MA4H4 Geometric Group Theory

Exercise sheet 2 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.

Question 1 Let F_n be generated by the letters $\{x_1, x_2, \ldots, x_n\}$. Show that $[F_n, F_n]$ consists exactly of those elements whose reduced word representative contains an equal number of x_i 's as x_i^{-1} 's, for each i.

Let $F'_n = \{w \in F_n | w \text{ contains an equal number of } x_i\text{'s as } x_i^{-1}\text{'s, for each } i\}$. Note that any generator of $[F_n, F_n]$ has the property that it contains an equal number of $x_i\text{'s as } x_i^{-1}\text{'s, for each } i$ therefore $[F_n, F_n] \subset F'_n$. Observe that $w_1w_2 = w_2w_1[w_1^{-1}, w_2^{-1}]$. Suppose we have some word $w \in F'_n$ then

$$\begin{split} w &= w_{1,1} x_{k_1}^{\pm 1} w_{1,2} x_{k_1}^{\mp 1} \\ &= w_{1,1} w_{1,2} [w_{1,2}^{-1}, x_{k_1}^{\pm 1}] \\ &= w_{2,1} x_{k_2}^{\pm 1} w_{2,2} x_{k_2}^{\mp 1} [w_{1,2}^{-1}, x_{k_1}^{\pm 1}] \\ &= w_{2,1} w_{2,2} [w_{2,2}^{-1}, x_{k_2}^{\pm 1}] [w_{1,2}^{-1}, x_{k_1}^{\pm 1}] \\ &\vdots \\ &= [w_{r,2}^{-1}, x_{k_r}^{\pm}] \dots [w_{1,2}^{-1}, x_i^{\pm 1}]. \end{split}$$

Note we eventually get no letters on the right as there are an equal number of x_i 's as x_i^{-1} 's allowing us to pair them in the above fashion. This gives $F'_n \subset [F_n, F_n]$, therefore $F'_n = [F_n, F_n]$ as required.

Question 2 Show that $F_n/[F_n, F_n] \cong \mathbb{Z}^n$.

Pick the standard basis of \mathbb{Z}^n using notation e_i . Define homomorphism $\phi: F_n \to \mathbb{Z}^n$ by $\phi(x_i) = e_i$, this is well defined from the universal property of free groups and surjective by definition. Suppose $w \in F_n$ belongs to $\ker(\phi)$, then for $\phi(w)$ to have a zero e_i coefficient w has to have as many x_i 's as x_i^{-1} 's therefore $w \in [F_n, F_n]$. However also if $w \in [F_n, F_n]$ then $\phi(w) = \overline{0}$, therefore $\ker(\phi) = [F_n, F_n]$ so by the first isomorphism theorem $F_n/[F_n, F_n] = \mathbb{Z}^n$.

Question 3 Let $S = \{x_i\}_{i \in \mathbb{N}}$ be a countably infinite set indexed by \mathbb{N} . Let R be the set of relations of the form $x_{i+1} = x_j x_i x_j^{-1}$, for $i, j \in \mathbb{N}$ with j < i. Let $T = \langle S | R \rangle$ be the "Thompson group". (This is actually Thompson group F - there are also Thompson's group T and V). Show that:

$$T = \langle x_0, x_1 | [x_0^{-1} x_1, x_0 x_1 x_0^{-1}] = [x_0^{-1} x_1, x_0^2 x_1 x_0^{-2}] = 1 \rangle$$

(Hint: First show that all the x_n , for $n \geq 2$, can be expressed in terms of x_0 and x_1 . Write some expressions for x_3 and x_4 and conjugate the appropriate ones by x_0 or x_0^2 to show that the required commutativity relations hold. Finally, show that these imply the original relations). This shows that T is indeed finitely presented.

Lets call relation $x_{i+1}x_j = x_jx_i$ relation $R_{i,j}$. We show by induction that $x_n = x_0^{n-1}x_1x_0^{1-n}$, note that for n = 2 this is a relation in R. Suppose it is true for n = k then

$$x_{k+1} = x_0 x_k x_0^{-1}$$
 from relation $R_{k,0}$
$$= x_0 (x_0^{k-1} x_1 x_0^{1-k}) x_0^{-1}$$
 from the induction hypothesis
$$= x_0^k x_1 x_0^{-k}$$

giving it for n = k + 1.

We will show that the two relations given are equivalent to $R_{1,2}$ and $R_{1,3}$. Given

$$1 = x_0^{-1} (x_1 x_k x_1^{-1} x_{k+1}^{-1}) x_0$$

$$= x_0^{-1} x_1 x_0^{k-1} x_1 x_0^{k-1} x_1^{-1} x_0^k x_1^{-1} x_0^{-(k-1)}$$

$$= (x_0^{-1} x_1) (x_0^{k-1} x_1 x_0^{k-1}) (x_0^{-1} x_1)^{-1} (x_0^{k-1} x_1 x_0^{-(k-1)})^{-1}$$

$$= [x_0^{-1} x_1, x_0^{k-1} x_1 x_0^{k-1}]$$

so when k=2,3 we get what is required. So now we require to show $R_{i,j}$ from just $R_{1,2}$, $R_{1,3}$ and that $x_{i+1}=x_0^ix_1x_0^{-i}$. Note that $R_{i,0}$ are true from definition of x_i , $x_{i+1}=x_0x_ix_0^{-1}$. Also note that if we have $R_{i,j}$ for i>j>0 we get by conjugating by x_0^k , $R_{i+k,j+k}$, so it suffices to show $R_{k,1}$ for higher k>3. Show this by induction, we have it for k=3, so lets assume it for all k< n. Then

$$x_2x_nx_1 = x_{n-1}x_2x_1$$
 using $R_{n-1,2}$
 $= x_{n-1}x_1x_3$ using $R_{2,1}$
 $= x_1x_nx_3$ using $R_{n-1,1}$
 $= x_1x_3x_{n+1}$ using $R_{n,3}$
 $= x_2x_1x_{n+1}$ using $R_{2,1}$

which by right multiplication of x_2^{-1} gives us $R_{n,1}$.

Question 4 Draw the Cayley graph of the dihedral group D_n with presentation

$$a, b|a^n = b^2 = (ab)^2 = 1$$

and the infinite dihedral group D_{∞} with presentation

$$\langle a, b|b^2 = (ab)^2 = 1\rangle.$$

Question 5 Draw the Cayley graph of the alternating group A_4 with generators (123) and (12)(34).

Question 6 The triangle group $\Delta(p,q,r)$ has presentation

$$\langle a, b, c | a^2 = b^2 = c^2 = (ab)^p = (bc)^q = (ca)^r = 1 \rangle.$$

Question 6a Draw the Cayley graph of the icosahedral group $\Delta(2,3,5)$.

Question 6b Classify the triples (p, q, r) for which 1/p + 1/q + 1/r = 1. What do their Cayley graphs look like?

Assuming $p \le q \le r$ one can show that the only triples are (2,3,6), (2,4,4) and (3,3,3). Their Cayley graphs are tilings of \mathbb{E}^2 .

Question 6c Try to find a relationship between the Cayley graph of $\Delta(p, q, r)$ and a tessellation of a suitable space with congruent triangles. Why should the traingle groups with 1/p+1/q+1/r > 1 be finite?

Take triangles with angles π/p , π/q and π/r at vertices x_p , x_q and x_r . Let a act on our triangle by reflection over the x_px_r edge, b over the x_px_q edge and c over the x_qx_r edge. Use this action to tile a surface note that the relations hold as (ab) acts by rotation around vertex x_p by $2\pi/p$ and similar for other products. We get that if 1/p + 1/q + 1/r > 1 we get positive curvature so tile a sphere, 1/p + 1/q + 1/r = 1 we get zero curvature so tile a euclidean plane and 1/p + 1/q + 1/r < 1 negative curvature so tile the hyperbolic plane.

Tilings associated to $\Delta(2,3,4)$, $\Delta(2,4,4)$ and $\Delta(2,4,7)$, find more at: https://en.wikipedia.org/wiki/Triangle_group.

Question 7 Let S be a finite generating set for G and suppose $S' \subset S$. We can form a subgraph $\Delta(G; S') \subset \Delta(G; S)$. Describe the connected components of $\Delta(G; S')$.

Let $G' = \langle S' \rangle \leq G$ then each connected component of $\Delta(G; S')$ is isomorphic to $\Delta(G'; S')$ and the connected component are in bijection with the cosets [G:G']. This is because if $x, y \in xG'$ then x = yg' where g' can be written in terms of S' therefore are connected by a path. Equally if x and y are connected then from following such a path we get that x = yg' with $g' \in G'$.

Question 8 Let $G_1 = \langle S_1 | R_1 \rangle$ and $G_2 = \langle S_2 | R_2 \rangle$ (with S_1 and S_2 disjoint). The free product $G_1 * G_2$ has presentation $\langle S_1 \cup S_2 | R_1 \cup R_2 \rangle$. (Check the definition doesn't actually depend on the presentation of G_1 and G_2).

Given a different presentation $G_1 = \langle S_1' | R_1 \rangle$ there exists a maps $\phi : F_{S_1} \to F_{S_1'}$ and $\phi' : F_{S_1'} \to F_{S_1}$ such that they are inverses and notably $\phi(r) \in \langle \langle R_1' \rangle \rangle$ and $\phi'(r') \in \langle \langle R_1 \rangle \rangle$ for all $r' \in R'$ and $r \in R$. Then map $\phi^* : \langle \S_1 \cup S_2 | R_1 \cup R_2 \rangle \to \langle S_1' \cup S_2 | R_1' \cup R_2 \rangle$ by $\phi_*(s_1) = \phi(s_1)$ and $\phi^*(s_2) = s_2$ for $s_1 \in S_1$ and $s_2 \in S_2$ and ϕ_*' similarly. These are well defined homomorphisms by what is above and inverses to one another, giving us an isomorphism.

Question 8a What is $\mathbb{Z} * \mathbb{Z}$?

Given the standard presentation of \mathbb{Z} we have $\mathbb{Z} * \mathbb{Z} = \langle a, b | \emptyset \rangle = F_2$.

Question 8b Draw the Cayley graph of $\mathbb{Z}_2 * \mathbb{Z}_3$ (using their standard presentations).

Question 8c Describe (informally) the Cayley graph of a free product. (You may take the factor subgroups to be finite for concreteness).

For $G_1 * G_2$ we have $\operatorname{Cay}(G_1 * G_2, S_1)$ and $\operatorname{Cay}(G_1 * G_2, S_2)$ both look like disjoint unions of $\operatorname{Cay}(G_i, S_i)$ when considering $\operatorname{Cay}(G_1 * G_2, S_1 \cup S_2)$ these disjoint copies form a tree like structure where on copy of $\operatorname{Cay}(G_1, S_1)$ has a single copy of $\operatorname{Cay}(G_2, S_2)$ attached to each vertex however this branches in a tree like manner to never connect up.

Question 8d Discuss whether the following statement should be true: every element of $G_1 * G_2$ can be written uniquely as an alternating product of non-trivial elements of G_1 and G_2 .

This is true because of this tree like structure if an element could be written in two forms alternating forms, this would give us a relationship between the two groups which would contradict the original definition.