MA3D9: Geometry of curves and surfaces

Exercises 6.

(1) Let \mathbf{x}, \mathbf{y} be tangential vector fields to the surface S. Show that $D_{\mathbf{x}}\mathbf{y} - D_{\mathbf{y}}\mathbf{x}$ is also tangential, and deduce that this is equal to $\nabla_{\mathbf{x}}\mathbf{y} - \nabla_{\mathbf{y}}\mathbf{x}$.

Write $[\mathbf{x}, \mathbf{y}] = \nabla_{\mathbf{x}} \mathbf{y} - \nabla_{\mathbf{y}} \mathbf{x}$. (The "Lie bracket".)

Show that if $(u, v) \mapsto \mathbf{r}(u, v)$ is a chart, show that $[\mathbf{r}_u, \mathbf{r}_v] = 0$.

Suppose that $f: S \longrightarrow \Sigma$ is a diffeomorphism, and f_* is the derivative of f at a point p. Show that $f_*[\mathbf{x}, \mathbf{y}] = [f_*\mathbf{x}, f_*\mathbf{y}]$.

(2) Suppose that \mathbf{x} is a tangential vector field on S. Show that if $\nabla_{\mathbf{x}} f = 0$ for every smooth function $f: S \longrightarrow \mathbf{R}$, then $\mathbf{x} = 0$ everywhere. [You may want to use the construction of a smooth function on \mathbf{R} that is positive on (-1,1) and 0 everywhere else.] Deduce that \mathbf{x} is determined by the operation of $\nabla_{\mathbf{x}}$ on smooth functions.

Show that if \mathbf{x}, \mathbf{y} are smooth vector fields, and f a smooth function, then

$$\nabla_{[\mathbf{x},\mathbf{y}]} f = \nabla_{\mathbf{x}} \nabla_{\mathbf{y}} f - \nabla_{\mathbf{y}} \nabla_{\mathbf{x}} f.$$

Suppose that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are vector fields. Show that:

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.$$

(3) Given three tangential vector fields, $\mathbf{x}, \mathbf{y}, \mathbf{z}$, write

$$R(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \nabla_{\mathbf{x}} \nabla_{\mathbf{y}} \mathbf{z} - \nabla_{\mathbf{y}} \nabla_{\mathbf{x}} \mathbf{z} - \nabla_{[\mathbf{x}, \mathbf{y}]} \mathbf{z}.$$

Show that if λ, μ, ν smooth functions on S, then $R(\lambda \mathbf{x}, \mu \mathbf{y}, \nu \mathbf{z}) = \lambda \mu \nu R(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

(4) Let

$$\mathbf{r}(u,v) = (\lambda(u)\cos v, \lambda(u)\sin v, \mu(u))$$

be a surface of revolution.

Show that the first and second fundamental forms are given respectively by

$$((\lambda')^2 + (\mu')^2)du^2 + \lambda^2 dv^2$$

$$\frac{1}{\sqrt{(\lambda')^2 + (\mu')^2}} ((\lambda'\mu'' - \lambda''\mu')du^2 + \lambda\mu' dv^2).$$

Calculate the matrix for the shape operator. Show that the principal curvatures are given by

$$\frac{\lambda''\mu' - \lambda'\mu''}{((\lambda')^2 + (\mu')^2)^{3/2}} \qquad \frac{-\mu'}{\lambda((\lambda')^2 + (\mu')^2)^{1/2}},$$

and that the Gauss curvature is given by:

$$\kappa = \frac{\lambda' \mu' \mu'' - \lambda''(\mu')^2}{\lambda((\lambda')^2 + (\mu')^2)}.$$