Networks and Small Worlds SATELLITE 4

Nicholas Jackson

Easter 2013

- Born in Basel, Switzerland
- University of Basel (1720-1723)
- Awarded doctorate in 1726 , supervised by Johann Bernoulli
- St Petersburg (1727-1741)
- Prussian Academy of Sciences, Berlin (1741-1766)
- St Petersburg (1766-1783)
- Collected works published from 1911 onwards (76 volumes so far)
- Calculus, graph theory, mechanics, fluid dynamics, optics, astronomy, music, ...

Thus for any configuration that may arise, the easiest way of determining whether a single crossing of all the bridges is possible is to apply the following rules:

- If there are more than two regions which are approached by an odd number of bridges, no route satisfying the required condition can be found.
- If, however, there are only two regions with an odd number of approach bridges, the required journey can be completed provided it originates in one of the regions.
- If, finally, there is no region with an odd number of approach bridges, the required journey can be effected, no matter where it begins.
These rules solve completely the problem initially proposed.
- Leonhard Euler,

Solutio problematis ad geometriam situs pertinentis (1735)

DEFINITION

A graph or network consists of a set of nodes or vertices, linked by arcs or edges.

Definition

The degree or valency of a node is the number of incident edges it has.

Definition

An Eulerian path in a graph is a route through the graph that passes along each edge exactly once.

Theorem (Euler 1735)

A graph has an Eulerian path if and only if either:

- each node has even degree, or
- exactly two nodes have odd degree, and all the rest have even degree.

Sometimes we care about distances or travel times between nodes. Model this by attaching a weight (a positive integer) to each edge.

What is the shortest path from A to E ?

- Born in Rotterdam, The Netherlands
- Cowrote the first ALGOL 60 compiler
- Received the 1972 Turing Award
- Shunting yard algorithm for parsing mathematical expressions
- Banker's algorithm for shared resource allocation and deadlock avoidance
- Go To Statement Considered Harmful, Communications of the ACM 11:3 (1968) 147-148
- Strongly opposed teaching BASIC
- "[Computer science] is like referring to surgery as 'knife science'"

Algorithm

(1) Give each node a estimated distance or cost: 0 for the start node and ∞ for everything else.

Algorithm

(1) Give each node a estimated distance or cost: 0 for the start node and ∞ for everything else.
(2) Mark the current node as visited.

Algorithm

(1) Give each node a estimated distance or cost: 0 for the start node and ∞ for everything else.
(2) Mark the current node as visited.
(3) Consider all unvisited neighbours of the current node, recalculate their estimated distances, and update any whose new estimated distance is less than the old value.

Algorithm

(1) Give each node a estimated distance or cost: 0 for the start node and ∞ for everything else.
(2) Mark the current node as visited.
(3) Consider all unvisited neighbours of the current node, recalculate their estimated distances, and update any whose new estimated distance is less than the old value.
(1) For any nodes whose estimated distances were updated, set their predecessor node to be the current node.

Algorithm

(1) Give each node a estimated distance or cost: 0 for the start node and ∞ for everything else.
(2) Mark the current node as visited.
(3) Consider all unvisited neighbours of the current node, recalculate their estimated distances, and update any whose new estimated distance is less than the old value.
(1) For any nodes whose estimated distances were updated, set their predecessor node to be the current node.
(6) If we're not yet at the destination node, move to the unvisited node with the smallest estimated distance and go to step 2.

Sometimes we want to study traffic or flow through networks, especially road or telecommunications networks.

Each edge $e=(u, v)$ between two vertices u and v has a capacity $c(u, v)$ and a (variable) flow $f(u, v)$, such that:

- $f(u, v) \leqslant c(u, v)$: flow cannot exceed capacity
- $f(v, u)=-f(u, v)$: net flow from u to v must be the opposite of the net flow from v to u
- $\sum_{v} f(u, v)=0$ unless u is a source or sink: total flow through a node u is conserved

8-14 September 2000: Fuel protests and blockades

4 November 2000: Floods

4 November 2000: Floods

- Born in Budapest, Hungary
- Itinerant mathematician: would turn up at a department and announce "my brain is open"
- A machine for turning coffee (and amphetamines) into theorems
- Very prolific and collaborative: ~ 1525 published articles with 511 coauthors
- Combinatorics, graph theory, number theory, analysis, probability theory, set theory, ...
- Died while attending a mathematics conference in Warsaw
- Paul Hoffman, The Man Who Loved Only Numbers (1998)

Erdős number: minimal path-length in the collaboration graph.

Erdős number: minimal path-length in the collaboration graph.

- N M Dunfield, S K Friedl, N J Jackson, Twisted Alexander polynomials of hyperbolic knots, Experimental Mathematics 21 (2012) 329-352

Erdős number: minimal path-length in the collaboration graph.

- N M Dunfield, S K Friedl, N J Jackson, Twisted Alexander polynomials of hyperbolic knots, Experimental Mathematics 21 (2012) 329-352
- N M Dunfield, D Ramakrishnan, Increasing the number of fibered faces of arithmetic hyperbolic 3-manifolds, American Journal of Mathematics 132 (2010) 53-97

Erdős number: minimal path-length in the collaboration graph.

- N M Dunfield, S K Friedl, N J Jackson, Twisted Alexander polynomials of hyperbolic knots, Experimental Mathematics 21 (2012) 329-352
- N M Dunfield, D Ramakrishnan, Increasing the number of fibered faces of arithmetic hyperbolic 3-manifolds, American Journal of Mathematics 132 (2010) 53-97
- V Kumar Murty, D Ramakrishnan, Period relations and the Tate conjecture for Hilbert modular surfaces, Inventiones Mathematicæ 89 (1987) 319-345

Erdős number: minimal path-length in the collaboration graph.

- N M Dunfield, S K Friedl, N J Jackson, Twisted Alexander polynomials of hyperbolic knots, Experimental Mathematics 21 (2012) 329-352
- N M Dunfield, D Ramakrishnan, Increasing the number of fibered faces of arithmetic hyperbolic 3-manifolds, American Journal of Mathematics 132 (2010) 53-97
- V Kumar Murty, D Ramakrishnan, Period relations and the Tate conjecture for Hilbert modular surfaces, Inventiones Mathematicæ 89 (1987) 319-345
- P Erdős, M Ram Murty, V Kumar Murty, On the enumeration of finite groups, Journal of Number Theory 25 (1987) 360-378

Erdős number: minimal path-length in the collaboration graph.

- N M Dunfield, S K Friedl, N J Jackson, Twisted Alexander polynomials of hyperbolic knots, Experimental Mathematics 21 (2012) 329-352
- N M Dunfield, D Ramakrishnan, Increasing the number of fibered faces of arithmetic hyperbolic 3-manifolds, American Journal of Mathematics 132 (2010) 53-97
- V Kumar Murty, D Ramakrishnan, Period relations and the Tate conjecture for Hilbert modular surfaces, Inventiones Mathematicæ 89 (1987) 319-345
- P Erdős, M Ram Murty, V Kumar Murty, On the enumeration of finite groups, Journal of Number Theory 25 (1987) 360-378

N J Jackson \longrightarrow N M Dunfield \longrightarrow D Ramakrishnan
\longrightarrow V Kumar Murty $\longrightarrow P$ Erdős

19

How many steps to Kevin Bacon?

How many steps to Kevin Bacon?

- I was in G103 (2006)

How many steps to Kevin Bacon?

- I was in G103 (2006) with Patrick Niknejad
- who was in Harry Potter and the Philosopher's Stone (2001)

How many steps to Kevin Bacon?

- I was in G103 (2006) with Patrick Niknejad
- who was in Harry Potter and the Philosopher's Stone (2001) with Daniel Radcliffe
- who was in Harry Potter and the Prisoner of Azkaban (2004)

How many steps to Kevin Bacon?

- I was in G103 (2006) with Patrick Niknejad
- who was in Harry Potter and the Philosopher's Stone (2001) with Daniel Radcliffe
- who was in Harry Potter and the Prisoner of Azkaban (2004) with Gary Oldman
- who was in JFK (1991)

How many steps to Kevin Bacon?

- I was in G103 (2006) with Patrick Niknejad
- who was in Harry Potter and the Philosopher's Stone (2001) with Daniel Radcliffe
- who was in Harry Potter and the Prisoner of Azkaban (2004) with Gary Oldman
- who was in JFK (1991) with Kevin Bacon

20

How many steps from Erdős to Bacon?

How many steps from Erdős to Bacon?

- Paul Erdős was in N is a Number: A Portrait of Paul Erdős (1993)

How many steps from Erdős to Bacon?

- Paul Erdős was in N is a Number: A Portrait of Paul Erdős (1993) with Tomasz Luczak
- who was in The Mill and the Cross (2011)

How many steps from Erdős to Bacon?

- Paul Erdős was in N is a Number: A Portrait of Paul Erdős (1993) with Tomasz Luczak
- who was in The Mill and the Cross (2011) with Charlotte Rampling
- who was in Jerusalemski Sindrom (2004)

How many steps from Erdős to Bacon?

- Paul Erdős was in N is a Number: A Portrait of Paul Erdős (1993) with Tomasz Luczak
- who was in The Mill and the Cross (2011) with Charlotte Rampling
- who was in Jerusalemski Sindrom (2004) with Martin Sheen
- who was in JFK (1991)

How many steps from Erdős to Bacon?

- Paul Erdős was in N is a Number: A Portrait of Paul Erdős (1993) with Tomasz Luczak
- who was in The Mill and the Cross (2011) with Charlotte Rampling
- who was in Jerusalemski Sindrom (2004) with Martin Sheen
- who was in JFK (1991) with Kevin Bacon

Why Erdős and Bacon?

Why Erdős and Bacon?

Why Erdős and Bacon?

- Paul Erdős wrote ~ 1525 published papers with 511 coauthors.
- Kevin Bacon has been in 78 films with 2769 distinct people since 1978.

Why Erdős and Bacon?

- Paul Erdős wrote ~ 1525 published papers with 511 coauthors.
- Kevin Bacon has been in 78 films with 2769 distinct people since 1978.

Both are high degree nodes in the respective collaboration graphs.

Why Erdős and Bacon?

- Paul Erdős wrote ~ 1525 published papers with 511 coauthors.
- Kevin Bacon has been in 78 films with 2769 distinct people since 1978.

Both are high degree nodes in the respective collaboration graphs. But also, they are in some sense highly central to the networks.

Why Erdős and Bacon?

- Paul Erdős wrote ~ 1525 published papers with 511 coauthors.
- Kevin Bacon has been in 78 films with 2769 distinct people since 1978.

Both are high degree nodes in the respective collaboration graphs. But also, they are in some sense highly central to the networks. What does this mean?

Centrality

Several different measures of centrality in a network:

Several different measures of centrality in a network:

Definition

The degree centrality of a node is just the degree:

$$
C_{D}(v)=\operatorname{deg}(v)
$$

Several different measures of centrality in a network:

Definition

The degree centrality of a node is just the degree:

$$
C_{D}(v)=\operatorname{deg}(v)
$$

DEFINITION

The closeness centrality of a node v measures the average length of shortest paths from v to every other node:

$$
C_{C}(v)=\left(\frac{\sum_{w} d(v, w)}{N-1}\right)^{-1}
$$

If $C_{C}(v)=1$ then v is connected to every other node by one step.

As of 2004,

$$
C_{D}(\text { Erdős })=511 \quad C_{C}(\text { Erdős })=0.215
$$

Erdős is the most central node in the main component of the mathematical collaboration network.

As of 2004,

$$
C_{D}(\text { Erdős })=511 \quad C_{C}(\text { Erdős })=0.215
$$

Erdős is the most central node in the main component of the mathematical collaboration network.
Currently,

$$
C_{D}(\text { Bacon })=2769 \quad C_{C}(\text { Bacon })=0.334
$$

As of 2004,

$$
C_{D}(\text { Erdős })=511 \quad C_{C}(\text { Erdős })=0.215
$$

Erdős is the most central node in the main component of the mathematical collaboration network.
Currently,

$$
C_{D}(\text { Bacon })=2769 \quad C_{C}(\text { Bacon })=0.334
$$

But

$$
C_{D}(\text { Keitel })=4259 \quad C_{C}(\text { Keitel })=0.352
$$

Kevin Bacon is the 370th most central film actor (out of 2.6 million people listed in the IMDb).

- First posited by Frigyes Karinthy (1887-1938), a Hungarian playright and author, in 1929 short story Láncszemek (Chains)
- Famously tested by Stanley Milgram (1933-1951) in 1967: average path length within USA was between ~ 5.5 and ~ 6.
- First posited by Frigyes Karinthy (1887-1938), a Hungarian playright and author, in 1929 short story Láncszemek (Chains)
- Famously tested by Stanley Milgram (1933-1951) in 1967: average path length within USA was between ~ 5.5 and ~ 6.
- Problems with methodology: bias due to low rate of response (only 64 of 296 letters got to their destination).
- First posited by Frigyes Karinthy (1887-1938), a Hungarian playright and author, in 1929 short story Láncszemek (Chains)
- Famously tested by Stanley Milgram (1933-1951) in 1967: average path length within USA was between ~ 5.5 and ~ 6.
- Problems with methodology: bias due to low rate of response (only 64 of 296 letters got to their destination).
- Small world network: mean shortest path length grows slowly $(\propto \log (N))$, high clustering coefficient, many hubs (high-degree nodes).
- The mathematical and film collaboration graphs are small world networks. (Clustering coefficient for mathematics is 0.14.)

Definition

If a node v has k_{v} neighbours, there can be at most $\frac{1}{2} k_{v}\left(k_{v}-1\right)$ edges between them all (the complete graph with k_{v} vertices). The clustering coefficient C_{v} is the proportion of these edges that exist. The clustering coefficient C is the average of all the C_{v}.

Nicholas Jackson
Networks and Small Worlds

Nicholas Jackson
Networks and Small Worlds

DEFINITION

The betweenness centrality of a node v measures how many shortest paths go through v :

$$
C_{B}(v)=\sum_{u, w} \frac{g_{u, v, w}}{g_{u, w}} / \frac{1}{2}(N-1)(N-2)
$$

Can also define the betweenness of an edge.

Definition

The betweenness centrality of a node v measures how many shortest paths go through v :

$$
C_{B}(v)=\sum_{u, w} \frac{g_{u, v, w}}{g_{u, w}} / \frac{1}{2}(N-1)(N-2)
$$

Can also define the betweenness of an edge.

Betweenness clustering algorithm

While (betweenness of any edge) > (fixed threshold value),

- Remove the edge with the highest betweenness
- Recalculate betweenness for all edges

This isn't very efficient (scales as $O\left(N^{3}\right)$), but mostly works.

EPIDEMIOLOGY

27
Can use these techniques to understand the spread of epidemics.

Can use these techniques to understand the spread of epidemics.

- Measles has a $\sim 90 \%$ infectivity amongst susceptible contacts.
- The basic reproduction number $\left(R_{0}\right)$ varies between 12 and 18 depending on environmental factors.
- Vaccination breaks links in the infectivity network.
- Critical vaccination coverage is $1-1 / R_{0}$; for measles this is between $\sim 91.7 \%$ and $\sim 94.4 \%$.
- The Oracle of Bacon: http://oracleofbacon.org/
- The Erdős Number Project: http://www.oakland.edu/enp/
- Duncan Watts, Small Worlds, Princeton University Press (1999)
- Paul Hoffman, The Man Who Loved Only Numbers, Fourth Estate (1998)
- Coursera: Social Network Analysis

