
CHAPTER I

INTRODUCTION

Introduction to the First (1992) Edition

This book is in three sections. First, we describe in detail an algorithm based on modular
symbols for computing modular elliptic curves: that is, one-dimensional factors of the Jacobian
of the modular curve X0(N), which are attached to certain cusp forms for the congruence
subgroup Γ0(N). In the second section, various algorithms for studying the arithmetic of
elliptic curves (defined over the rationals) are described. These are for the most part not new,
but they have not all appeared in book form, and it seemed appropriate to include them here.
Lastly, we report on the results obtained when the modular symbols algorithm was carried
out for all N ≤ 1000. In a comprehensive set of tables we give details of the curves found,
together with all isogenous curves (5113 curves in all, in 2463 isogeny classes1). Specifically,
we give for each curve the rank and generators for the points of infinite order, the number of
torsion points, the regulator, the traces of Frobenius for primes less than 100, and the leading
coefficient of the L-series at s = 1; we also give the reduction data (Kodaira symbols, and local
constants) for all primes of bad reduction, and information about isogenies.

For N ≤ 200 these curves can be found in the well-known tables usually referred to as
“Antwerp IV” [2], as computed by Tingley [67], who in turn extended earlier tables of curves
found by systematic search; our calculations agree with that list in all 281 cases. For values of
N in the range 200 < N ≤ 320 Tingley computed the modular curves attached to newforms
for Γ0(N) only when there was no known curve of conductor N corresponding to the newform:
these appear in his thesis [67] but are unpublished. As in [2], the curves E we list for each N
have the following properties.

(1) They have conductor N , as determined by Tate’s algorithm [65].
(2) The coefficients given are those of a global minimal model for E, and these coefficients

(or, more precisely, the c4 and c6 invariants) agree with the numerical values obtained
from the modular calculation to several decimal places: in most cases, depending on
the accuracy obtained—see below—differing by no more than 10−30.

(3) Their traces of Frobenius agree with those of the modular curves for all primes p < 1000.

We have also investigated, for each curve, certain numbers related to the Birch–Swinnerton-
Dyer conjecture. Let f(z) be a newform for Γ0(N) with rational Fourier coefficients, and E the
elliptic curve defined over Q attached to f . The value of L(f, 1) is a rational multiple of a period
of f , and may be computed easily using modular symbols (see [37] and Section 2.8 below). We
have computed this rational number in each case, and find that it is always consistent with
the Birch–Swinnerton-Dyer conjecture for E. More specifically, let Ω0(f) be the least positive
real period of F and Ω(f) = 2Ω0(f) or Ω0(f) according as the period lattice of f is or is not
rectangular. Then we find that L(f, 1)/Ω(f) = 0 if (and only if) the Mordell-Weil group E(Q)

1In the first edition, these numbers were given as 5089 and 2447 respectively, as the curves of conductor 702

were inadvertently omitted.

1

2 I. INTRODUCTION

has positive rank, and when E(Q) is finite we find in each case that

L(f, 1)/Ω(f) =
∏

p|N

cp · |E(Q)|−2 · S

with S ∈ N (in fact S = 1 in all but four cases: S = 4 in three cases and S = 9 in one case).
This is consistent with the Birch–Swinnerton-Dyer conjecture if the Tate–Shafarevich group
X is finite of order S. (Here cp is the local index [E(Qp) : E0(Qp)]; see [58, p.362].) When
L(f, 1) = 0, we compute the sign w of the functional equation for L(f, s), and verify that
w = +1 if and only if the curve has even rank. More precisely, we also compute the value of
L(r)(f, 1), where r is the rank, the regulator R, and the quotient

S =
L(r)(f, 1)

r! Ω(f)

/

(
∏

cp) R

|E(Q)tors|
2 .

In all but the four cases mentioned above we find that S = 1 to within the accuracy of the
computation.

Our algorithm uses modular symbols to compute the 1-homology of Γ0(N)\H∗ where H∗ is
the extended upper half-plane {z ∈ C : Im(z) > 0} ∪ {∞} ∪Q. While similar in some respects
to Tingley’s original algorithm described in [67], it also uses ideas from [37] together with some
new ideas which will be described in detail below. One important advantage of our method,
compared with Tingley’s, is that we do not need to consider explicitly the exact geometric shape
of a fundamental region for the action of Γ0(N) on H∗: this means that highly composite N
can be dealt with in exactly the same way as, say, prime N . Of course, for prime N there are
other methods, such as that of Mestre [43], which are probably faster in that case, though not
apparently yielding the values of the “Birch–Swinnerton-Dyer numbers” L(f, 1)/Ω(f). There
is also a strong similarity between the algorithms described here and those developed by the
author in his investigation of cusp forms of weight two over imaginary quadratic fields [12],
[13], [15]. A variant of this algorithm has also been used successfully to study modular forms
for Γ0(N) with quadratic character, thus answering some questions raised by Pinch (see [48]
or [49]) concerning elliptic curves of everywhere good reduction over real quadratic fields. See
[14] for details of this, and for a generalization to Γ1(N): one could find cusp forms of weight
two with arbitrary character using this extension of the modular symbol method, though at
present it has only been implemented for quadratic characters, as described in [14].

It is not our intention in this book to discuss the theory of modular forms in any detail,
though we will summarize the facts that we need, and give references to suitable texts. The
theoretical construction and properties of the modular elliptic curves will also be excluded,
except for a brief summary. Likewise, we will assume that the reader has some knowledge
of the theory of elliptic curves, such as can be obtained from one of the growing number of
excellent books on the subject. Instead we will be concentrating on computational aspects,
and hope thus to complement other, more theoretical, treatments.

In Chapter 2 we describe the various steps in the modular symbol algorithm in detail. At
each step we give the theoretical foundations of the method used, with proofs or references to
the literature. Included here are some remarks on our implementation of the algorithms, which
might be useful to those wishing to write their own programs. At the end of this stage we have
equations for the curves, together with certain other data for the associated cusp form: Hecke
eigenvalues, sign of the functional equation, and the ratio L(f, 1)/Ω(f).

Following Chapter 2, we give some worked examples to illustrate the various methods.
In Chapter 3 we describe the algorithms we used to study the elliptic curves we found using

modular symbols, including the finding of all curves isogenous to those in the original list.

INTRODUCTION TO THE SECOND (1996) EDITION 3

These algorithms are more generally applicable to arbitrary elliptic curves over Q, although
we do not consider questions which might arise with curves having bad reduction at very large
primes. (For example, we do not consider how to factorize the discriminant in order to find
the bad primes, as in all cases in the tables this is trivially achieved by trial division). Here
we compute minimal equations, local reduction types, rank and torsion, generators for the
Mordell–Weil group, the regulator, and traces of Frobenius. This includes all the information
published in the earlier Antwerp IV tables. The final calculations, relating to the Birch–Swin-
nerton-Dyer conjecture, are also described here; these combine values obtained from the cusp
forms (specifically, the leading coefficient of the expansion of the L-series at s = 1, and the real
period) with the regulator and local factors obtained directly from the curves. Thus we can
compute in each case the conjectural value S of the order of X, the Tate–Shafarevich group.

Finally, in Chapter 4 we discuss the results of the computations for N ≤ 1000, and introduce
the tables which follow.

All the computer programs used were written in Algol68 (amounting to over 10000 lines
of code in all) and run on the ICL3980 computer at the South West Universities Regional
Computing Centre at Bath, U.K.. The author would like to express his thanks to the staff of
SWURCC for their friendly help and cooperation, and also to Richard Pinch for the use of his
Algol68 multiple-length arithmetic package. At present, our programs are not easily portable,
mainly because of the choice of Algol68 as programming language, which is not very generally
available. However we are currently working on a new version of the programs, written in a
standard version of the object-oriented language C++, which would be easily portable. The
elliptic curve algorithms themselves are currently (1991) available more readily, in a number
of computer packages.2 In particular, the package apecs, written in Maple and available free
via anonymous file transfer from Ian Connell of McGill University, will compute all the data
we have included for each curve. (A slightly limited version of apecs, known as upecs, runs
under UBASIC on MS-DOS machines). There are also elliptic curve functions available for
Mathematica (Silverman’s Elliptic Curve Calculator) and in the PARI/GP package. These
packages are all in the process of rapid development.

An earlier version of Chapter 2 of this book, with the tables, has been fairly widely circulated,
and several people have pointed out errors which somehow crept in to the original tables. We
have made every effort to eliminate typographical errors in the tables, which were typeset
directly from data files produced by the programs which did the calculations. Where possible,
the data for each curve has been checked independently using other programs. Amongst those
who have spotted earlier errors or have helped with checking, I would like to mention Richard
Pinch, Harvey Rose, Ian Connell, Noam Elkies, and Wah Keung Chan; obviously there may
still be some incorrect entries, but these remain solely my responsibility.

Introduction to the Second (1996) Edition

Since the first edition of this book appeared in 1992, some significant advances have been
made in the algorithms described and in their implementation. The second edition contains an
account of these advances, as well as correcting many errors and omissions in the original text
and tables. We give here a summary of the more substantial changes to the text and tables.

Of course, the most significant theoretical advance of the last four years is the proof by
Wiles, Taylor–Wiles and others of most cases of the Shimura–Taniyama–Weil conjecture, which
almost makes the word “modular” in the title of this book redundant. However, the only effect
the new results have on this work are to guarantee that every elliptic curve defined over the
rationals and of conductor less than 1000 is isomorphic to one of those in our Table 1.

2See the end of the introduction for more on obtaining these packages.

4 I. INTRODUCTION

Chapter 2. Section 2.1 has been completely rewritten and expanded to give a much more
coherent, self-contained, and (we hope) correct account of the theoretical background to the
modular symbol method. The text here is based closely on some unpublished lecture notes
of the author for a series of lectures he gave in Bordeaux in 1995 at the meeting “État de la
Recherche en Algorithmique Arithmétique” organized by the Société Mathématique de France.

In Section 2.4, we give a self-contained treatment of the method of Heilbronn matrices for
computing Hecke operators, similar to the treatment by Merel in [42], as this now forms part
of our implementation.

In Section 2.10, we give a new method of computing periods of cusp forms, as described
in [18], which is as efficient as the “indirect” method; this largely makes the indirect method
redundant, but we still include it in Section 2.11. Also in Section 2.11, we include some
tricks and shortcuts which we have developed as we pushed the computations to higher levels,
which can greatly reduce the computation time needed to find equations for the curves of
conductor N , at the expense of not necessarily knowing which is the so-called “strong Weil”
curve in its isogeny class.

Section 2.14 has been rewritten to take into account the results of Edixhoven on the Manin
constant (see [21]), which imply that the values of c4 and c6 which we compute for each curve
are known a priori to be integral. This means that the values we compute are guaranteed
to be correct, and eliminates the uncertainty previously existing as to whether the curves we
obtain by rounding the computed values are the modular elliptic curves they are supposed to
be.

Section 2.15 is entirely new: we show how to compute the degree of the modular parametriza-
tion map ϕ:X0(N) → E for a modular elliptic curve of conductor N , using our version (see
[17]) of a method of Zagier [69]. This method is easy to implement within the modular sym-
bol framework, and we have added it to our programs, so that we now compute the degree
automatically for each curve we find.

The appendix to Chapter 2, containing worked examples, now includes the Heilbronn matrix
method, and also illustrates some of the tricks mentioned in Section 2.11.

Implementation changes. The implementations of all the algorithms described here have
been completely rewritten in C++, to be easily portable. We use the GNU compiler gcc for
this. For multiprecision arithmetic we use either the GNU package libg++ or the package
LiDIA. For solving the systems of linear equations giving the relations between M-symbols,
we use sparse matrix routines which not only reduce memory requirements, but also speed
up that part of the computations considerably. These routines were written by L. Figueiredo
specifically for his work on imaginary quadratic fields (see [24]) which in turn built on the
author’s work in [12] and [13].

Chapter 3. In Section 3.1 we give simpler formulae for recovering the Weierstrass coefficients
of a curve from the invariants c4 and c6; this enables us to simplify the Kraus–Laska–Connell
algorithm slightly. In Section 3.4 we give a slightly improved formula for the global canonical
height, and include this as a separate algorithm. Section 3.5 now contains references to other
bounds between the naive and canonical heights, and other methods for the infinite descent
step, but without details.

The main changes in this chapter are to Section 3.6 on two-descent algorithms. On the
one hand, we give a better explanation of the theoretical basis for these algorithms, making
the account more self-contained (though we do not include all proofs). We have also moved
the discussion on testing homogeneous spaces for local and global solubility forward, as this is
common to the two main algorithms (general two-descent and two-descent via 2-isogeny). On
the other hand, several parts of the algorithm have been subject to major improvements over
the last few years, thanks to collaboration with P. Serf, S. Siksek and N. P. Smart, and these

INTRODUCTION TO THE SECOND (1996) EDITION 5

are now included. Notable here are the syzygy sieve in the search for quartics, the systematic
use of group structure in the 2-isogeny case, and the use of quadratic sieving in searching for
rational points on homogeneous spaces. We also simplify the test for equivalence of quartics
and the process of recovering rational points on the curve from points on the homogeneous
spaces. Many of these improvements are from the author’s paper [20], which contains some
proofs omitted here.

Implementation changes. As with the modular symbol algorithms, we have rewritten all
the elliptic curve algorithms in C++. In the case of the program to find isogenies, which is very
sensitive to the precision used, we have written an independent implementation in PARI/GP;
using this we have a check on the isogeny computations which gave the isogenous curves listed
in Table 1. (The standard precision version of this program, while much faster, does miss
several of the isogenies, for reasons given in Section 3.8.)

Versions of our algorithms will shortly become generally available in two forms. First, the
package LiDIA (a library of C++ classes for computational number theory, developed by the
LiDIA group at the Universität des Saarlandes in Germany) will include them in a coming
release. Secondly, the package Magma is also in the process of implementing the algorithms.

In addition to these packages and those mentioned in the original Introduction, we should
also mention the package Simath, developed by H. G. Zimmer’s research group in Saarbrücken,
which also has a large collection of very efficient elliptic curve algorithms.

See the end of this Introduction for how to obtain more information on these packages.

Chapter 4 and Tables. The two main changes in the tables are to include all the data
for N = 702 in Tables 1–4 and include the new Table 5 giving the degree of the modular
parametrization for each strong Weil curve. The omission of level 702 in the first edition is hard
to explain; in our original implementation and file structure, it was not possible to distinguish
between a level which had run successfully, but with no rational newforms found, and a level
which had not yet run. The original runs were done as batch jobs on a remote mainframe
computer, with manual record-keeping to keep track of which levels had run successfully. Our
current implementation is much more robust in this respect. We are grateful to Henri Cohen
who first discovered this error on comparing our data with his own tables (of modular forms of
varying weight and level, computed by him together with Skoruppa and Zagier). The omission
was also noted by Jacques Basmaji of Essen, who recomputed Table 3 independently.

The new implementation finds the newforms at each level in a consistent order. In the
original runs, the order in which the newforms were found changed as the program developed.
Unfortunately, we did not recompute the earlier levels with the final version of the program
before publishing the first edition of the tables, and the identifying letter for each newform
given in the tables has now become standard. Hence our current implementation reorders the
newforms during output to agree with the order as originally published (this is necessary for
147 levels in all, the largest being 450).

Also concerning the order and naming of the curves: the convention we normally use is that
in each isogeny class the first curve is the strong Weil curve whose period lattice is exactly
that of the corresponding newform for Γ0(N), such as 11A1 for example. In precisely one
case, an error caused the first curve listed in class 990H to be not the strong Weil curve but a
curve isogenous to it. The strong Weil curve in this class is in fact 990H3 and not 990H1. In
the notation of Section 2.11, the correct values of l+ and m+ to obtain the strong Weil curve
990H3 are 13 and 8, but for some reason we had used the value m+ = 24 which leads to the
3-isogenous curve 990H1.

In Table 1, the other corrections are: N = 160 has the Antwerp codes corrected, and 916B1
has a spurious indication of a non-existent 3-isogeny removed.

In Table 2, we include the generators for the curves of conductor 702 and positive rank, and

6 I. INTRODUCTION

again correct the Antwerp code for curve 160A1. We also give the generator of 427C1 correctly
as (−3, 1) rather than (−3, 0) as previously, and for 990H we give the generator (−35, 97) of
the strong Weil curve 990H3 rather than a generator of 990H1 as before.

In Table 3, as well as inserting the data for N = 702, we correct the eigenvalues for N = 100
which had been given incorrectly.

In Table 4, we insert the data for N = 702 and also for 600E–600I which had been omitted
by mistake. Moreover, for N = 990 we give the data for 990H3 instead of 990H1 as before, as
this is the strong Weil curve (the only difference being that Ω has been multiplied by 3 and R
divided by 3).

Extension of the Tables. Using our new implementation of the algorithms of Chapter 2, we
have extended the computations of all modular elliptic curves up to conductor 5077 (chosen
as the smallest conductor of a curve of rank 3). We have also computed in each case the other
data tabulated here for conductors up to 1000. For reasons of space, we cannot print extended
versions of the tables: as there are 17598 newforms (or isogeny classes) and a total of 31586
curves up to 5077, this would have made this book approximately six times as thick as it is at
present!

Instead, the data for curves whose conductors lie in the range from 1001 to 5077 (and beyond,
as they become available) may be obtained by anonymous file transfer from the author’s web
site at http://www.maths.nott.ac.uk/personal/jec/ftp/data/INDEX.html

Finally, many thanks to those who have told me of misprints and other errors in the First
Edition, including J. Basmaji, G. Bailey, B. Brock, F. Calegari, J. W. S. Cassels, T. Kagawa,
B. Kaskel, P. Serf, S. Siksek, and N. Smart. Apologies to any whose names have been omitted.
Extra thanks are also due to Nigel Smart, who read a draft of Chapter 3 of the Second Edition,
and made useful suggestions.

web and ftp sites

More information on the packages mentioned above, and in most cases the packages them-
selves, can be obtained from the following web and ftp sites. Apart from Magma they are all
free.

apecs (for Maple): ftp://math.mcgill.ca/pub/apecs

Elliptic Curve Calculator (for Mathematica):
ftp://gauss.math.brown.edu/dist/EllipticCurve

LiDIA: http://www-jb.cs.uni-sb.de/LiDIA

Magma: http://www.maths.usyd.edu.au:8000/comp/magma

mwrank: ftp://euclid.ex.ac.uk/pub/cremona/progs

PARI/GP: ftp://megrez.math.u-bordeaux.fr/pub/pari

Simath: http://emmy.math.uni-sb.de/~simath

upecs (for UBASIC): ftp://math.mcgill.ca/pub/upecs

Links to all of these can be found at the following place, which will be updated.

http://www.maths.nott.ac.uk/personal/jec/packages.html

