MA4H4 Geometric Group Theory

Exercise sheet 5

May 19, 2011

1. Show that a f.g. virtually Abelian group is virtually \mathbb{Z}^{n}.
2. Fill in the details in the proof of the following theorem given in lecture: show that if a group is q.i. to \mathbb{Z} then it is virtually \mathbb{Z}.
3. (a) Give some examples of subgroups of F_{2} isomorphic to F_{n}.
(b) Show that if K is a finite graph then $\pi_{1}(K) \cong F_{n}$ where $n=E-V+1$.
(c) Show that a finite index subgroup of F_{n} is isomorphic to F_{m} for some $m \geq n$.
4. Let $F_{2}=\langle a, b\rangle$. Let $S=\left\{b^{n} a b^{-n} \mid n \in \mathbb{Z}\right\}$. Show that $\langle S\rangle$ is the normal closure of $\{a\}$ in F_{2}.
5. Recall the triangle group $\Delta(p, q, r)$ with presentation

$$
\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{p}=(b c)^{q}=(c a)^{r}=1\right\rangle .
$$

(a) Draw that Cayley graph of $\Delta(7,3,2)$.
(b) Decide for which triples (p, q, r) is $\Delta(p, q, r)$ q.i. to a point, a euclidean space, or hyperbolic space. (Note: This question may require some knowledge of basic hyperbolic geometry).
(c) Describe a proper discontinuous action of $\Delta(p, q, r)$ by isometries on either the sphere, euclidean plane or hyperbolic plane. There should be examples where the fundamental domain is a triangle.

