
MA4H4 Geometric Group Theory

Exercise sheet 2 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.

Question 1 Let Fn be generated by the letters {x1, x2, . . . , xn}. Show that [Fn, Fn] consists exactly of
those elements whose reduced word representative contains an equal number of xi’s as x−1i ’s, for each i.

Let F ′n = {w ∈ Fn| w contains an equal number of xi’s as x−1i ’s, for each i}. Note that any generator
of [Fn, Fn] has the property that it contains an equal number of xi’s as x−1i ’s, for each i therefore
[Fn, Fn] ⊂ F ′n. Observe that w1w2 = w2w1[w−11 , w−12 ]. Suppose we have some word w ∈ F ′n then

w = w1,1x
±1
k1
w1,2x

∓1
k1

= w1,1w1,2[w−11,2, x
±1
k1

]

= w2,1x
±1
k2
w2,2x

∓1
k2

[w−11,2, x
±1
k1

]

= w2,1w2,2[w−12,2, x
±1
k2

][w−11,2, x
±1
k1

]

...

= [w−1r,2 , x
±
kr

] . . . [w−11,2, x
±1
i ].

Note we eventually get no letters on the right as there are an equal number of xi’s as x−1i ’s allowing us
to pair them in the above fashion. This gives F ′n ⊂ [Fn, Fn], therefore F ′n = [Fn, Fn] as required.

Question 2 Show that Fn/[Fn, Fn] ∼= Zn.

Pick the standard basis of Zn using notation ei. Define homomorphism φ : Fn → Zn by φ(xi) = ei,
this is well defined from the universal property of free groups and surjective by definition. Suppose
w ∈ Fn belongs to ker(φ), then for φ(w) to have a zero ei coefficient w has to have as many xi’s as x−1i ’s
therefore w ∈ [Fn, Fn]. However also if w ∈ [Fn, Fn] then φ(w) = 0, therefore ker(φ) = [Fn, Fn] so by the
first isomorphism theorem Fn/[Fn, Fn] = Zn.

Question 3 Let S = {xi}i∈N be a countably infinite set indexed by N. Let R be the set of relations of
the form xi+1 = xjxix

−1
j , for i, j ∈ N with j < i. Let T = 〈S|R〉 be the ”Thompson group“. (This is

actually Thompson group F - there are also Thompson’s group T and V ). Show that:

T = 〈x0, x1|[x−10 x1, x0x1x
−1
0 ] = [x−10 x1, x

2
0x1x

−2
0 ] = 1〉

(Hint: First show that all the xn, for n ≥ 2, can be expressed in terms of x0 and x1. Write some
expressions for x3 and x4 and conjugate the appropriate ones by x0 or x20 to show that the required
commutativity relations hold. Finally, show that these imply the original relations). This shows that T is
indeed finitely presented.

Lets call relation xi+1xj = xjxi relation Ri,j . We show by induction that xn = xn−10 x1x
1−n
0 , note

that for n = 2 this is a relation in R. Suppose it is true for n = k then

xk+1 =x0xkx
−1
0 from relation Rk,0

=x0(xk−10 x1x
1−k
0 )x−10 from the induction hypothesis

=xk0x1x
−k
0
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giving it for n = k + 1.

We will show that the two relations given are equivalent to R1,2 and R1,3. Given

1 =x−10 (x1xkx
−1
1 x−1k+1)x0

=x−10 x1x
k−1
0 x1x

k−1
0 x−11 xk0x

−1
1 x

−(k−1)
0

=(x−10 x1)(xk−10 x1x
k−1
0 )(x−10 x1)−1(xk−10 x1x

−(k−1)
0 )−1

=[x−10 x1, x
k−1
0 x1x

k−1
0 ]

so when k = 2, 3 we get what is required. So now we require to show Ri,j from just R1,2, R1,3 and that
xi+1 = xi0x1x

−i
0 . Note that Ri,0 are true from definition of xi, xi+1 = x0xix

−1
0 . Also note that if we have

Ri,j for i > j > 0 we get by conjugating by xk0 , Ri+k,j+k, so it suffices to show Rk,1 for higher k > 3.
Show this by induction, we have it for k = 3, so lets assume it for all k < n. Then

x2xnx1 = xn−1x2x1 using Rn−1,2

= xn−1x1x3 using R2,1

= x1xnx3 using Rn−1,1

= x1x3xn+1 using Rn,3

= x2x1xn+1 using R2,1

which by right multiplication of x−12 gives us Rn,1.

Question 4 Draw the Cayley graph of the dihedral group Dn with presentation

a, b|an = b2 = (ab)2 = 1〉

and the infinite dihedral group D∞ with presentation

〈a, b|b2 = (ab)2 = 1〉.

1

a a2

a3

b

ab a2b

a3b

. . . . . .

Cay〈a, b|a4, b2, (ab)2〉 Cay〈a, b|b2, (ab)2〉
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Question 5 Draw the Cayley graph of the alternating group A4 with generators (123) and (12)(34).

(12)(34)

(234) (134)

(124)(243)

(13)(24)

e

(123) (132)

(142)

(14)(23)

(143)

〈a = (123), b = (12)(34)|a3, b2, (ab)3〉

Question 6 The triangle group ∆(p, q, r) has presentation

〈a, b, c|a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1〉.

Question 6a Draw the Cayley graph of the icosahedral group ∆(2, 3, 5).

〈a, b, c|a2 = b2 = c2 = (ab)2 = (bc)3 = (ca)5 = 1〉

Question 6b Classify the triples (p, q, r) for which 1/p+ 1/q + 1/r = 1. What do their Cayley graphs
look like?

Assuming p ≤ q ≤ r one can show that the only triples are (2, 3, 6), (2, 4, 4) and (3, 3, 3). Their Cayley
graphs are tilings of E2.
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Question 6c Try to find a relationship between the Cayley graph of ∆(p, q, r) and a tessellation of a
suitable space with congruent triangles. Why should the traingle groups with 1/p+1/q+1/r > 1 be finite?

Take triangles with angles π/p, π/q and π/r at vertices xp, xq and xr. Let a act on our triangle by
reflection over the xpxr edge, b over the xpxq edge and c over the xqxr edge. Use this action to tile a
surface note that the relations hold as (ab) acts by rotation around vertex xp by 2π/p and similar for other
products. We get that if 1/p+1/q+1/r > 1 we get positive curvature so tile a sphere, 1/p+1/q+1/r = 1
we get zero curvature so tile a euclidean plane and 1/p+ 1/q + 1/r < 1 negative curvature so tile the
hyperbolic plane.

Tilings associated to ∆(2, 3, 4), ∆(2, 4, 4) and ∆(2, 4, 7),
find more at: https://en.wikipedia.org/wiki/Triangle group.

Question 7 Let S be a finite generating set for G and suppose S′ ⊂ S. We can form a subgraph
∆(G;S′) ⊂ ∆(G;S). Describe the connected components of ∆(G;S′).

Let G′ = 〈S′〉 ≤ G then each connected component of ∆(G;S′) is isomorphic to ∆(G′;S′) and the
connected component are in bijection with the cosets [G : G′]. This is because if x, y ∈ xG′ then x = yg′

where g′ can be written in terms of S′ therefore are connected by a path. Equally if x and y are connected
then from following such a path we get that x = yg′ with g′ ∈ G′.

Question 8 Let G1 = 〈S1|R1〉 and G2 = 〈S2|R2〉 (with S1 and S2 disjoint). The free product G1 ∗G2

has presentation 〈S1 ∪S2|R1 ∪R2〉. (Check the the definition doesn’t actually depend on the presentation
of G1 and G2).

Given a different presentation G1 = 〈S′1|R1〉 there exists a maps φ : FS1 → FS′
1

and φ′ : FS′
1
→ FS1

such that they are inverses and notably φ(r) ∈ 〈〈R′1〉〉 and φ′(r′) ∈ 〈〈R1〉〉 for all r′ ∈ R′ and r ∈ R. Then
map φ∗ : 〈§1 ∪ S2|R1 ∪ R2〉 → 〈S′1 ∪ S2|R′1 ∪ R2〉 by φ∗(s1) = φ(s1) and φ∗(s2) = s2 for s1 ∈ S1 and
s2 ∈ S2 and φ′∗ similarly. These are well defined homomorphisms by what is above and inverses to one
another, giving us an isomorphism.

Question 8a What is Z ∗ Z?

Given the standard presentation of Z we have Z ∗ Z = 〈a, b|∅〉 = F2.
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Question 8b Draw the Cayley graph of Z2 ∗ Z3 (using their standard presentations).

〈a, b|a3, b2〉

Question 8c Describe (informally) the Cayley graph of a free product. (You may take the factor
subgroups to be finite for concreteness).

For G1 ∗G2 we have Cay(G1 ∗G2, S1) and Cay(G1 ∗G2, S2 both look like disjoint unions of Cay(Gi, Si

when considering Cay(G1 ∗G2, S1 ∪ S2) these disjoint copies form a tree like structure where on copy of
Cay(G1, S1) has a single copy of Cay(G2, S2) attached to each vertex however this branches in a tree like
manner to never connect up.

Question 8d Discuss whether the following statement should be true: every element of G1 ∗G2 can be
written uniquely as an alternating product of non-trivial elements of G1 and G2.

This is true because of this tree like structure if an element could be written in two forms alternating
forms, this would give us a relationship between the two groups which would contradict the original
definition.
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