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Abstract. Let K be a p-adic local field and E an elliptic curve defined over K.
The component group of E is the group E(K)/E0(K), where E0(K) denotes

the subgroup of points of good reduction; this is known to be finite, cyclic if E

has multiplicative reduction, and of order at most 4 if E has additive reduction.
We show how to compute explicitly an isomorphism E(K)/E0(K) ∼= Z/NZ or

E(K)/E0(K) ∼= Z/2Z× Z/2Z.

1. Introduction

Let K be a p-adic local field (that is, a finite extension of Qp for some prime p),
with ring of integers R, uniformizer π, residue field k = R/(π) and valuation func-
tion v. Let E be an elliptic curve defined over K. The component group of E is
the group Φ = E(K)/E0(K), where E0(K) denotes the subgroup of points of good
reduction; this is known to be a finite abelian group.

When E has split multiplicative reduction, we have Φ ∼= Z/NZ where N = v(∆)
and ∆ is the discriminant of a minimal model for E. In all other cases, Φ has order
at most 4, so is isomorphic to Z/nZ with n ∈ {1, 2, 3, 4} or to Z/2Z × Z/2Z. The
order of Φ is called the Tamagawa number of E/K, usually denoted c or cp.

In this note we will show how to make the isomorphism κ : E(K)/E0(K) → A
explicit, where A is the one of the above standard abelian groups.

The most interesting case is that of split multiplicative reduction. Here the
map κ is almost determined by a formula for the (local) height in [2]. Specifically,
if the minimal Weierstrass equation for E has coefficients a1, a2, a3, a4, a6 as
usual, for a point P = (x, y) ∈ E(K) \E0(K) we have κ(P ) = ±n (mod N) where
n = min{v(2y + a1x + a3), N/2}, and 0 < n ≤ N/2. In computing heights, of
course, one need not distinguish between P and −P , but for our purposes this is
essential. We show how to determine the appropriate sign in a consistent way to
give an isomorphism κ : E(K)/E0(K) ∼= Z/NZ. (Note that for an individual point
this is not a well-defined question since negation gives an automorphism of Z/NZ;
but when comparing the values of κ at two or more points it is important.) We
first establish the formula for Tate curves, and then see how to apply it to a general
minimal Weierstrass model.

We also make some remarks about the other reduction types, which are much
simpler to deal with, and also the real case.

One application for this, which was our motivation, occurs in the determination
of the full Mordell-Weil group E(K) where E is an elliptic curve defined over
a number field K. Given a subgroup B of E(K) of full rank, generated by r
independent points Pi for 1 ≤ i ≤ r, one method for extending this to a Z-basis for
E(K) requires determining the index in B of B ∩

⋂
p≤∞ E0(Qp). The component

group maps κ for each prime p may be used here.
We use standard notation for Weierstrass equations of elliptic curves throughout.
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2. The split multiplicative case

We refer to [3, Chapter V] for the theory of the Tate parametrization of elliptic
curves with split multiplicative reduction.

2.1. The case of Tate curves. For each q ∈ K∗ with |q| < 1 we define the Tate
curve Eq by its Weierstrass equation

Y 2 + XY = X3 + a4X + a6

where a4 = a4(q) and a6 = a6(q) are given by explicit power series in q. We have
v(∆) = v(a6) = N where N = v(q) > 0, and v(a4) ≥ N . Also, v(c4) = v(c6) = 0.

Reducing modulo πN , the equation becomes Y (Y + X) ≡ X3; the linear factors
Y , Y + X give the distinct tangents at the node (0, 0) on the reduced curve over k.

Theorem. The map κ : E(K) → Z/NZ given by

κ(P ) =


0 if P ∈ E0(K)
+n if P = (x, y) /∈ E0(K) and n = v(x + y) < v(y)
−n if P = (x, y) /∈ E0(K) and n = v(y) < v(x + y)
N/2 if P = (x, y) /∈ E0(K) and v(y) = v(x + y)

induces an isomorphism E(K)/E0(K) ∼= Z/NZ. The integer n here always satisfies
0 < n < N/2. The last case only occurs when N is even, and then v(y) ≥ N/2.

Remark. This is compatible with the result from [2] quoted in the introduction,
which here says that κ(P ) = ±n where n = min{v(2y + x), N/2}. What we have
done is decompose 2y + x as y + (y + x), where the summands come from the
tangent lines at the singular point, and consider the valuations of each summand
separately.

Proof. Recall that the Tate parametrization gives an isomorphism ϕ : K∗/qZR∗ ∼=
E(K)/E0(K), and that κ is determined by κ(ϕ(u)) = v(u) (mod N) for u ∈ K∗.

Let P = ϕ(u) = (x, y). Then x = X(u, q) and y = Y (u, q) where X(u, q) and
Y (u, q) are power series given in [3, §V.3, Theorem 5.1(c)]:

x =
u

(1− u)2
+

∑
n≥1

(
qnu

(1− qnu)2
+

qn/u

(qn/u− 1)2
− 2

qn

(1− qn)2

)
;

y =
u2

(1− u)2
+

∑
n≥1

(
(qnu)2

(1− qnu)3
+

qn/u

(qn/u− 1)3
+

qn

(1− qn)2

)
.

First suppose that v(u) = e with 0 < e < N/2. The first series shows that
v(x) = e, since the term outside the sum has valuation e while all those in the
sum have strictly greater valuation. Regarding y, the term outside the sum has
valuation 2e and all those in the sum have strictly greater valuation, except possibly
the term qn/u

(qn/u−1)3 for n = 1, which has valuation N −e > e. Considering the three
cases N − e > 2e, N − e = 2e, e < N − e < 2e, we find that

v(y) = 2e if 0 < e < N/3;

v(y) ≥ 2e if e = N/3;

e < v(y) = N − e < 2e if N/3 < e < N/2.

It follows that κ(P ) = e with e = v(y + x) = v(x) < v(y) as required. (We have
P ∈ Ve in the notation of [3, p.434].)

Next suppose that v(u) = −e with 0 < e < N/2. Now v(u−1) = e and ϕ(u−1) =
−P = (x,−y − x), so by the first case we have κ(P ) = −κ(−P ) = −e where
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e = v(y) = v(x) < v(x + y) as required. (We have P ∈ Ue in the notation of [3,
p.434].)

Finally suppose that N is even and v(u) = N/2. Now we have v(y) = e while
v(x) ≥ e and v(x + y) ≥ e, so N/2 = e = v(y) ≤ v(x + y). (We have P ∈ W in the
notation of [3, p.434].) �

2.2. The general case. Let E with split multiplicative reduction be given by the
minimal Weierstrass equation F (X, Y ) = 0 where

F (X, Y ) = Y 2 + a1XY + a3Y − (X3 + a2X
2 + a4X + a6).

Thus ai ∈ R, v(∆) = N > 0 and v(c4) = 0. Define

x0 = c−1
4 (18b6 − b2b4);

y0 = c−1
4 (a3

1a4 − 2a2
1a2a3 + 4a1a2a4 + 3a1a

2
3 − 36a1a6 − 8a2

2a3 + 24a3a4)

= −1
2
(a1x0 + a3).

Our result is as follows.

Theorem. Let α1, α2 be the roots of T 2 + a1T − (a2 + 3x0); these lie in R and are
distinct. For P = (x, y) ∈ E(K) \ E0(K), set

ei = v((y − y0)− αi(x− x0))

for i = 1, 2. Then κ(P ) ∈ Z/NZ is given by

κ(P ) =


+e if e = e2 < e1;
−e if e = e1 < e2;
N/2 if e1 = e2

where in the first two cases 0 < e < N/2, and the last case can only occur when N
is even.

Remarks. Note that in order to determine κ(P ) we need to compute the quan-
tities x0, y0, αi only modulo πN (or even πdN/2e), and that these depend only on E,
not on P . Also, if we interchange the order of the roots αi the only effect is to
replace κ(P ) by −κ(P ) consistently, which is harmless since negation is an auto-
morphism of Z/NZ. Finally note that

[(y − y0)− αi(x− x0)] + [(y − y0)− α2(x− x0)] = 2y + a1x− (2y0 + a1x0)
= 2y + a1x + a3,

so this result is compatible with the formula from [2] quoted in the introduction.

Proof. With x0, y0 as given we may check that F (x0, y0) ≡ FX(x0, y0) ≡ FY (x0, y0) ≡
0 (mod πN ). (Here the subscripts denote derivatives.) In other words, (x0, y0) re-
duces to a singular point, not just modulo π but modulo πN . As in the first step of
Tate’s algorithm (where normally one only requires x0 and y0 modulo π), we shift
the origin by setting X = X ′+x0 and Y = Y ′+y0. This results in a new Weierstrass
equation with coefficients a′i satisfying a′1 = a1, a′2 = a2 +3x0, b′2 = b2 +12x0 ∈ R∗,
and

a′3 ≡ a′4 ≡ a′6 ≡ b′4 ≡ b′6 ≡ b′8 ≡ 0 (mod πN ).

Since we have split multiplicative reduction, the quadratic T 2 +a′1T −a′2, whose
discriminant is b′2, splits modulo π and hence by Hensel’s Lemma splits over K.
The roots α1, α2 lie in R, and α1 − α2 ∈ R∗ since (α1 − α2)2 = b′2.
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Now set βi = (α1 − α2)−1(a′4 − αia
′
3) for i = 1, 2. Then βi ≡ 0 (mod πN ) and

we may check that

F = (Y ′ − α1X
′ − β1)(Y ′ − α2X

′ + β2)− (X ′3 + b′8/b′2)

≡ (Y ′ − α1X
′)(Y ′ − α2X

′)−X ′3

≡ Y ′′(Y ′′ + a′′1X ′)−X ′3 (mod πN ),

where we have set Y ′ = Y ′′ + α1X
′ + β1 and a′′1 = α1 − α2. (Here we have used:

β1 − β2 = −a′3, α1β2 − α2β1 = a′4, and b′2(a
′
6 − β1β2) = b′8.) After a further scaling

by the unit a′′1 , this has the form of a Tate curve.
Applying the result of the previous section, we see that κ(P ) is given in terms

of the valuations of y′′ and y′′ + a′′1x′′. Now

y′′ ≡ y′ − α1x
′ ≡ (y − y0)− α1(x− x0) (mod πN )

and
y′′ + a′′1x′′ ≡ y′ − α2x

′ ≡ (y − y0)− α2(x− x0) (mod πN ),

which implies the result as stated.
�

2.3. Example. Let E be the elliptic curve defined over Q denoted 8025j1 in the
tables [1], whose Weierstrass equation is

Y 2 + Y = X3 + X2 + 2242417292X + 12640098293119.

Take P = (335021/4, 224570633/8), a generator of the Mordell-Weil group E(Q)
which is isomorphic to Z.

We consider E over K = Q3 where it has split multiplicative reduction of type
I31. We compute x0 = 556930682563112 and y0 = 308836698141973 modulo 331,
and α1 ≡ −α2 ≡ 256142918648120. Now for the point P we find

(y − y0)− α1(x− x0) ≡ 446797736663247 (mod 331),

(y − y0)− α2(x− x0) ≡ 325294064834346 (mod 331),

with valuations e1 = 12 and e2 = 6, so κ(P ) = +6 (mod 31).
To test our implementation of the computation of κ, we computed κ(iP ) inde-

pendently for 1 ≤ i ≤ 30, checking that κ(iP ) ≡ 6i (mod 31). The results are given
in the following table:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e1 12 19 13 7 1 10 20 14 8 2 8 20 15 9 3
e2 6 12 18 14 2 5 11 17 16 4 4 10 16 18 6

κ(iP ) 6 12 −13 −7 −1 5 11 −14 −8 −2 4 10 −15 −9 −3
i 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

e1 6 12 18 14 2 5 11 17 16 4 4 10 16 18 6
e2 12 19 13 7 1 10 20 14 8 2 8 20 15 9 3

κ(iP ) −6 −12 13 7 1 −5 −11 14 8 2 −4 −10 15 9 3

3. Other reduction types

For completeness we will now discuss the other reduction types, as well as K = R.

3.1. Types where Φ is trivial. When the reduction type is I1 (good reduction),
II or II∗, the component group Φ is trivial, i.e. c = 1. This is also the case for
non-split multiplicative reduction of type Im when m is odd, and in the “non-split”
cases for types IV, IV∗, and I∗0. Here there is nothing to be done.
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3.2. Types where Φ ∼= Z/2Z. When the reduction type is non-split multiplicative
of type Im when m is even, III or III∗, and some cases of type Im, we have Φ ∼= Z/2Z.
Here all we need do is define κ(P ) = 0 if P has good reduction and 1 otherwise.

3.3. Types where Φ ∼= Z/3Z. When the reduction type is IV or IV∗ we may
have Φ ∼= Z/3Z in the “split” case. Our task is to see how to distinguish the two
nontrivial components or cosets of E0(K) in E(K).

First consider Type IV. After translating the model so that the singular point
is (0, 0) (mod π), as in the first step of Tate’s algorithm, the quadratic h(T ) =
T 2 + π−1a3T − π−2a6 has distinct roots in the residue field k (since if the roots
only lie in a quadratic extension of k then c = 1 and Φ is trivial: the “non-split”
case). Let α1, α2 be the roots of h(T ). Then any point P = (x, y) of bad reduction
has y ≡ αiπ (mod π2) for i ∈ {1, 2}, as may be seen by reducing the Weierstrass
equation modulo π2. These two cases distinguish the two components, and we may
define κ(P ) = i (mod 3).

We may translate this condition to apply to the original coordinates of the point:
if the singular point is (x0, y0) (mod π) then for P = (x, y) ∈ E(K) \ E0(K) the
value of y − y0 lies in one of two distinct residue classes modulo π2, which we may
label arbitrarily and use to distinguish the nonzero values of κ. However, this is
hardly worth while in practice: instead we may simply define κ(P1) = 1 (mod 3)
for the first point P1 of bad reduction we encounter, and then for subsequent such
points P we have κ(P ) = ±1 according as P − P1 does or does not have good
reduction.

This latter strategy is certainly to be preferred for the case IV*, where (referring
to Tate’s algorithm) a second change of variables may be required. Otherwise we
would need to determine y0 (mod π2) and use the value of y − y0 (mod π3) to
distinguish the cases.

3.4. Types where Φ ∼= Z/4Z. This can only occur with Type I∗m when m is odd.
Since this route in Tate’s algorithm is the most subtle, rather than analyze the
situation in more detail we can proceed as follows.

Set κ(P ) = 0 if P has good reduction; otherwise set κ(P ) = 2 if 2P has good
reduction; otherwise κ(P ) = ±1. A simple strategy, similar to that used for the
Z/3Z case, may be used to distinguish the latter in practice.

3.5. Types where Φ ∼= Z/2Z × Z/2Z. This can occur with Type I∗m when m is
even (including m = 0). Noting that the automorphism group of Φ includes all
permutations of its nontrivial elements, we may proceed as follows:

Set κ(P ) = (0, 0) if P has good reduction; otherwise set κ(P1) = (1, 0) for the
first point P1 of bad reduction and κ(P2) = (0, 1) for the first point P2 such that
neither P2 nor P1 + P2 has good reduction. Now we can determine κ(P ) for all P
simply by testing P , P + P1 and P + P2 for good reduction.

In case of Type I∗0, the nonzero values of κ(P ) may also be distinguished by the
residue of x−x0 (mod π2) where as usual (x0, y0) (mod π) is the singular point on
the reduction; but we have not attempted to extend this to a criterion for m > 0.

3.6. The real case. For completeness we finish by mentioning the case K = R,
where the component group is trivial if ∆ < 0 and has order 2 when ∆ > 0. In the
latter case we may test whether a given point P = (x, y) lies in E0(R) by checking
that g′(x) > 0 and g′′(x) > 0 where g(X) = 4X3 + b2X

2 + 2b4X + b6; note that
this may be done using exact arithmetic when E is defined over Q and P ∈ E(Q),
and so does not rely on approximating the real 2-torsion points.
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