MA4H4 Geometric Group Theory

Exercise sheet 1 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.
Question 1 Show that $\mathbb{Z}^{n} \cong \mathbb{Z}^{m}$ implies $n=m$.
We know these are f.g. groups where the standard basis form a minimal generating set (for a contradiction take a smaller one and expand to \mathbb{R}^{n}, use linear algebra), therefore by mapping under the given isomorphism form a generating set in the other group, giving $n \leq m$ and $m \leq n$ therefore $n=m$.

Question 2 Show that a finitely generated torsion-free abelian group is isomorphic to \mathbb{Z}^{n}, for some $n \geq 0$.
By the fundamental theorem of finitely generated abelian groups we have it is of the form $\mathbb{Z}^{n} \oplus_{i=1}^{m} \mathbb{Z} / k_{i} \mathbb{Z}$ however as it is torsion free there are no $\mathbb{Z} / k_{i} \mathbb{Z}$ factors. Therefore we get it is of the form \mathbb{Z}^{n}.

Question 3 Prove that any finitely generated subgroup of $(\mathbb{Q},+)$ is either trivial or infinite cyclic.
Suppose $S \leq \mathbb{Q}$ is non-trivial finitely generated subgroup. Prove the statement by induction on the number of generators.

Suppose S is generated by n_{1} / d_{1} and n_{2} / d_{2} where n_{i} and d_{i} are coprime positive integers (we can assume the generators are positive as multiplication by the unit -1 doesn't change the subgroup they form). Let $Q=\operatorname{gcd}\left(d_{1}, d_{2}\right), L=l c m\left(d_{1}, d_{2}\right)=d_{1} d_{2} / Q$ and $D=\operatorname{gcd}\left(n_{1} d_{2} / Q, n_{2} d_{1} / Q\right)$ then by the Euclidean algorithm we can write $D=a n_{1} d_{2} / Q+b n_{2} d_{1} / Q$ for some $a, b \in \mathbb{Z}$. The we claim $S=\langle D / L\rangle$, first note that

$$
\begin{aligned}
D / L & =\left(a n_{1} d_{2} / Q+b n_{2} d_{1} / Q\right) /\left(d_{1} d_{2} / Q\right) \\
& =a n_{1} / d_{1}+b n_{2} / d_{2} \in S
\end{aligned}
$$

Lastly that for a generic $\alpha, \beta \in \mathbb{Z}$ we have that

$$
\begin{aligned}
\alpha n_{1} / d_{1}+\beta n_{2} / d_{2} & =\left(\alpha n_{1} d_{2} / Q+\beta n_{2} d_{1} / Q\right) /\left(d_{1} d_{2} / Q\right) \\
& =\zeta D / L \in\langle D / L\rangle
\end{aligned}
$$

Proving the statement for 2 generated subgroups. Assuming the $k-1$ case and showing it for k generators just apply the inductive assumption to the first $k-1$ generators then the 2 generator case.

Question 4a If $N \triangleleft \Gamma$ and Γ is f.g., then Γ / N is f.g.
Suppose $g_{1}, \ldots g_{n} \in \Gamma$ generate, then there images in $\overline{g_{1}}, \ldots \overline{g_{n}} \in \Gamma / N$ still generate, therefore Γ / N is f.g.

Question 4b If $N \triangleleft \Gamma, N$ is f.g. and Γ / N is f.g., then Γ is f.g.
Let n_{1}, \ldots, n_{k} generate N and $\overline{g_{1}}, \ldots, \overline{g_{n}}$ generate Γ / N. Pick any representative $g_{i} \in G$ of $\overline{g_{i}}$ then every element in Γ can be written as $g n \in g N$ where g is a word in g_{i} and $n \in N$ so a word in n_{i} therefore $n_{1}, \ldots, n_{k}, g_{1}, \ldots, g_{n}$ generate.

Question 4c If $H \leq \Gamma$ and $[\Gamma: H]<\infty$ ("finite index") then Γ is f.g. if and only if H is f.g.
If H is f.g. by h_{1}, \ldots, h_{n} and Γ / H has cosets $c_{1} H, \ldots, c_{m} H$ then $h_{1}, \ldots, h_{n}, c_{1}, \ldots, c_{m}$ generate by a similar reason to 4 b .

Suppose Γ is f.g. by g_{1}, \ldots, g_{n} where this is a symmetric generating set and let Γ / H have cosets $c_{1} H, \ldots, c_{m} H$ where $c_{1}=1$. For each $1 \leq i \leq m$ and $1 \leq j \leq n$, define $h_{i, j} \in H$ to be such that $c_{i} g_{j}=h_{i, j} c_{k_{i, j}}$ for some $k_{i, j}$. Then for any $h \in H$ this can be written as $h=g_{i_{1}} \ldots g_{i_{t}}$ in the generators of Γ. Then

$$
\begin{aligned}
g_{i_{1}} \ldots g_{i_{t}}= & c_{1} g_{i_{1}} \ldots g_{i_{t}} \\
= & h_{1, i_{1}} c_{k_{1, i_{1}}} g_{i_{2}} \ldots g_{i_{t}} \\
& \vdots \\
= & \left(\text { product of } h_{i, j} s\right) \cdot c_{*} .
\end{aligned}
$$

However $c_{*}=1$ as $h \in H$, therefore H is generated by $h_{1,1} \ldots h_{m, n}$.
Question 5 Show that if $F(B)$ is f.g. then B is also finite.
Suppose $F(B)$ is f.g. by $x_{1}, \ldots x_{n}$ then write each x_{i} as words in B which only takes finite letters $b_{1}, \ldots b_{m}$. Suppose there was a $b \in B \backslash\left\{b_{1}, \ldots b_{n}\right\}$ then $b \in F(B)$ so can be written as a word in $x_{1}, \ldots x_{m}$ and therefore a reduced word in $b_{1} \ldots b_{n}$ lets call w. However, $b^{-1} w$ is a reduced word in $F(B)$ but is equal to the identity, contradicting the definition of the free group and the existent of b therefore B is finite.

Question 6 Prove that every element in $F(S)$ can be written uniquely as a reduced word in $S \cup S^{-1}$.
This will be solved geometrically later in the course, see introduction to topology or presentations of groups for a rigorous algebraic proof. Intuitively, a word in $F(S)$ corresponds to a path on a Rose graph (this has one vertex and a loop for every generator in S), then the statement is equivalent to saying this has a unique homotopic representative of shortest length.

Question 7 Let $F_{2}=\langle a, b\rangle$. Let $S=\left\{b^{n} a b^{-n} \mid n \in \mathbb{N}\right\}$. Show (combinatorially) that $\langle S\rangle$ is freely generated by S. Deduce that $\langle S\rangle$ is not f.g. (Note that $\langle S\rangle$ is isomorphic to $F(S)$, since they are both freely generated by S.)

Define $x_{n}=b^{n} a b^{-n}$. Suppose w is a word in S such that w represents the identity. Note that $x_{n}^{k}=b^{n} a^{k} n^{-n}$, for $k \in \mathbb{Z}$. Write

$$
\begin{aligned}
w & =x_{i_{1}}^{k_{1}} x_{i_{2}}^{k_{2}} \ldots x_{i_{r}}^{k_{r}}, & i_{j} \neq i_{j+1} \text { and } k_{j} \neq 0 \\
& =b^{i_{1}} a^{k_{1}} b^{i_{2}-i_{1}} a^{k_{2}} b^{i_{3}-i_{2}} \ldots b^{i_{r}-i_{r-1}} a^{k_{r}} b^{-i_{r}} . &
\end{aligned}
$$

Since $i_{j} \neq i_{j+1}$, no $i_{j+1}-i_{j}=0$ so this is a reduced word in F_{2} and empty if and only if w is. Hence $\langle S\rangle$ is freely generated by S so not f.g. by Question 5 .

Remark: A subgroup of a finitely generated group need not be finitely generated.
Remark: Let $T \subset \mathbb{N}$ this proof also verifies that if $S=\left\{b^{n} a b^{-n} \mid n \in T\right\}$ then $\langle S\rangle$ is freely generated by S showing that $F_{n} \leq F_{2}$ for all $n \in \mathbb{N}$.

Question 8 Show that there are only countably many f.p. groups up to isomorphism.

Note that if there are countably many finite presentations using n generators then there are countably many finite presentations, as a countable number of countable sets is countable. So consider the set of words in $x_{1}, x_{2}, \ldots, x_{n}$ and the set of subsets of finite size, this is countable as the set of finite subsets of a countable set is countable. Therefore there are countably many f.p. of groups and so countably many up to isomorphism.

Question 9 Let $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ be matrices in $\operatorname{SL}(2, \mathbb{R})$. Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid\right.$ $|x|>|y|\}$ and $Y=\left\{(x, y) \in \mathbb{R}^{2}| | x|<|y|\}\right.$.

Question 9a Describe the sets $A^{n}(Y)$ and $B^{n}(X)$ for $n \neq 0$. How do these sets relate to X and Y ?
Note that,

$$
A^{n}\binom{x}{y}=\left(\begin{array}{cc}
1 & 2 n \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x+2 n y}{y}, \text { and } B^{n}\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
2 n & 1
\end{array}\right)\binom{x}{y}=\binom{x}{y+2 n x}
$$

So if $(x, y) \in Y$ then $|y|>|x|$ giving $|x+2 n y|>|y|$ for all $n \neq 0$, hence $A^{n}(Y) \subset X$. Similarly $B^{n}(X) \subset Y$.

Question 9b Show that

$$
W=A^{n_{1}} B^{n_{2}} A^{n_{3}} \ldots A^{n_{k-2}} B^{n_{k-1}} A^{n_{k}}
$$

is not the identity, where $k \geq 1$ and $n_{i} \neq 0$ for all i. (Hint: Look at $W(Y)$).
From above

$$
\begin{aligned}
A^{n_{k}}(Y) & \subset X \\
B^{n_{k-1}} A^{n_{k}}(Y) & \subset Y \\
& \vdots \\
A^{n_{1}} B^{n_{2}} A^{n_{3}} \ldots A^{n_{k-2}} B^{n_{k-1}} A^{n_{k}}(Y) & \subset X \\
w(Y) & \subset X
\end{aligned}
$$

Since X and Y are disjoint, this implies w is not the identity.

Question 9c Deduce that all non-trivial reduced words in A and B do not represent the identity. (There are 4 cases: the words must begin with either on A or B and end with either an A or B).

Case 1, it starts and ends in A. This is done it part (b).
Case 2 , it starts and ends in B. This is done similarly to part (b).
Case 3, it starts in A and ends in B. Let $w=A^{n_{1}} B^{n_{2}} \ldots A^{n_{k-1}} B^{n_{k}}$ and suppose $w=i d$ then $A^{n_{1}} w A^{-n_{1}}=A^{2 n_{1}} B^{n_{2}} \ldots A^{n_{k-1}} B^{n_{k}} A^{-n_{1}}=i d$ which reduces to case 1.

Case 4, it starts in B and ends in A. It is conjugate to case 1 by similar reasons to above.

Question 9d Hence, show that A and B generate a free subgroup of rank 2 in $\mathrm{SL}(2, \mathbb{R})$.
From 9c no non-empty reduced word in $\{A, B\}$ can represent the identity element, so A and B freely generate a free subgroup of rank 2 in $S L(2, \mathbb{R})$.

Further Question: This is an example of the table tennis lemma or (ping-pong lemma) - a method often used in geometric group theory to prove that a certain set of elements of a group freely generate a free subgroup. Formulate a statement and prove it. Try to generalise to the case of n generators.

Ping Pong Lemma Let G act on X, and $g_{1}, \ldots, g_{n} \in G$. Let X_{1}, \ldots, X_{n} be disjoint, non-empty subsets of X such that for all i and $j \neq i, g_{i}^{k}\left(X_{j}\right) \subset X_{i}$ for all $k \neq 0$. Then $\left\langle g_{1}, \ldots, g_{n}\right\rangle \leq G$ is free of rank n.

Let w be a reduced word starting and ending with g_{1}. For all $x \in X_{2}, w(x) \in X_{1}$ since $X_{1} \cap X_{2}=\emptyset$ we have that w is a non-trivial element of G. Now any other non-empty reduced word in the g_{i} is conjugate to a word starting and ending in g_{1} therefore is also non-trivial, giving what is required.

