Exercises 1.

- (1) Suppose that $\Phi: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is a linear map. Show that the following are equivalent.
- (a) Φ is orthogonal
- (b) $(\forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^n)(\Phi(\mathbf{x}).\Phi(\mathbf{y}) = \mathbf{x}.\mathbf{y}).$
- (c) $(\forall \mathbf{x} \in \mathbf{R}^n)(||\Phi(\mathbf{x})|| = ||\mathbf{x}||).$
- (2) (a) Show that a rigid motion of \mathbb{R}^n preserves distances.
- (b) Show that an affine map of \mathbb{R}^n that preserves distances is a rigid motion.
- (c) (*) Show that any map, f, of \mathbf{R}^n to itself that preserves distances is a rigid motion.

[First note that we can assume that it fixes the origin. Let e_1, \ldots, e_n be the standard basis for \mathbf{R}^n . Show that $f(e_1), \ldots, f(e_n)$ is an orthonormal basis of \mathbf{R}^n . Composing f with an orthogonal linear map, we can now assume that $f(e_i) = e_i$ for all i. Now show that any point of \mathbf{R}^n is determined by its distances from the origin and each of the basis vectors. Deduce that f must be the identity map on \mathbf{R}^n .]

(3) (*) Assuming the inverse function theorem deduce Theorem 0.1, namely:

Suppose $f: \mathbf{R}^n \longrightarrow \mathbf{R}^m$ is smooth and that the derivative f_* has rank n everywhere. Then f is locally injective.

[Hint: First show that any $n \times m$ matrix A of rank m can be extended to an invertible $m \times m$ matrix. Now let A be the jacobian of f at the point p. Extend f to a map g from $\mathbf{R}^m = \mathbf{R}^n \times \mathbf{R}^{m-n}$ to \mathbf{R}^n . with $g|\mathbf{R}^n = f$, and with jacobian B at $(p, \mathbf{0})$. Apply the implicit function theorem to g.]

(4) Let $\gamma: [a,b] \longrightarrow \mathbf{R}^n$ be a smooth curve.

Show that $||\gamma(a) - \gamma(b)|| \leq \operatorname{length}(\gamma)$.

For example, compare the derivatives of $||\gamma(t) - \gamma(a)||$ and length $(\gamma[a, t])$.

Show that we have equality if γ is a straight line.

(5) The "cycloid" is the curve traced out by a point on the rim of a wheel as it rolls along a straight line, starting and finishing when the point is level with the ground.

Write a down an equation for the cycloid, with a suitable parameter. Calculate the total length of the cycloid.

(6) Suppose that $r: \mathbf{R} \longrightarrow (0, \infty)$ be smooth. Let γ be the curve given by $\gamma(\theta) = (r(\theta), \theta)$ in polar coordinates in \mathbf{R}^2 . Derive a formula for the curvature of γ at θ in terms of r, r' and r''.

Suppose that γ is the logarithmic spiral of pitch a, i.e. $r(\theta) = e^{a\theta}$. Show that the curvature of a point of γ at distance r from the origin is $1/r\sqrt{1+a^2}$. What is the interpretation as $a \to 0$ and as $a \to \infty$?