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Abstract: We show how the classical theory of reduction of real binary forms with
respect to the action of SL(2, Z) may be extended to a reduction theory for binary
forms with complex coefficients under the action of certain discrete groups. In
particular, we give some explicit results concerning the reduction of binary cubics
and quartics with coefficients in the ring of integers of an imaginary quadratic field
of class number one (such as Z[i]), and mention applications to the enumeration of
cubic fields and two-descent on elliptic curves.
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Plan of the talk

• Review of reduction of real binary forms

? Applications of reduction of integral cubics and quartics

• Reduction of complex binary forms

? Applications of reduction of cubics and quartics over imaginary quadratic fields



2

I. Real Binary Forms
Real Binary Quadratic Forms

BQF(R) = {f(X, Y ) = aX2 + bXY + cY 2 | a, b, c ∈ R} ⊂ R[X, Y ]

Notation: f = [a, b, c], ∆ = b2 − 4ac.

f is positive definite iff a > 0, ∆ < 0 since

4af(X, Y ) = (2aX + bY )2 −∆Y 2.

BQF(R)+ = {f ∈ BQF(R) | f is positive definite}
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The Upper Half Plane

H2 = {z ∈ C | =(z) > 0} = {x + yi | x ∈ R, y ∈ R>0}.

“Root map”:
BQF(R)+ → H2

via

f = [a, b, c] 7→ z =
−b +

√
∆

2a
= x + yi

with x = −b/2a, y =
√
|∆|/2a, |z|2 = x2 + y2 = c/a.

Inverse: z = x + yi 7→ [1,−2x, x2 + y2].
Bijection:

BQF(R)+/R>0 ←→ H2.
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Group actions

G = SL(2, R) acts on BQF(R)+ on the right via

M =
(

a b
c d

)
: f(X, Y ) 7→ fM(X, Y ) = f(aX + bY, cX + dY )

preserving ∆; new leading coefficient is fM(1, 0) = f(a, c) > 0.

G acts transitively on H2 on the left via

M : z 7→M(z) =
az + b

cz + d
,

or

(x, y) 7→
(

(ax + b)(cx + d) + acy2

(cx + d)2 + c2y2
,

y

(cx + d)2 + c2y2

)
The root map is G-equivariant: z(f) = M(z(fM)) since the root of fM is M−1(z).
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Discrete subgroups, integral points and reduction

Γ = SL(2, Z) ≤ G, discrete subgroup acting on BQF(R)+ and on H2.

Γ preserves BQF(Z)+, the integral forms in BQF(R)+. Γ has the usual fundamental
region in H2:

F = {z ∈ H2 | −
1
2
≤ x <

1
2
, |z| > 1 or − 1

2
≤ x ≤ 0, |z| = 1}

f ∈ BQF(R)+ is reduced iff z(f) ∈ F , i.e. f = [a, b, c] with

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

z ∈ F =⇒ y ≥
√

3/2, hence

f reduced =⇒
√
|∆|
2a

≥
√

3/2 =⇒ 0 < a ≤ 3−
1
2|∆|12.
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Reduction in other sets

If S is any other set on which G acts, then to define “reduced” for elements of S we
just need a G-equivariant map χ : S → BQF(R)+ (or S → H2) and define s ∈ S to be
reduced iff χ(s) is.

There may be more than one such “covariant” map χ, in which case there will be rival
notions of “reduced” for elements of S. We can ask:

• Is there a covariant χ?

• If so, is it unique?

• Is it “useful” (e.g. are reduced elements “small”?)

• If S has an integral structure, do we have a finiteness result?
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Reduction of higher degree forms

Let R[X, Y ]n denote the set of real binary forms of degree n ≥ 3. G acts on this just
as for binary forms, and Γ acts on the integral forms Z[X, Y ]n.

There is at least one covariant for every n ≥ 3: write

g(X, Y ) =
n∑

i=0

aiX
iY n−i = an

n∏
i=1

(X − αiY )

where ai ∈ R, an 6= 0 (for simplicity) and we assume that the roots αi ∈ C are distinct.
Define

χ(g) =
n∑

i=1

|g′(αi)|
2

2−n |X − αiY |2 .

Here if αi ∈ R then |X − αiY |2 = (X − αiY )2, while if αi ∈ C \ R then
|X − αiY |2 = (X − αiY )(X − αiY ), this term appearing twice since αi is also a root.
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Reduction of higher degree forms (contd.)

Lemma: χ(g) is covariant.

For n = 3, 4 this covariant appears in the work of Julia (1917) though with separate
definitions for each signature. This unified expression is due to Stoll (c.f. JEC & Stoll,
Crelle 2003).

• Unique? Yes for n = 3, 4 and unmixed signature, otherwise not (but see below).

• Useful? Certainly (see next page).

• Optimal? Not when n ≥ 5: see JEC & Stoll op.cit. for a more complicated
refinement.
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Application I: enumeration of cubic fields
(Davenport-Heilbronn, Belabas)

To find all cubic number fields with discriminant ∆ we enumerate integral cubic forms

g(X, Y ) = aX3 + bX2Y + cXY 2 + dY 3 ∈ Z[Z, Y ], disc(g) = ∆.

Set P = b2 − 3ac (leading coefficient of Hessian H(g)). If ∆ > 0 then χ(g) = H(g)
(up to a constant factor), and

g reduced =⇒ |a| ≤ 2
3
√

3
∆

1
4 and 0 < P ≤ ∆

1
2.

If ∆ < 0 then χ(g) differs from the covariant used by D-H & B. We obtain1

g reduced =⇒ |a| ≤ 2
√

2
3
√

3
|∆|14 and |P | ≤ 21/3|∆|12.

1D-H had constant 2/33/4 = 0.877 instead of 2
√

2/3
√

3 = 0.544
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Application II: Two-descent on elliptic curves

• Birch and Swinnerton-Dyer showed how to do two-descent on elliptic curves over Q
by searching for all integral binary quartics g(X, Y ) with given invariants.

• The search uses bounds derived from reduction theory as above.

• This is implemented in my program mwrank.

• While visiting Henri Cohen in 1997 I reworked the reduction theory and obtained
better bounds in the mixed signature case, by using χ(g) instead of an alternative.
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II. Complex Binary Forms
Complex Binary Hermitian Forms

We replace positive definite real binary quadratic forms with positive definite complex
binary Hermitian forms:

BHF(C)+ = {aZ1Z1 + bZ1Z2 + bZ1Z2 + cZ2Z2 | a, c ∈ R>0, b ∈ C,∆ = |b|2− ac < 0}

Notation: F = [a, b, c].
Note: aF (Z1, Z2) = |aZ1 + bZ2|2 −∆|Z2|2 so these forms take positive real values.
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Hyperbolic 3-space

We replace the upper half-plane H2 with hyperbolic 3-space:

H3 = C× R>0 = {(z, t) | z ∈ C, t ∈ R>0} = {q = z + tj ∈ H},

also called quaternionic upper half-space.

“Root map”:
BHF(C)+ → H3

F = [a, b, c] 7→ q = z + tj with (z, t) =

(
−b

a
,

√
|∆|
a

)
Note: F (Z1, Z2) = a|Z1 − qZ2|2 = a|Z1 − Z2q|2.
Inverse map: q = (z, t) 7→ [1,−z, |z|2 + t2].
Bijection:

BHF(C)+/R>0 ←→ H3.
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Group actions

G = SL(2, C) acts on BHF(C)+ on the right via

M =
(

a b
c d

)
: F (Z1, Z2) 7→ FM(Z1, Z2) = f(aZ1 + bZ2, cZ1 + dZ2)

preserving ∆; new leading coefficient is fM(1, 0) = f(a, c) > 0.

G acts transitively on H3 on the left via

M : q 7→M(q) = (aq + b)(cq + d)−1,

or

(z, t) 7→

(
(az + b)(cz + d) + act2

|cz + d|2 + |c|2t2
,

t

|cz + d|2 + |c|2t2

)

The root map is G-equivariant as before: best checked using the quaternion notation!
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Discrete subgroups and integral points

For analogues of SL(2, Z) ⊂ SL(2, R) and BQF(Z)+ ⊂ BQF(R)+ we need a discrete
subring of C. Classically, Julia and others just took “integral complex numbers” to be
Gaussian integers Z[i]. We will take the ring of integers O = OK in any imaginary
quadratic field K ⊂ C.

The “Bianchi group” Γ = SL(2,O) acts on BHF(O)+, preserving discriminants, and
also (discretely) on H3. The latter action has a fundamental region F = FK,
depending on K, shaped like a hyperbolic polyhedron. For small disc(K) this was
determined by Bianchi and others in the 19th century.

The cases hK = 1 and hK > 1 are significantly different.

When hK = 1: the only cusp in F is at infinity, and there exists tK > 0 such that
(z, t) ∈ F =⇒ t ≥ tK.

e.g. t2√−1
= 1

2, t2√−2
= 1

4.

When hK > 1: F contains other cusps on {t = 0}, and no such tK exists.
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Reduction of Hermitian forms

Assume hK = 1. Define F ∈ BHF(C)+ to be reduced when q(F ) ∈ F . Then

F = [a, b, c] reduced =⇒
√
|∆|
a
≥ tK > 0 =⇒ 0 < a ≤ t−1

K

√
|∆|.

As over Z this allows us to enumerate the finite set of reduced integral forms
F ∈ BHF(O)+ with given (integer) discriminant ∆: take the above bound on a ∈ Z,
take b ∈ O with −b/a in the projection of F to C, and solve for c.

When hK > 1, obtaining bounds is harder. F contains points (z, t) with arbitrarily
small t, and hence there is no upper bound for the leading coefficient a of a reduced
form with given discriminant. The book of Elstrodt, Mennicke and Grunewald shows
how to get around this, but we have not seen this done explicitly.
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Reduction of higher degree forms

We assume that hK = 1 from now on.

Can we reduce binary forms g(X, Y ) ∈ C[X, Y ]n with respect to Γ = SL(2,OK)?
Again we need a covariant, i.e. G-equivariant map χ : C[X, Y ]n → BHF(C)+ or
χ : C[X, Y ]n → H3.

The same formula for χ(g) does the job! Define

χ(g) =
n∑

i=1

|g′(αi)|
2

2−n |Z1 − αiZ2|2 .

Now the αi are the (complex) roots of g, and each |Z1 − αiZ2|2 is a binary Hermitian
form, [1,−αi, |αi|2].
Proof of covariance is as before.
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A uniqueness result

Theorem [JEC & Stoll]

1. For n = 3 and n = 4, χ is the unique covariant map C[X, Y ]n → BHF(C)+ (or
C[X, Y ]n → H3);

2. χ is compatible with complex conjugation, hence restricts to a covariant map
R[X, Y ]n → BQF(R)+ (or R[X, Y ]n → H2);

3. For real forms of pure signature, χ is the unique such covariant.

Here H2 embeds in H3 via x + yi 7→ x + yj.
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Application : reduction of forms over OK

As above, let OK be an imaginary quadratic rings of integers of class number 1.

Proposition [Womack] Let g ∈ C[X, Y ]n with leading coefficient a0 = g(1, 0) and
discriminant ∆. Write χ(g) = [a, b, c]. Then

a ≥ n|∆|−2/n(n−2)|a0|2/n.

Now when g is reduced we also have upper bounds for a in terms of disc(χ(g)), which
may be expressed in terms of invariants of g. Hence we can bound the leading
coefficient of a reduced form in terms of its invariants..

n = 3: Here we have a ≥ 3|∆|−2/3|a0|2/3 and disc(χ(g)) = −3|∆|; hence
a ≤ t−1

K

√
|disc(χ(g))| implies, for a reduced cubic in OK[X, Y ]:

|a0| ≤ 3−3/4t
−3/2
K |∆|1/4.
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Application : reduction of cubics (contd.)

We now apply the same to the cubic covariant of g, which is reduced when g is (by
uniqueness). It has discriminant 36∆3 and its leading coefficient U satisfies the syzygy
U2 + 27∆a2

0 = P 2 (where P is as before the leading coefficient of the Hessian). We
obtain

|U | ≤ 33/4t
−3/2
K |∆|3/4, and hence |P | ≤ 33/4(1 + 33/2)t−3/2

K |∆|3/4.

Since the unit group is finite this gives us a finite set of (a0, P ) pairs for fixed ∆, and
hence we may enumerate all reduced cubics.

A similar approach should allow the enumeration of quartics in OK[X, Y ]4 with given
invariants I, J , but the details have not been worked out (in the imaginary quadratic
case) since alternative methods of 2-descent (applicable to general number fields) seem
more effective.
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Other number fields

Let K be a number fields with r1 real embeddings and 2r2 pairs of complex
embeddings. Then SL(2,OK) acts discretely on

Hr1
2 ×H

r2
3 .

It should be possible to develop a theory of reduction based on a fundamental region
for this action, though the details would be complicated.

For real quadratic fields (r1, r2) = (2, 0) with class number one this was done for
quartics by P. Serf, leading to an implementation of 2-descent in these cases. The
bounds depend critically on the size of the fundamental unit of K; even in the simplest
cases the resulting program was rather slow.

It remains to be seen whether a practical reduction theory can be made to work
efficiently for more general fields.


