\left(i\left(\Gamma_{1}\right), 1 / 2\right)=\Gamma_{2}$.
Quasi-convexity is not a property preserved by quasi-isometries from this example.

