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Abstract

Given a closed m-dimensional manifold M immersed in Rn, we estimate its
diameter d in terms of its mean curvature H by

d ≤ C(m)

Z
M
|H|m−1dµ.

1 Introduction

Given a closed connected surface M2 immersed in R3, there are a number of geometric
inequalities relating fundamental quantities such as diameter, area, curvature and (when
defined) enclosed volume. One particularly useful example is an inequality of Leon Simon
which relates the extrinsic diameter1 dext := maxx,y∈M↪→R3 |x− y|R3 to the area A and
mean curvature H (here the average rather than the sum of the principle curvatures) by

dext <
2
π

A
1
2

(∫
M

H2dµ

) 1
2

, (1.1)

where µ is the measure on M induced by the ambient space. See [4] for the original proof
and applications, [6] for the perturbed proof with the constant 2

π (presumably optimal
up to a factor of two, by consideration of a long cylinder with capped ends) and [1] for
another paper which uses the result.

1we will adopt the convention that a point x ∈ M is sent to a point x ∈ Rn by the immersion.
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It is hard to look at this estimate for long without speculating that it is, in fact, a special
case of a stronger simpler estimate, and in [6] we conjectured that

dext <
1
π

∫
M
|H|dµ, (1.2)

to which one could apply the Cauchy-Schwarz inequality to deduce (1.1) with the (con-
jectured) optimal constant.

In this paper, we prove (1.2) with the constant 1
π weakened to 32

π , but with the estimate
strengthened by replacing the extrinsic diameter dext with the intrinsic diameter dint :=
maxx,y∈M distM(x, y). We also generalise it to any dimension, and codimension.

We remark that in the case that M is a surface of constant mean curvature H immersed
in R3, we established in [5] that

dext ≤
A|H|
2π

,

which is twice as strong as (1.2). Equality is then achieved when M is a sphere. The
methods required for that are entirely different, relying on special properties of Jacobian
determinants. We also point out that if one is willing to weaken the inequality (1.2) by
replacing |H| by the norm of the second fundamental form (and adjusting the constant
1
π ) then one can proceed directly by a slicing argument ([4]).

In order to work in any codimension in the following theorem, we will work now with
the mean curvature vector H. Our normalisation is that for the unit sphere in Rn, the
vector H should be the inward unit vector.

Theorem 1.1. For m ≥ 1, suppose that M is an m-dimensional closed (compact, no
boundary) connected manifold smoothly immersed in Rn. Then its intrinsic diameter
dint and its mean curvature H are related by

dint ≤ C(m)
∫
M
|H|m−1dµ. (1.3)

We can take C(2) = 32
π .

Aside from the works already cited, the closest precedent for this theorem is our work on
diameter estimates for intrinsic manifolds evolving under Ricci flow [7]. In the present
paper a core tool will be the Michael-Simon Sobolev inequality Lemma 2.1, originally
from [2]; in the Ricci flow setting we used the direct analogue of Michael and Simon’s
result, which is the Ricci flow log-Sobolev inequality implied by the monotonicity of
Perelman’s W-entropy (see [3], [8]).
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At the core of the proof of (1.1) was the following assertion that one cannot simultane-
ously have small area and small curvature in a ball within the surface. Given x ∈ M2,
we denote the subset of M immersed inside the open extrinsic ball in R3 centred at x of
radius r > 0, by Bext(x, r), and its area by Aext(x, r). Then for all r > 0, we have

π ≤ Aext(x, r)
r2

+
1
4

∫
Bext(x,r)

|H|2dµ. (1.4)

This type of estimate is from [4], and with these constants (which are each sharp) from
[6]. By applying it for fixed, carefully chosen r > 0, and various centres x ∈M, one can
derive (1.1).

At the core of the present paper is a refined version of (1.4), which can be considered a
companion to Theorem 4.2 in [7]. Given x ∈ Mm, we denote the intrinsic open ball in
M centred at x and of (intrinsic) radius r > 0 by B(x, r), and its volume by V (x, r). By
analogy with [7], when m ≥ 2 we define, for R > 0, the maximal function

M(x,R) := sup
r∈(0,R]

r−
1

m−1 [V (x, r)]−
m−2
m−1

∫
B(x,r)

|H|dµ,

and measure collapsedness by

κ(x,R) := inf
r∈(0,R]

V (x, r)
rm

.

Lemma 1.2. For m ≥ 2, suppose that M is an m-dimensional manifold smoothly im-
mersed in Rn, which is complete with respect to the induced metric. Then there exists a
constant δ > 0 dependent only on m such that for any x ∈M and R > 0, at least one of
the following is true:

(i) M(x,R) > δ;
(ii) κ(x, R) > δ.

In the case of surfaces (m = 2) in Rn, we can set δ = π
8 .

It is worth extracting the main content of this lemma in the case that M is a closed
surface.

Corollary 1.3. Suppose that M2 is a closed surface immersed in Rn, and x ∈M. Then

sup
r>0

1
r

∫
B(x,r)

|H|dµ >
π

8
. (1.5)
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Note that for any M, the integral in (1.5) is made arbitrarily small by sending r > 0
to either zero or infinity, but the corollary says that there is always some intermediate
r > 0 where it has a good positive lower bound.

Acknowledgements: I would like to thank Felix Schulze for valuable input to this work.
This paper was started during an extended visit to the Max-Planck Albert Einstein
Institute in Golm and the Freie Universität Berlin, and I would like to thank these
institutions, Gerhard Huisken and Klaus Ecker for their hospitality. The research was
partly supported by an EPSRC Advanced Research Fellowship.

2 Estimates relating curvature and volume

In this section we prove Lemma 1.2. The main input to the proof will be the Michael-
Simon Sobolev inequality:

Lemma 2.1. In the setting of Lemma 1.2, there exists a constant σ > 0 dependent only
on m such that if f ∈ W 1,1(M) then

σ‖f‖
L

m
m−1

≤ ‖∇f‖L1 + m‖f H‖L1 .

In the case that m = 2, we may take σ(2) =
√

2π.

For the original proof, see [2]. As for the m = 2 case, we give a proof with the explicit
σ(2) in the appendix, based on ideas of Leon Simon as we describe there.

Armed with Lemma 2.1, we can prove Lemma 1.2.

Proof. Suppose, with a δ > 0 to be chosen later, that M(x, R) ≤ δ. Then for all
r ∈ (0, R], ∫

B(x,r)

|H|dµ ≤ δr
1

m−1 [V (x, r)]
m−2
m−1 . (2.1)

Note that for fixed x, V (r) := V (x, r) is a locally Lipschitz function of r > 0. Indeed,
one could locally give an upper bound for the Lipschitz constant in terms of a local lower
bound for the Ricci curvature. In particular, V (r) is differentiable for almost all r > 0.
For such r ∈ (0, R], and any µ > 0, define a Lipschitz cut-off function f on M by

f(y) =


1 y ∈ B(x, r)
1− 1

µ (distM(x, y)− r) y ∈ B(x, r + µ)\B(x, r)
0 y /∈ B(x, r + µ)
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If we now apply the Michael-Simon estimate from Lemma 2.1, we find that

σV (r)
m−1

m ≤ σ‖f‖
L

m
m−1

≤ 1
µ

(V (r + µ)− V (r)) + m‖H‖L1(B(x,r+µ)),

and letting µ ↓ 0, we deduce that

σV
m−1

m ≤ dV

dr
+ m‖H‖L1(B(x,r)).

By (2.1) this gives
dV

dr
+ mδr

1
m−1 V

m−2
m−1 − σV

m−1
m ≥ 0. (2.2)

Let us now assume that δ > 0 is sufficiently small that δ < ωm, where ωm is the volume
of the unit ball in Rm, and define a function v(r) := δrm. Computing

dv

dr
+ mδr

1
m−1 v

m−2
m−1 − σv

m−1
m = (mδ + mδ

2m−3
m−1 − σδ

m−1
m )rm−1,

we see that by choosing δ > 0 sufficiently small, depending only on m, we will have
(because m ≥ 2)

dv

dr
+ mδr

1
m−1 v

m−2
m−1 − σv

m−1
m ≤ 0. (2.3)

Note that if m = 2, because σ(2) =
√

2π, we are free to choose δ = π
8 in order to satisfy

(2.3) and the previous constraint δ < ω2 = π. Given (2.2) and (2.3) and the fact that
V (r)/rm → ωm as r ↓ 0, while v(r)/rm = δ < ωm, we deduce that V (r) > v(r) for all
r ∈ (0, R] and hence

κ(x, R) = inf
r∈(0,R]

V (x, r)
rm

> δ,

as desired.

3 Diameter control

We now wish to combine Lemma 1.2 with a covering argument, along the lines of [7], in
order to prove Theorem 1.1.

Proof. We may assume that m ≥ 2 since the case m = 1 is trivially true with C(1) = 1
2 .

Choose R > 0 sufficiently large so that the total volume of the manifold is less than
δRm, where δ is given by Lemma 1.2. In particular, for all z ∈ M, we must have
κ(z,R) ≤ V (z,R)

Rm ≤ δ, so by Lemma 1.2, we can be sure that M(z,R) > δ. Unravelling
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the definition of the maximal function, and applying the Hölder inequality, we see that
there exists r = r(z) such that

δ < r−
1

m−1 V (z, r)−
m−2
m−1

∫
B(z,r)

|H|dµ

≤ r−
1

m−1

(∫
B(z,r)

|H|m−1dµ

) 1
m−1

,

(3.1)

and hence
r(z) ≤ δ1−m

∫
B(z,r(z))

|H|m−1dµ. (3.2)

Now let x, y ∈M be any two extremal points, by which we mean that dint = distM(x, y),
and let Σ ⊂M be any shortest geodesic connecting x and y. The set of balls B(z, r(z))
with z ∈ Σ is clearly a covering of Σ. By a minor perturbation of the covering argument
in [7, Lemma 5.2], we know that for any λ ∈ (0, 1

2 ), we can find a sequence of points
{zi} ⊂ Σ such that the balls {B(zi, r(zi))} are disjoint and cover at least a fraction λ of
the whole of Σ:

λdint ≤
∑

i

2r(zi).

Combining with (3.2), we may then estimate

dint ≤
2
λ

∑
i

r(zi) ≤
2
λ

δ1−m
∑

i

∫
B(zi,r(zi))

|H|m−1dµ

≤ 2
λ

δ1−m

∫
M
|H|m−1dµ.

(3.3)

Since we may take λ as close as we like to 1
2 , we arrive at the desired estimate

dint ≤ 4δ1−m

∫
M
|H|m−1dµ. (3.4)

Note that in the case m = 2, we can then give the coefficient 4δ1−m explicity as 32
π since

δ = π
8 by Lemma 1.2.

4 Appendix

It is a well-known fact, due to but not published by Leon Simon, that the isoperimetric
inequality holds on a minimal surface in Euclidean space, with a constant optimal up to
a factor of 2. (In conventional notation, this says that 2πA ≤ L2.) It is perhaps less
well appreciated that his same proof gives an almost-optimal Sobolev inequality on an

6



arbitrary complete immersed surface, as claimed in Lemma 2.1, and we sketch the proof
in this appendix.

First, note that by replacing f by |f |, we may assume that f ≥ 0, and by approximation,
we may assume that f is smooth with compact support.

The argument relies on two applications of the first variation formula∫
M

divMΦ = −2
∫
M

Φ.H, (4.1)

where Φ is a vector field in Rn defined on the surface. (We have adopted the conventions
of [6].) One may compute that

divM
x
|x|2

=
2|x⊥|2

|x|4
; (4.2)

divM
x
|x|

=
1
|x|

+
|x⊥|2

|x|3
≥ 1
|x|

, (4.3)

where x⊥ is the projection of the vector x onto the normal space at the point x. Conse-
quently, by applying (4.1) first with Φ(x) = f(x) x

|x|2 , if the immersion of M maps over
the origin 0 ∈ Rn, we have

−2πf(0)− 2
∫
M

f
x
|x|2

.H =
∫
M

divM

(
f

x
|x|2

)
=
∫
M

(
∇f.

x
|x|2

+ 2f
|x⊥|2

|x|4

)
,

and thus

2πf(0) ≤
∫
M

(
|∇f |(x)
|x|

+
2f(x)|H|(x)

|x|

)
dx. (4.4)

Moreover, by applying (4.1) with Φ = f(y) y
|y| , we have

−2
∫
M

f
y
|y|

.H =
∫
M

divM

(
f

y
|y|

)
=
∫
M

(
y.∇f

|y|
+ f divM

y
|y|

)
,

and thus by (4.3) (with x replaced by y) we find that∫
M

f(y)
|y|

dy ≤
∫
M

(|∇f |+ 2f |H|). (4.5)

Returning to (4.4) with the origin translated to an arbitrary point y ∈ Rn on the surface,
then multiplying by f(y) and integrating, we have∫

M
2πf2(y)dy ≤

∫
M

[∫
M

(
|∇f |(x)
|x− y|

+
2f(x)|H|(x)
|x− y|

)
dx

]
f(y)dy

=
∫
M

(|∇f |(x) + 2f(x)|H|(x))
(∫
M

f(y)
|x− y|

dy

)
dx.

(4.6)
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This we can simplify using (4.5), this time with the origin translated to the point x, to
give∫

M
2πf2(y)dy ≤

∫
M

(|∇f |(x) + 2f(x)|H|(x))
(∫
M

(|∇f |(y) + 2f(y)|H|(y))dy

)
dx

=
(∫
M
|∇f |+ 2f |H|

)2

,

(4.7)
which completes the proof.
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