MA3D9: Geometry of curves and surfaces

Exercises 3.

(1) Compute the first fundamental forms of the following parameterised surfaces:

ellipsoid: $\mathbf{r}(u, v) = (a \cos u \cos v, b \sin u \cos v, c \sin v)$

elliptic paraboloid: $\mathbf{r}(u, v) = (au\cos v, bu\sin v, u^2)$.

hyperbolic paraboloid: $\mathbf{r}(u, v) = (au \cosh v, bu \sinh v, u^2)$

2-sheeted hyperboloid: $\mathbf{r}(u, v) = (a \sinh u \cos v, b \sinh u \sin v, c \cosh u)$.

(2) Given $\theta \in \mathbf{R}$, let $\mathbf{r}(\theta)$ be the parametrised surface, $\mathbf{r}(\theta) : \mathbf{R}^2 \longrightarrow \mathbf{R}^3$ defined by $\mathbf{r}(\theta)(u,v) = (x(\theta)(u,v), y(\theta)(u,v), z(\theta)(u,v))$ where

$$x(\theta)(u, v) = \cos \theta \cosh u \cos v + \sin \theta \sinh u \sin v$$

$$y(\theta)(u, v) = \cos \theta \cosh u \sin v - \sin \theta \sinh u \cos v$$

$$z(\theta)(u, v) = u\cos\theta + v\sin\theta.$$

Calculate the first fundamental form of $\mathbf{r}(\theta)$, and show that $\mathbf{r}(\theta)$ is isometric to $\mathbf{r}(\phi)$ for all θ and ϕ .

What are these surfaces when $\theta = 0$ and $\theta = \pi/2$?

(3) Let **r** be a regular surface. The "coordinate curves" are curves of the form $u \mapsto \mathbf{r}(u, v)$ for constant v, or $v \mapsto \mathbf{r}(u, v)$ for constant u. Show that coordinate curves are regular.

Show that $\frac{\partial E}{\partial v} = \frac{\partial G}{\partial u} = 0$ if and only if the any quadrilateral formed out of coordinate curves has opposite sides of equal length.

In such a case, show that we can find a reparametisation so that the first fundamental form has the form E = 1, $F = \cos \theta$, G = 1, where θ is the angle between the (new) coordinate curves.

(4) Show that the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ for a, b, c > 0 is an embedded regular surface, by describing explicit charts.

Show that for any $c \neq 0$, the set $\{(x, y, z) \in \mathbf{R}^2 \mid x^2 + y^2 - z^2 = c\}$ is a regular surface, by describing explicit charts.

- (5) Show that any two ellipsoids are diffeomorphic.
- (6) Show that the image of a surface of revolution of a Jordan curve is an embedded surface in \mathbb{R}^3 . Show that any two such images are diffeomorphic.
- (7) A loxodrome on the sphere is a path that makes a constant non-zero angle $\alpha \in (-\pi, \pi)$. θ with every latitude (i.e. constant compass bearing).

Show that the image of a loxodrome under steriographic projection is a logarithmic spiral. Calculate the total length of a loxodrome from pole to pole.

Show that the interior angles of a triangle made from three loxodrome segments add up to π .