MA4H4 Geometric Group Theory

Exercise sheet 3

January 27, 2017

- 1. Let d be the distance on \mathbb{R} defined by $d(x,y) = |x-y|^p$ for p > 0. Show that this is a metric for $p \leq 1$. Show that this is length space if and only if p = 1.
- 2. Let $\gamma:[a,b]\longrightarrow X$ be a geodesic. Show that length $(\gamma)=d(\gamma(a),\gamma(b)).$
- 3. Suppose that $\gamma:[a,b] \longrightarrow X$ is a path. Prove that length $(\gamma) = d(\gamma(a), \gamma(b))$ if and only if $d(\gamma(t), \gamma(v)) = d(\gamma(t), \gamma(u)) + d(\gamma(u), \gamma(v))$ whenever $t, u, v \in [a,b]$ with $t \leq u \leq v$. If γ is also injective, show that it can be reparameterised as a (unit speed) geodesic.
- 4. Show that a length space is proper (complete and locally compact) if and only if all closed balls are compact.
- 5. Suppose Γ acts by isometries on a proper length space X. Show that the following are equivalent:
 - The action is cocompact.
 - Some orbit is cobounded.
 - Every orbit is cobounded.
- 6. Show that quasi-isometry is an equivalence relation (i.e. prove it is reflexive, symmetric and transitive).
- 7. Show that the Cayley graphs of \mathbb{Z} with respect to the generating sets $\{a, a^2\}$ and $\{a^2, a^3\}$ are quasi-isometric to \mathbb{R} .

- 8. Let X be a geodesic space. A subset $Y \subset X$ is called r-quasi-convex if for all $x, y \in Y$, any geodesic from x to y (in X) is in the r-neighbourhood of Y. We simply say Y is quasi-convex if it is r-quasi-convex for some $r \geq 0$.
 - (a) Show that a finite subgroup of a f.g. group Γ is quasi-convex inside any Cayley graph of Γ .
 - (b) Show that this also holds for finite index subgroups of Γ .
- 9. (a) Consider \mathbb{Z}^2 with generating set $S_1 = \{(0,1),(1,0)\}$. Show that the subgroup generated by $\{(0,1)\}$ is quasi-convex in $\Delta(\mathbb{Z}^2, S_1)$.
 - (b) Is the subgroup G generated by $S = \{(1,1)\}$ quasi-convex in $\Delta(\mathbb{Z}^2, S_1)$?
 - (c) Let $S_2 = \{(0,1), (1,0), (1,1)\}$. Is G quasi-convex in $\Delta(\mathbb{Z}^2, S_2)$?
 - (d) Is the natural inclusion a quasi-isometric embedding from $\Delta(G, S)$ to $\Delta(\mathbb{Z}^2, S_1)$ or $\Delta(\mathbb{Z}^2, S_2)$?
 - (e) Show that $\Delta(\mathbb{Z}^2, S_1)$ and $\Delta(\mathbb{Z}^2, S_2)$ are quasi-isometric. Is quasi-convexity a property preserved under quasi-isometries?