MA4H4 Geometric Group Theory

Exercise sheet 1

May 19, 2011

1. Show that $\mathbb{Z}^{n} \cong \mathbb{Z}^{m}$ implies $n=m$.
2. Show that a finitely generated torsion-free abelian group is isomorphic to \mathbb{Z}^{n}, for some $n \geq 0$.
3. Prove that any finitely generated subgroup of $(\mathbb{Q},+)$ is either trivial or infinite cyclic.
4. Prove the following statements:
(a) If $N \triangleleft \Gamma$ and Γ is f.g., then Γ / N is f.g.
(b) If $N \triangleleft \Gamma, N$ is f.g. and Γ / N is f.g., then Γ is f.g.
(c) If $G \leq \Gamma$ and $[\Gamma: G]<\infty$ ("finite index") then Γ is f.g. if and only if G is f.g.
5. Show that if $F(B)$ is f.g. then B is also finite.
6. Prove that every element in $F(S)$ can be written uniquely as a reduced word in $S \sqcup S^{-1}$.
7. Let $F_{2}=\langle a, b\rangle$. Let $S=\left\{b^{n} a b^{-n} \mid n \in \mathbb{N}\right\}$. Show (combinatorially) that $\langle S\rangle$ is freely generated by S. Deduce that $\langle S\rangle$ is not f.g. (Note that $\langle S\rangle$ is isomorphic to $F(S)$, since they are both freely generated by S.)
8. Show that there are only countably many f.p. groups up to isomorphism.
9. Let $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ be matrices in $\operatorname{SL}(2, \mathbb{R})$. Let $X=\left\{(x, y) \in \mathbb{R}^{2}| | x|>|y|\}\right.$ and $Y=\left\{(x, y) \in \mathbb{R}^{2}| | x|<|y|\}\right.$.
(a) Describe the sets $A^{n}(Y)$ and $B^{n}(X)$ for $n \neq 0$. How do these sets relate to X and Y ?
(b) Show that

$$
W=A^{n_{1}} B^{n_{2}} A^{n_{3}} \ldots A^{n_{k-2}} B^{n_{k-1}} A^{n_{k}}
$$

is not the identity, where $k \geq 1$ and $n_{i} \neq 0$ for all i. (Hint: Look at $W(Y)$).
(c) Deduce that all non-trivial reduced words in A and B do not represent the identity. (There are 4 cases: the words must begin with either an A or B and end with either an A or B).
(d) Hence, show that A and B generate a free subgroup of rank 2 in $\mathrm{SL}(2, \mathbb{R})$.

Remark: This is an example of the table tennis lemma or (ping-pong lemma) - a method often used in geometric group theory to prove that a certain set of elements of a group freely generate a free subgroup. Formulate a statement and prove it. Try to generalise to the case of n generators.

