MA4H4 Geometric Group Theory

Exercise sheet 4

May 19, 2011

- 1. Show that there is exactly one *n*-regular tree up to isomorphism for any $n \in \mathbb{N}$.
- 2. Show that $T_n \sim T_m$ if $m, n \geq 3$. In fact, if T is any tree all of whose vertices have degree between 3 and n for some $n \geq 3$, then $T \sim T_3$. What could happen if we don't impose an upper bound on the degree of the vertices?
- 3. Show that \mathbb{R} is not q.i. to T_3 .
- 4. Show that \mathbb{R}^2 is not q.i. to T_3 . (Hint: suppose that $\phi : \mathbb{R}^2 \to T_3$ is a q.i.. Consider the image of a large equilateral triangle.)
- 5. Suppose that $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a proper continuous map. ("Proper" means that $f^{-1}K$ is compact for all compact K.) Suppose there is some $k \ge 0$ such that for all $x \in \mathbb{R}^n$, diam $(f^{-1}(x)) \le k$. Then f is surjective.

(The idea of the proof is to extend f to a continuous map between the onepoint compactifications $f : \mathbb{R}^n \cup \{\infty\} \longrightarrow \mathbb{R}^n \cup \{\infty\}$, and using appropriate identifications of $\mathbb{R}^n \cup \{\infty\}$ with the sphere, S^n , we can apply the Borsuk-Ulam theorem to get a contradiction.)

- 6. Show that any quasi-isometric map from \mathbb{R}^n to \mathbb{R}^n is a quasi-isometry.
- 7. Show that the relation of commensurablity of groups is transitive.

- 8. Let γ be a group acting on a geodesic space X. The action is said to be *quasi-convex* if the orbits are quasi-convex.
 - (a) Show that any isometric action of \mathbb{Z} on \mathbb{R}^2 is quasi-convex. What about \mathbb{Z}^n on \mathbb{R}^m ?
 - (b) Give an example of a quasi-convex action of \mathbb{Z} on \mathbb{H}^2 . Is every action of \mathbb{Z} on \mathbb{H}^2 quasi-convex?
 - (c) Assume X is proper and suppose the action of Γ on X is proper and quasi-convex. Prove that Γ is finitely generated and for any $x_0 \in X$, the map sending $\gamma \in \Gamma$ to $\gamma x_0 \in X$ is a quasi-isometric embedding. (Hint: If Γx_0 is r-quasi-convex, consider the set of nonidentity elements of Γ which move x_0 by at most 2r + 1.)