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Euler characteristic: polyhedra

Leonhard Euler (1707–1783)

χ(dodecahedron) = #(vertices)−#(edges) + #(faces)

= 20− 30 + 12

= 2
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Euler characteristic: simplicial complexes

Extend this to simplicial complexes:

χ(K ) =
n∑

k=0

(−1)k#(k–simplices)

= 18− 23 + 8− 1

= 2
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Euler characteristic: topological spaces

Extend this to (some) topological spaces.
Triangulation: simplicial complex K and a homeomorphism

h : K → X .

−→
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Euler characteristic: invariance

The Euler characteristic χ is a topological invariant:

If X ∼= Y then χ(X ) = χ(Y ).

But. . .

χ(X ) = χ(Y ) doesn’t necessarily mean that X ∼= Y .

For example:

∼= 6∼=

Nicholas Jackson Categorification and TQFTs



Euler characteristic: invariance

The Euler characteristic χ is a topological invariant:

If X ∼= Y then χ(X ) = χ(Y ).

But. . .

χ(X ) = χ(Y ) doesn’t necessarily mean that X ∼= Y .

For example:

∼= 6∼=

Nicholas Jackson Categorification and TQFTs



Euler characteristic: invariance

The Euler characteristic χ is a topological invariant:

If X ∼= Y then χ(X ) = χ(Y ).

But. . .

χ(X ) = χ(Y ) doesn’t necessarily mean that X ∼= Y .

For example:

∼= 6∼=

Nicholas Jackson Categorification and TQFTs



Homology groups

From MA251 Algebra I:

Theorem (finitely generated abelian groups)

Let A be a finitely generated abelian group. Then

A ∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r copies

⊕Zn1 ⊕ · · · ⊕ Znk .

(We say A has rank r .)

From MA3H6 Algebraic Topology:
Hn(X ), the nth homology group.

Hn(X ) is an abelian group.

Hn(X ) “counts” the n–dimensional holes in X .

The nth Betti number of X is bn = rank(Hn(X )).

rankH0(X ) is the number of path components of X .

H1(X ) ∼= π1(X , ∗)ab if X is path-connected.
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Homology and the Euler characteristic

We can recover the Euler characteristic from the homology groups:

χ(X ) =
n∑

k=0

(−1)k rankHk(X )

Example (2–sphere, convex polyhedra)

H0(S2) = Z H1(S2) = 0 H2(S2) = Z

Hence χ(S2) = rankZ− rank 0 + rankZ = 1− 0 + 1 = 2.

Example (2–torus)

H0(S1×S1) = Z H1(S1×S1) = Z⊕Z H2(S1×S1) = Z

Hence χ(S1×S1) = rankZ− rankZ⊕Z + rankZ = 1− 2 + 1 = 0.
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Homology and the Euler characteristic

K =

H0(K ) = Z⊕Z⊕Z H1(K ) = Z H2(K ) = 0 H3(K ) = 0

Hence
χ(K ) = 3− 1 + 0− 0 = 2 = χ(S2).

But
Hn(K ) 6∼= Hn(S2)

so Hn(−) is a better invariant than χ(−).
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Categorification

This is an example of categorification: roughly speaking, replace
simple objects with more sophisticated ones.

A more precise partial definition:

A categorification of a set S is a category C and a function

p : (obj C/ ∼=) −→ S .

Example (The natural numbers)

S = N C = FinSet p = |−|

Example (Betti numbers)

S = N C = FGAb p = rank
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The Jones polynomial

From MA3F2 Knot Theory: JK (t) ∈ Z[t±1/2]
Can be defined via the Kauffman bracket 〈K 〉 ∈ Z[A±1]〈

©
〉

= 1〈
K t©

〉
= (−A2−A−2)

〈
K
〉〈 〉

= A
〈 〉

+ A−1
〈 〉

This is R2– and R3–invariant.

Now work out the writhe

w(K ) = #(positive crossings)−#(negative crossings)

= n+(K )− n−(K )

Define
XK (A) = (−A)3w(K)〈K 〉.

(This is R1–invariant as well.) Finally,

JK (t) = XK (t−1/4).
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The Jones polynomial: Example

Start by recursively calculating the Kauffman bracket:〈 〉
= A

〈 〉
+ A−1

〈 〉
= A2

〈 〉
+

〈 〉
+

〈 〉
+ A−2

〈 〉
= A3

〈 〉
+ A

〈 〉
+ A

〈 〉
+ A−1

〈 〉
+ A

〈 〉
+ A−1

〈 〉
+ A−1

〈 〉
+ A−3

〈 〉
= A3(−A2 − A−2) + A + A + A−1(−A2 − A−2)

+ A + A−1(−A2 − A−2) + A−1(−A2 − A−2)

+ A−3(−A2 − A−2)2

= −A5 − A−3 + A−7.
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Jones polynomial: Example

The writhe of

is +3, so

XK (A) = (−A)−3×3(−A5 − A−3 + A−7) = A−4 + A−12 − A−16

and hence
JK (t) = XK (t−1/4) = −t4 + t3 + t.
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Khovanov’s version of the Jones polynomial

Mikhail Khovanov introduced a slightly different formulation of the
Jones polynomial. 〈

©
〉

= (q + q−1)〈 〉
=
〈 〉

− q−1
〈 〉

The unnormalised Jones polynomial

ĴK (q) = (−1)n−qn+−2n−
〈
K
〉
,

and the (original, normalised) Jones polynomial is

JK (t) =
ĴK (q)

q + q−1

∣∣∣∣
q=−t1/2

.
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The Jones polynomial: Example

000

(q+q−1)2
010

−q(q+q−1)

100

−q(q+q−1)

001

−q(q+q−1)

110

q2(q+q−1)2

101

q2(q+q−1)2

011

q2(q+q−1)2

111

−q3(q+q−1)3

(q+q−1)2 −3q(q+q−1) +3q2(q+q−1)2 −q3(q+q−1)3
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The Jones polynomial: Example

So
〈K 〉 = −q6 + q2 + 1 + q−2

and

ĴK (q) = q3(−q6 + q2 + 1 + q−2)

= −q9 + q5 + q3 + q

= (−q8 + q6 + q2)(q + q−1)

and hence

JK (t) =
(
− q8 + q6 + q2

)∣∣
q=−t1/2

= −t4 + t3 + t.
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Categorifying JK (t)

How do we categorify a polynomial?

Replace polynomials in Z[t] with graded vector spaces whose graded
dimension is that polynomial.
We want a “homology theory” for knots whose “Euler characteristic”
is the Jones polynomial.
First we need a way of turning smoothed knot diagrams into graded
vector spaces.
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Cobordisms

Let nCob be the category of n–cobordisms:

Objects are closed (n−1)–manifolds.

Morphisms M1 → M2 are n–cobordisms: n–manifolds W such
that ∂W = M1 tM2.

In 2Cob:

Objects are closed 1–manifolds (disjoint unions of circles).

Morphisms are surfaces.
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What has this got to do with 〈K 〉?

−→

is really just

So Khovanov’s Kauffman bracket gives us an n–cube of cobordisms.

We want to turn this into an n–cube of (graded) linear maps
between (graded) vector spaces.
We need a functor from 2Cob to GrVectC.
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Quantum mechanics

In quantum mechanics,

the state of a system is represented by an element of a vector
space (usually a Hilbert space),

observables correspond to operators on this space, and

possible values of observations correspond to eigenvalues of
these operators, with the subsequent state given by the
corresponding eigenvector (or eigenstate).
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Quantum field theory

A QFT is a general framework for describing fundamental processes
or forces in physics.

QED describes electromagnetism

QCD describes the strong force

The Standard Model describes EM, Weak, Strong and Higgs.

General Relativity
space (n−1)–manifold
spacetime n–cobordism
composition of cobordisms
identity cobordism

Quantum mechanics
states Hilbert space
process linear operator
composition of operators
identity operator
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TQFTs

Atiyah et al axiomatised QFT as a functor

F : nCob→ Hilb or Vectk

What this means is that

to each (n−1)–manifold we assign a vector space, and

to each n–cobordism we assign a linear map, such that
composition works and identity cobordisms correspond to
identity maps.

This is a topological quantum field theory or TQFT.

To define a 2–dimensional TQFT, we need to decide:

What vector space the circle corresponds to.
(Disjoint unions t correspond to tensor products ⊗.)

What linear maps the cobordisms , , and

correspond to.
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Khovanov’s TQFT

Khovanov’s TQFT maps

to a graded vector space V with one basis vector v+ in
degree +1 and one basis vector v− in degree −1.

to ∇ : V⊗V → V such that

v+⊗v+ 7→ v+, v+⊗v− 7→ v−, v−⊗v+ 7→ v−, v−⊗v− 7→ 0.

to ∆: V → V⊗V such that

v+ 7→ v+⊗v− + v−⊗v+, v− 7→ v−⊗v−.
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Khovanov homology

This TQFT enables us to turn our cube of cobordisms into a cube
of (graded) vector spaces and (graded) linear maps.

000
V⊗V

010
V{1}

100
V{1}

001
V{1}

110
(V⊗V ){2}

101
(V⊗V ){2}

011
(V⊗V ){2}

111
(V⊗V⊗V ){3}

∇

∇

∇

∆

∆

∆

∆

∆

∆

∆

∆

∆

V⊗V V{1}⊕V{1}⊕V{1} (V⊗V ){2}⊕(V⊗V ){2}⊕(V⊗V ){2} (V⊗V⊗V ){3}

Nicholas Jackson Categorification and TQFTs



Khovanov homology

This gives a chain complex

V0
d0−→ V1

d1−→ V2
d2−→ · · ·

whose homology modules Hn(K ) = ker(dn)/ im(dn−1) are
Reidemeister-invariant, and whose graded Euler characteristic is JK .

But. . .

and

both have JK (t) = t2 + t4 − t5 + t6 − t7, but different Khovanov
homology modules.
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Further reading

Joachim Kock, Frobenius Algebras and 2D Topological
Quantum Field Theories, LMS Student Texts 59, Cambridge
University Press (2003)

Dror Bar-Natan, On Khovanov’s categorification of the Jones
polynomial, Algebraic and Geometric Topology 2 (2002)
337–370 arXiv:math/0201043
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