Categorification and TQFTs Warwick Mathematics Society

Nicholas Jackson

November 2013

Leonhard Euler (1707-1783)

$$
\begin{aligned}
\chi(\text { dodecahedron }) & =\#(\text { vertices })-\#(\text { edges })+\#(\text { faces }) \\
& =20-30+12 \\
& =2
\end{aligned}
$$

Extend this to simplicial complexes:

$$
\begin{aligned}
\chi(K) & =\sum_{k=0}^{n}(-1)^{k} \#(k \text {-simplices }) \\
& =18-23+8-1 \\
& =2
\end{aligned}
$$

Extend this to (some) topological spaces.
Triangulation: simplicial complex K and a homeomorphism

$$
h: K \rightarrow X
$$

EULER CHARACTERISTIC: INVARIANCE

The Euler characteristic χ is a topological invariant:

$$
\text { If } X \cong Y \text { then } \chi(X)=\chi(Y)
$$

EULER CHARACTERISTIC: INVARIANCE

The Euler characteristic χ is a topological invariant:

$$
\text { If } X \cong Y \text { then } \chi(X)=\chi(Y)
$$

But. . .
$\chi(X)=\chi(Y)$ doesn't necessarily mean that $X \cong Y$.

The Euler characteristic χ is a topological invariant:

$$
\text { If } X \cong Y \text { then } \chi(X)=\chi(Y)
$$

But. . .

$$
\chi(X)=\chi(Y) \text { doesn't necessarily mean that } X \cong Y
$$

For example:

Homology groups

From MA251 Algebra I:

Theorem (Finitely generated abelian groups)

Let A be a finitely generated abelian group. Then

$$
A \cong \underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{r \text { copies }} \oplus \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}} .
$$

(We say A has rank r.)

Homology groups

From MA251 Algebra I:

Theorem (finitely generated abelian groups)

Let A be a finitely generated abelian group. Then

$$
A \cong \underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{r \text { copies }} \oplus \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}} .
$$

(We say A has rank r.)
From MA3H6 Algebraic Topology:
$H_{n}(X)$, the nth homology group.

- $H_{n}(X)$ is an abelian group.
- $H_{n}(X)$ "counts" the n-dimensional holes in X.
- The nth Betti number of X is $b_{n}=\operatorname{rank}\left(H_{n}(X)\right)$.
- rank $H_{0}(X)$ is the number of path components of X.
- $H_{1}(X) \cong \pi_{1}(X, *)^{\text {ab }}$ if X is path-connected.

Homology and the Euler characteristic

We can recover the Euler characteristic from the homology groups:

$$
\chi(X)=\sum_{k=0}^{n}(-1)^{k} \operatorname{rank} H_{k}(X)
$$

We can recover the Euler characteristic from the homology groups:

$$
\chi(X)=\sum_{k=0}^{n}(-1)^{k} \operatorname{rank} H_{k}(X)
$$

EXAMPLE (2-SPHERE, CONVEX POLYHEDRA)

$$
H_{0}\left(S^{2}\right)=\mathbb{Z} \quad H_{1}\left(S^{2}\right)=0 \quad H_{2}\left(S^{2}\right)=\mathbb{Z}
$$

Hence $\chi\left(S^{2}\right)=\operatorname{rank} \mathbb{Z}-\operatorname{rank} 0+\operatorname{rank} \mathbb{Z}=1-0+1=2$.

Homology and the Euler characteristic

We can recover the Euler characteristic from the homology groups:

$$
\chi(X)=\sum_{k=0}^{n}(-1)^{k} \operatorname{rank} H_{k}(X)
$$

EXAMPLE (2-SPHERE, CONVEX POLYHEDRA)

$$
H_{0}\left(S^{2}\right)=\mathbb{Z} \quad H_{1}\left(S^{2}\right)=0 \quad H_{2}\left(S^{2}\right)=\mathbb{Z}
$$

Hence $\chi\left(S^{2}\right)=\operatorname{rank} \mathbb{Z}-\operatorname{rank} 0+\operatorname{rank} \mathbb{Z}=1-0+1=2$.

ExAMPLE (2-TORUS)

$$
H_{0}\left(S^{1} \times S^{1}\right)=\mathbb{Z} \quad H_{1}\left(S^{1} \times S^{1}\right)=\mathbb{Z} \oplus \mathbb{Z} \quad H_{2}\left(S^{1} \times S^{1}\right)=\mathbb{Z}
$$

Hence $\chi\left(S^{1} \times S^{1}\right)=\operatorname{rank} \mathbb{Z}-\operatorname{rank} \mathbb{Z} \oplus \mathbb{Z}+\operatorname{rank} \mathbb{Z}=1-2+1=0$.

$$
H_{0}(K)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad H_{1}(K)=\mathbb{Z} \quad H_{2}(K)=0 \quad H_{3}(K)=0
$$

Hence

$$
\chi(K)=3-1+0-0=2=\chi\left(S^{2}\right) .
$$

$$
H_{0}(K)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad H_{1}(K)=\mathbb{Z} \quad H_{2}(K)=0 \quad H_{3}(K)=0
$$

Hence

$$
\chi(K)=3-1+0-0=2=\chi\left(S^{2}\right) .
$$

But

$$
H_{n}(K) \not \equiv H_{n}\left(S^{2}\right)
$$

$H_{0}(K)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad H_{1}(K)=\mathbb{Z} \quad H_{2}(K)=0 \quad H_{3}(K)=0$
Hence

$$
\chi(K)=3-1+0-0=2=\chi\left(S^{2}\right) .
$$

But

$$
H_{n}(K) \not \not 二 H_{n}\left(S^{2}\right)
$$

so $H_{n}(-)$ is a better invariant than $\chi(-)$.

CATEGORIFICATION

This is an example of categorification: roughly speaking, replace simple objects with more sophisticated ones.

CATEGORIFICATION

This is an example of categorification: roughly speaking, replace simple objects with more sophisticated ones.
A more precise partial definition:
A categorification of a set S is a category \mathcal{C} and a function

$$
p:(\operatorname{obj} \mathcal{C} / \cong) \longrightarrow S
$$

Categorification

This is an example of categorification: roughly speaking, replace simple objects with more sophisticated ones.
A more precise partial definition:
A categorification of a set S is a category \mathcal{C} and a function

$$
p:(\operatorname{obj} \mathcal{C} / \cong) \longrightarrow S
$$

Example (The natural numbers)

$$
S=\mathbb{N} \quad \mathcal{C}=\text { FinSet } \quad p=|-|
$$

Categorification

This is an example of categorification: roughly speaking, replace simple objects with more sophisticated ones.
A more precise partial definition:
A categorification of a set S is a category \mathcal{C} and a function

$$
p:(\operatorname{obj} \mathcal{C} / \cong) \longrightarrow S
$$

Example (The natural numbers)

$$
S=\mathbb{N} \quad \mathcal{C}=\text { FinSet } \quad p=|-|
$$

Example (Betti numbers)

$$
S=\mathbb{N} \quad \mathcal{C}=\mathrm{FGAb} \quad p=\mathrm{rank}
$$

From MA3F2 Knot Theory: $J_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1 / 2}\right]$
Can be defined via the Kauffman bracket $\langle K\rangle \in \mathbb{Z}\left[A^{ \pm 1}\right]$

$$
\begin{aligned}
\langle\bigcirc\rangle & =1 \\
\langle K \sqcup \bigcirc\rangle & =\left(-A^{2}-A^{-2}\right)\langle K\rangle \\
\langle X\rangle & =A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle
\end{aligned}
$$

This is R_{2} - and R_{3}-invariant.

From MA3F2 Knot Theory: $J_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1 / 2}\right]$
Can be defined via the Kauffman bracket $\langle K\rangle \in \mathbb{Z}\left[A^{ \pm 1}\right]$

$$
\begin{aligned}
\langle\bigcirc\rangle & =1 \\
\langle K \sqcup \bigcirc\rangle & =\left(-A^{2}-A^{-2}\right)\langle K\rangle \\
\langle X\rangle & =A\langle \rangle\langle \rangle+A^{-1}\langle\measuredangle\rangle
\end{aligned}
$$

This is R_{2} - and R_{3}-invariant.
Now work out the writhe

$$
\begin{aligned}
w(K) & =\#(\text { positive crossings })-\#(\text { negative crossings }) \\
& =n_{+}(K)-n_{-}(K)
\end{aligned}
$$

From MA3F2 Knot Theory: $J_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1 / 2}\right]$
Can be defined via the Kauffman bracket $\langle K\rangle \in \mathbb{Z}\left[A^{ \pm 1}\right]$

$$
\begin{aligned}
\langle\bigcirc\rangle & =1 \\
\langle K \sqcup \bigcirc\rangle & =\left(-A^{2}-A^{-2}\right)\langle K\rangle \\
\langle X\rangle & =A\langle \rangle\langle \rangle+A^{-1}\langle\searrow\rangle
\end{aligned}
$$

This is R_{2} - and R_{3}-invariant.
Now work out the writhe

$$
\begin{aligned}
w(K) & =\#(\text { positive crossings })-\#(\text { negative crossings }) \\
& =n_{+}(K)-n_{-}(K)
\end{aligned}
$$

Define

$$
X_{K}(A)=(-A)^{3 w(K)}\langle K\rangle .
$$

(This is R_{1}-invariant as well.)

From MA3F2 Knot Theory: $J_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1 / 2}\right]$
Can be defined via the Kauffman bracket $\langle K\rangle \in \mathbb{Z}\left[A^{ \pm 1}\right]$

$$
\begin{aligned}
\langle\bigcirc\rangle & =1 \\
\langle K \sqcup \bigcirc\rangle & =\left(-A^{2}-A^{-2}\right)\langle K\rangle \\
\langle X\rangle & =A\langle \rangle\langle \rangle+A^{-1}\langle\searrow\rangle
\end{aligned}
$$

This is R_{2} - and R_{3}-invariant.
Now work out the writhe

$$
\begin{aligned}
w(K) & =\#(\text { positive crossings })-\#(\text { negative crossings }) \\
& =n_{+}(K)-n_{-}(K)
\end{aligned}
$$

Define

$$
X_{K}(A)=(-A)^{3 w(K)}\langle K\rangle
$$

(This is R_{1}-invariant as well.) Finally,

$$
J_{K}(t)=X_{K}\left(t^{-1 / 4}\right)
$$

Start by recursively calculating the Kauffman bracket:

$$
\begin{aligned}
& \langle(z)\rangle=A\langle(弓)\rangle+A^{-1}\langle(z)\rangle \\
& =A^{2}\langle(\xi)\rangle+\left\langle(\{)\rangle+\langle(\xi)\rangle+A^{-2}\langle(\hat{\Omega})\rangle\right. \\
& \left.\left.\left.=A^{3}\langle(\xi\})\right\rangle+A\langle(\xi\})\right\rangle+A\langle(\})\right\rangle+A^{-1}\langle(0)\rangle \\
& \left.+A\langle\hat{\mathfrak{B}})\rangle+A^{-1}\langle(\mathfrak{B})\rangle+A^{-1}\langle\hat{Q})\right\rangle+A^{-3}\langle(\hat{Q})\rangle \\
& =A^{3}\left(-A^{2}-A^{-2}\right)+A+A+A^{-1}\left(-A^{2}-A^{-2}\right) \\
& +A+A^{-1}\left(-A^{2}-A^{-2}\right)+A^{-1}\left(-A^{2}-A^{-2}\right) \\
& +A^{-3}\left(-A^{2}-A^{-2}\right)^{2} \\
& =-A^{5}-A^{-3}+A^{-7} \text {. }
\end{aligned}
$$

Jones polynomial: EXAMPle

The writhe of

is +3 , so

$$
X_{K}(A)=(-A)^{-3 \times 3}\left(-A^{5}-A^{-3}+A^{-7}\right)=A^{-4}+A^{-12}-A^{-16}
$$

Jones polynomial: EXAMPle

The writhe of

is +3 , so

$$
X_{K}(A)=(-A)^{-3 \times 3}\left(-A^{5}-A^{-3}+A^{-7}\right)=A^{-4}+A^{-12}-A^{-16}
$$

and hence

$$
J_{K}(t)=X_{K}\left(t^{-1 / 4}\right)=-t^{4}+t^{3}+t
$$

Khovanov's version of the Jones polynomial

Mikhail Khovanov introduced a slightly different formulation of the Jones polynomial.

$$
\begin{aligned}
& \langle\bigcirc\rangle=\left(q+q^{-1}\right) \\
& \langle\searrow\rangle=\langle \rangle\langle \rangle-q^{-1}\langle\bigwedge\rangle
\end{aligned}
$$

Khovanov's VERSION OF THE JONES POLYNOMIAL

Mikhail Khovanov introduced a slightly different formulation of the Jones polynomial.

$$
\begin{aligned}
& \langle\bigcirc\rangle=\left(q+q^{-1}\right) \\
& \rangle\rangle=\langle \rangle\langle \rangle-q^{-1}\langle\bigwedge\rangle
\end{aligned}
$$

The unnormalised Jones polynomial

$$
\hat{J}_{K}(q)=(-1)^{n_{-}} q^{n_{+}-2 n_{-}}\langle K\rangle
$$

Khovanov's version of The Jones polynomial

Mikhail Khovanov introduced a slightly different formulation of the Jones polynomial.

$$
\begin{aligned}
& \langle\bigcirc\rangle=\left(q+q^{-1}\right) \\
& \rangle\rangle=\langle \rangle\langle \rangle-q^{-1}\langle\bigwedge\rangle
\end{aligned}
$$

The unnormalised Jones polynomial

$$
\hat{J}_{K}(q)=(-1)^{n_{-}} q^{n_{+}-2 n_{-}}\langle K\rangle
$$

and the (original, normalised) Jones polynomial is

$$
J_{K}(t)=\left.\frac{\hat{J}_{K}(q)}{q+q^{-1}}\right|_{q=-t^{1 / 2}}
$$

So

$$
\langle K\rangle=-q^{6}+q^{2}+1+q^{-2}
$$

and

$$
\begin{aligned}
\hat{J}_{K}(q) & =q^{3}\left(-q^{6}+q^{2}+1+q^{-2}\right) \\
& =-q^{9}+q^{5}+q^{3}+q \\
& =\left(-q^{8}+q^{6}+q^{2}\right)\left(q+q^{-1}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
J_{K}(t) & =\left.\left(-q^{8}+q^{6}+q^{2}\right)\right|_{q=-t^{1 / 2}} \\
& =-t^{4}+t^{3}+t
\end{aligned}
$$

Categorifying $J_{K}(t)$

How do we categorify a polynomial?

CATEGORIFYING $J_{K}(t)$

How do we categorify a polynomial?
Replace polynomials in $\mathbb{Z}[t]$ with graded vector spaces whose graded dimension is that polynomial.

CATEGORIFYing $J_{K}(t)$

How do we categorify a polynomial?
Replace polynomials in $\mathbb{Z}[t]$ with graded vector spaces whose graded dimension is that polynomial.
We want a "homology theory" for knots whose "Euler characteristic" is the Jones polynomial.

Categorifying $J_{K}(t)$

How do we categorify a polynomial?
Replace polynomials in $\mathbb{Z}[t]$ with graded vector spaces whose graded dimension is that polynomial.
We want a "homology theory" for knots whose "Euler characteristic" is the Jones polynomial.
First we need a way of turning smoothed knot diagrams into graded vector spaces.

Cobordisms

Let nCob be the category of n-cobordisms:

- Objects are closed ($n-1$)-manifolds.
- Morphisms $M_{1} \rightarrow M_{2}$ are n-cobordisms: n-manifolds W such that $\partial W=M_{1} \sqcup M_{2}$.

Cobordisms

Let nCob be the category of n-cobordisms:

- Objects are closed ($n-1$)-manifolds.
- Morphisms $M_{1} \rightarrow M_{2}$ are n-cobordisms: n-manifolds W such that $\partial W=M_{1} \sqcup M_{2}$.
In 2Cob:
- Objects are closed 1-manifolds (disjoint unions of circles).
- Morphisms are surfaces.

Cobordisms

Let nCob be the category of n-cobordisms:

- Objects are closed ($n-1$)-manifolds.
- Morphisms $M_{1} \rightarrow M_{2}$ are n-cobordisms: n-manifolds W such that $\partial W=M_{1} \sqcup M_{2}$.
In 2Cob:
- Objects are closed 1-manifolds (disjoint unions of circles).
- Morphisms are surfaces.

What has this got to do with $\langle K\rangle$?

is really just

So Khovanov's Kauffman bracket gives us an n-cube of cobordisms.

What has this got to do with $\langle K\rangle$?

is really just

So Khovanov's Kauffman bracket gives us an n-cube of cobordisms. We want to turn this into an n-cube of (graded) linear maps between (graded) vector spaces.

What has this got to do with $\langle K\rangle$?

is really just

So Khovanov's Kauffman bracket gives us an n-cube of cobordisms. We want to turn this into an n-cube of (graded) linear maps between (graded) vector spaces.
We need a functor from 2 Cob to $\mathrm{GrVect}_{\mathbb{C}}$.

Quantum mechanics

In quantum mechanics,

- the state of a system is represented by an element of a vector space (usually a Hilbert space),

QUANTUM MECHANICS

In quantum mechanics,

- the state of a system is represented by an element of a vector space (usually a Hilbert space),
- observables correspond to operators on this space,

QUANTUM MECHANICS

In quantum mechanics,

- the state of a system is represented by an element of a vector space (usually a Hilbert space),
- observables correspond to operators on this space, and
- possible values of observations correspond to eigenvalues of these operators, with the subsequent state given by the corresponding eigenvector (or eigenstate).

Quantum Field Theory

A QFT is a general framework for describing fundamental processes or forces in physics.

- QED describes electromagnetism
- QCD describes the strong force
- The Standard Model describes EM, Weak, Strong and Higgs.

QuANTUM FIELD THEORY

A QFT is a general framework for describing fundamental processes or forces in physics.

- QED describes electromagnetism
- QCD describes the strong force
- The Standard Model describes EM, Weak, Strong and Higgs.

General Relativity
space $\quad(n-1)$-manifold
spacetime n-cobordism
composition of cobordisms identity cobordism

Quantum mechanics states Hilbert space process linear operator composition of operators identity operator

TQFTs

Atiyah et al axiomatised QFT as a functor

$$
F: \mathrm{nCob} \rightarrow \text { Hilb or } \text { Vect }_{k}
$$

What this means is that

- to each ($n-1$)-manifold we assign a vector space, and
- to each n-cobordism we assign a linear map, such that composition works and identity cobordisms correspond to identity maps.
This is a topological quantum field theory or TQFT.

TQFTs

Atiyah et al axiomatised QFT as a functor

$$
F: \mathrm{nCob} \rightarrow \text { Hilb or } \mathrm{Vect}_{k}
$$

What this means is that

- to each ($n-1$)-manifold we assign a vector space, and
- to each n-cobordism we assign a linear map, such that composition works and identity cobordisms correspond to identity maps.

This is a topological quantum field theory or TQFT.
To define a 2-dimensional TQFT, we need to decide:

- What vector space the circle $>$ corresponds to. (Disjoint unions \sqcup correspond to tensor products \otimes.)
- What linear maps the cobordisms

 and θ correspond to.

TQFTs

Atiyah et al axiomatised QFT as a functor

$$
F: \mathrm{nCob} \rightarrow \text { Hilb or } \mathrm{Vect}_{k}
$$

What this means is that

- to each ($n-1$)-manifold we assign a vector space, and
- to each n-cobordism we assign a linear map, such that composition works and identity cobordisms correspond to identity maps.

This is a topological quantum field theory or TQFT.
To define a 2-dimensional TQFT, we need to decide:

- What vector space the circle $>$ corresponds to. (Disjoint unions \sqcup correspond to tensor products \otimes.)
- What linear maps the cobordisms

 and θ correspond to.

Khovanov's TQFT

Khovanov's TQFT maps

- $<$ to a graded vector space V with one basis vector v_{+}in degree +1 and one basis vector v_{-}in degree -1 .
-

 to $\nabla: V \otimes V \rightarrow V$ such that
$v_{+} \otimes v_{+} \mapsto v_{+}, \quad v_{+} \otimes v_{-} \mapsto v_{-}, \quad v_{-} \otimes v_{+} \mapsto v_{-}, \quad v_{-} \otimes v_{-} \mapsto 0$.
-
to $\Delta: V \rightarrow V \otimes V$ such that

$$
v_{+} \mapsto v_{+} \otimes v_{-}+v_{-} \otimes v_{+}, \quad v_{-} \mapsto v_{-} \otimes v_{-}
$$

KHOVANOV HOMOLOGY

This TQFT enables us to turn our cube of cobordisms into a cube of (graded) vector spaces and (graded) linear maps.

KHOVANOV HOMOLOGY

This gives a chain complex

$$
V_{0} \xrightarrow{d_{0}} V_{1} \xrightarrow{d_{1}} V_{2} \xrightarrow{d_{2}} \cdots
$$

whose homology modules $H_{n}(K)=\operatorname{ker}\left(d_{n}\right) / \operatorname{im}\left(d_{n-1}\right)$ are Reidemeister-invariant, and whose graded Euler characteristic is J_{K}.

KHOVANOV HOMOLOGY

This gives a chain complex

$$
V_{0} \xrightarrow{d_{0}} V_{1} \xrightarrow{d_{1}} V_{2} \xrightarrow{d_{2}} \cdots
$$

whose homology modules $H_{n}(K)=\operatorname{ker}\left(d_{n}\right) / \operatorname{im}\left(d_{n-1}\right)$ are Reidemeister-invariant, and whose graded Euler characteristic is J_{K}. But. . .

both have $J_{K}(t)=t^{2}+t^{4}-t^{5}+t^{6}-t^{7}$, but different Khovanov homology modules.

- Joachim Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, LMS Student Texts 59, Cambridge University Press (2003)
- Dror Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebraic and Geometric Topology 2 (2002) 337-370 arXiv:math/0201043

