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Pythagoras and his school

Samos c.570BC – Metapontum c.495BC

Mathematician, philosopher, scientist, mystic

Student of Hermes and Thoth

Able to travel through space and time

Remembered several past lives

Could communicate with plants and animals

One of his thighs was made of gold

Wrote on the moon using blood and a mirror

Believed that mathematics underpinned all
reality
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Rational numbers

In particular, the Pythagoreans believed that rational numbers were
the foundations of the universe.

Definition

A rational number is one that can be expressed as a quotient p
q

where

p and q are both integers,

q 6= 0, and

p and q have no common factors.

Denote the set of rational numbers by Q.
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The existence of
√
2

a

b
c

Pythagoras’ Theorem says:

a2 + b2 = c2

Or
c =

√
12 + 12.

So
√

2 exists and, amongst other things,
can be constructed with straightedge and
compasses.
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Irrationality of
√
2

Lemma

If n2 is even, then so is n.

Proof.

If n = 2m+1 is odd, then so is

n2 = (2m+1)2 = 4m2+4m+1 = 2(2m2+2m)+1.

If n = 2m is even, then so is

n2 = (2m)2 = 4m2 = 2(2m2).

These are the only two possibilities, so n2 is even only when n is.
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Irrationality of
√
2

Theorem (Hippasus of Metapontum?)
√

2 is not a rational number.

Proof.

Suppose it is rational after all:
√

2 = p
q , where p and q are integers,

q 6= 0, and p and q have no common factors.

Then p2

q2
= 2. So p2 = 2q2. Hence p2 is even.

Therefore, by the Lemma, p is even, so we can rewrite it as p = 2r .
Thus 4r2 = 2q2, so 2r2 = q2. This means that q2 is even.
Therefore, by the Lemma, q is even.
So both p and q are even.
But this contradicts our original statement that p and q have no
common factors.
So
√

2 can’t be expressed as a rational number.
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Reductio ad absurdam

This is called proof by contradiction or reductio ad absurdam.

. . . and reductio ad absurdum, which
Euclid loved so much, is one of a
mathematician’s finest weapons. It is
a far finer gambit than any chess
gambit: a chess player may offer the
sacrifice of a pawn or even a piece,
but a mathematician offers the game.

G H Hardy, A Mathematician’s Apology
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Algebraic irrational numbers

The irrationality of
√

2 shook the foundations of the Pythagoreans’
worldview.

According to (highly apocryphal) legend, Pythagoras was so
shocked, he had the unfortunate disciple taken out and drowned.
The same proof can be adapted to show that other valid numbers

are irrational:
√

3, 3
√

5, φ = 1+
√
5

2 .
These can all be expressed as solutions of polynomial equations:

x2 − 2 = 0 x2 − 3 = 0

x3 − 5 = 0 φ2 − φ− 1 = 0

Call irrational numbers of this type algebraic.
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Three ancient problems

Squaring the Circle Construct a square which has the same
area as a given circle.

Trisecting an Angle Trisect, in finite time, using only
compasses and straightedge, a given angle.

Doubling a Cube Construct, in finite time, using only
compasses and straightedge, a cube with twice the
volume of a given one.
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Squaring the Circle

Rhind Papyrus (c.1700BC) gives

A ≈ 64
81d2.

Equivalently,

π ≈ 256
81 ≈ 3.1605

Meton With the straight ruler I set to work to inscribe a
square within this circle; in its centre will be the
market-place, into which all the straight streets will lead,
converging to this centre like a star, which, although only
orbicular, sends forth its rays in a straight line from all
sides.

Aristophanes, The Birds (414BC)
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Squaring the Circle

Problem

Find a polynomial equation with rational coefficients which has π as
a solution.

Historical accounts in:

Jean-Étienne Montucla, Histoire des Récherches sur la
Quadrature du Cercle (1754)

Ernest Hobson, Squaring the Circle: A History of the
Problem (1913)
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Squaring the Circle

Ernest Hobson (1856–1933) divides the history of the problem into
three phases:

Phase 1 ( – c.1650): Attempts at geometric construction

Rhind Papyrus π ≈ 256
81 ≈ 3.1605

Bible (I Kings 7:23, II Chronicles 4:2) π ≈ 3
Archimedes 223

71 < π < 22
7 (via 96–gons)

Phase 2 (c.1650 – c.1750): Use of calculus to approximate π

John Wallis (1616–1705): π
2 = 2

1
2
3
4
3
4
5
6
5
6
7 · · ·

Gottfried Leibniz (1646–1716): π
4 =1− 1

3+ 1
5− · · ·

Phase 3 (c.1750 – c.1890): Detailed study of nature of π

Joseph Liouville (1809–1882): Existence of non-algebraic
(transcendental) numbers (1840)
Charles Hermite (1822–1901): e is transcendental (1873)
Ferdinand von Lindemann (1852–1939): π is transcendental
(1882)
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Irrationality

Also he made a molten sea of ten cubits from brim to
brim, round in compass, and five cubits the height thereof;
and a line of thirty cubits did compass it round about.

II Chronicles 4:2 (≈ I Kings 7:23)
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π is transcendental

Theorem (Lindemann–Weierstrass)

If x1, . . . , xn are distinct real or complex algebraic numbers, and
p1, . . . , pn are algebraic numbers, at least one of which is nonzero,
then

p1ex1 + · · ·+ pnexn 6= 0.

Corollary

π is transcendental.

Proof.

Set n = 2, x1 = ix , x2 = 0, and p1 = p2 = 1.
So e ix + 1 6= 0 if x is algebraic.
But Leonhard Euler (1707–1783) proved that

e iπ + 1 = 0.

So π can’t be algebraic, and must be transcendental.
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Squaring the circle

Corollary

No square can be constructed with the same area as a given circle.
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Outsider mathematics

Many enthusiastic amateurs attempted to square the circle, even
after Lindemann’s work.

William Myers, The Quadrature of the Circle, the Square
Root of Two, and the Right-Angled Triangle (1873)

Rufus Fuller, A Double Discovery: The Square of the Circle
(1893)

. . . and many more.
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Outsider mathematics

I consider myself as having made my report, and being
discharged from further attendance on the subject. I will
not, from henceforward, talk to any squarer of the circle,
trisector of the angle, duplicator of the cube, constructor
of perpetual motion, subverter of gravitation, stagnator
of the earth, builder of the universe, &c.

– Augustus de Morgan, A Budget of Paradoxes

One of these – the chief one, I think – is the old old
problem of ‘Squaring the Circle’, which has certainly
wasted many a human life. Whether it has actually
driven any one mad, I know not – most of its victims
were, I fancy, partly crazed before they entered on the
quest – but it clearly has the power of demolishing such
slender reasoning powers as they may ever have chanced
to possess. – Charles Dodgson, Curiosa Mathematica I
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Outsider mathematics

L’Académie a pris, cette année, la résolution de ne plus
examiner aucune folution des problèmes de la duplication
du cube, de la trifection de l’angle, ou de la quadrature du
cercle, ni aucune machine annoncée comme un
mouvement perpétuel.

– Histoire de l’Académie royale des sciences (1775) 61
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The Indiana π Bill of 1897

Indiana House Bill 246 (1897)
A Bill for an act introducing a new mathematical truth and offered
as a contribution to education to be used only by the State of
Indiana free of cost by paying any royalties whatever on the same,
provided it is accepted and adopted by the official action of the
Legislature of 1897.
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The Indiana π Bill of 1897

Section 1
Be it enacted by the General Assembly of the State of Indiana: It
has been found that a circular area is to the square on a line equal
to the quadrant of the circumference, as the area of an equilateral
rectangle is to the square on one side. The diameter employed as
the linear unit according to the present rule in computing the
circle’s area is entirely wrong, as it represents the circle’s area one
and one-fifth times the area of a square whose perimeter is equal to
the circumference of the circle. This is because one fifth of the
diameter fails to be represented four times in the circle’s
circumference. For example: if we multiply the perimeter of a
square by one-fourth of any line one-fifth greater than one side, we
can in like manner make the square’s area to appear one-fifth
greater than the fact, as is done by taking the diameter for the
linear unit instead of the quadrant of the circle’s circumference.
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The Indiana π Bill of 1897

Section 2
It is impossible to compute the area of a circle on the diameter as
the linear unit without trespassing upon the area outside of the
circle to the extent of including one-fifth more area than is
contained within the circle’s circumference, because the square on
the diameter produces the side of a square which equals nine when
the arc of ninety degrees equals eight. By taking the quadrant of
the circle’s circumference for the linear unit, we fulfill the
requirements of both quadrature and rectification of the circle’s
circumference. Furthermore, it has revealed the ratio of the chord
and arc of ninety degrees, which is as seven to eight, and also the
ratio of the diagonal and one side of a square which is as ten to
seven, disclosing the fourth important fact, that the ratio of the
diameter and circumference is as five-fourths to four; and because
of these facts and the further fact that the rule in present use fails
to work both ways mathematically, it should be discarded as wholly
wanting and misleading in its practical applications.
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The Indiana π Bill of 1897

Section 3
In further proof of the value of the author’s proposed contribution
to education and offered as a gift to the State of Indiana, is the fact
of his solutions of the trisection of the angle, duplication of the cube
and quadrature of the circle having been already accepted as
contributions to science by the American Mathematical Monthly,
the leading exponent of mathematical thought in this country. And
be it remembered that these noted problems had been long since
given up by scientific bodies as insolvable mysteries and above
man’s ability to comprehend.
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The Indiana π Bill of 1897

Drafted by Dr Edward Johnston Goodwin (c.1828–1902), of
Solicitude, Indiana.

Persuaded his local representative Taylor I Record to sponsor
the bill.

Introduced in the Indiana House of Representatives on 18 Jan
1897.

Referred to the Committee on Canals. . .

. . . who referred it to the Committee on Education.

Favourable report 2 Feb 1897.

Second and Third Readings 5 Feb 1897, passed to Senate.

Referred to Committee on Temperance 11 Feb 1897.

Favourable report on 12 Feb 1897.
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The Indiana π Bill of 1897

Prof Clarence Waldo visiting from
Department of Mathematics, Purdue
University to discuss funding of the Indiana
Academy of Science.

Carefully coaches Senators to reject the bill.

A member then showed the writer a copy of the
bill just passed and asked him if he would like an
introduction to the learned doctor, its author. He
declined the courtesy with thanks, remarking that
he was acquainted with as many crazy people as
he cared to know.
C A Waldo, What Might Have Been, Proc.
Indiana Acad. Sci. 26 (1916) 445–446
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The Indiana π bill of 1897

E J Goodwin, Quadrature of the circle, Amer. Math. Monthly 1
(1894) 246–247

Published by request of the author.

Goodwin’s exposition is not a model of clarity. At various points in
his original article, in the bill, and in an interview he gave to the
Indianapolis Journal he seems to provide nine different values for π:

4 256
81 ≈ 3.1605 16

√
2

7 ≈ 3.2325
160
49 ≈ 3.2653 16

5 ≈ 3.2 10
3 ≈ 3.3333

32
9 ≈ 3.5556 64

25 ≈ 2.56 4
√
2

3 ≈ 3.2660

All of these are wrong.
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Trisection and duplication

Goodwin also ‘solved’ the problems of trisecting the angle and
doubling the cube:
E J Goodwin, letter, Amer. Math. Monthly 2 (1895) 337

Published by request of the author.

(A) The trisection of an angle:
The trisection of a right line taken as the chord of any arc of a circle
trisects the angle of the arc;

This doesn’t work: the three subangles aren’t the same.

(B) Duplication of the Cube:
Doubling the dimensions of a cube octuples its contents, and
doubling its contents increases its dimensions twenty-five plus one
percent.

This is a close approximation: 3
√

2 ≈ 1.2599 ≈ 1.26.
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Trisection and duplication

Neither of these problems are solvable as stated: with a finite
number of steps using just compasses and straightedge.

They can be solved using more sophisticated methods:

Both can be solved using origami.

Both can be solved using a marked ruler.

Both can be solved using the neusis construction.

An angle can be trisected using an infinite sequence of
bisections:

1
3 = 1

4 + 1
16 + 1

256 + · · ·

An angle can be trisected using a piece of string, a ‘tomahawk’,
a linkage, etc.

Menaechmus (380–320 BC) doubled the cube using conic
sections.
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Trisection and duplication

Both problems proved unsolvable (with compasses and straightedge)
in 1837 by Pierre Wantzel (1814–1848).

He worked usually during the evening, not going to bed
until late at night, then reading, and only sleeping poorly
for a few hours, alternately abusing coffee and opium;
until he married, he took his meals at odd and irregular
hours. He put unlimited trust in his constitution, very
strong by nature, which he taunted at pleasure by all sorts
of abuse. He brought sadness to those who mourn his
premature death.

– Jean Claude de Saint-Venant (1848)

A mathematician is a machine for turning coffee into
theorems.

– Paul Erdös
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Trisection

We need to solve the equation

cos 3θ = 4 cos3 θ − 3 cos θ.

We can do this for some angles (eg 180◦

2n ) but not for all.
Try it for θ = 20◦. So we want to solve

cos 60◦ = 1
2 = 4 cos3 20◦ − 3 cos 20◦.

Write x = 2 cos 20◦, then this becomes

x3 − 3x − 1 = 0.
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Trisection

Theorem

Any complex number z which is constructible by compasses and
straightedge from 0 and 1 must be algebraic of degree 2 over Q.

In other words, we need to find a quadratic polynomial

ax2 + bx + c

where a, b and c are rational, and which is a factor of x3 − 3x − 1.
Equivalently, we need to find a linear factor

dx + e

of x3 − 3x − 1 with d and e both rational.
That is, we need a rational root of x3 − 3x − 1: a rational number
x = p

q such that (p
q

)3 − 3
(p
q

)
− 1 = 0.
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Trisection

Theorem (Rational Root Theorem)

Suppose
anxn + an−1xn−1 + · · ·+ a0 = 0.

where an, . . . , a0 are integers. Then any rational solution x = p
q

must satisfy:

p is an integer factor of a0, and

q is an integer factor of an.

Applying this to our polynomial x3 − 3x − 1, we see that the
rational root x = p

q must satisfy p = ±1 and q = ±1, so x = ±1.
But

(1)3 − 3(1)− 1 = −3 (−1)3 − 3(−1)− 1 = 1

So x3 − 3x − 1 doesn’t have a rational root. And the angle π
3 = 60◦

can’t be trisected with compasses and straightedge.
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Trisection

Theorem (Rational Root Theorem)

Suppose
anxn + an−1xn−1 + · · ·+ a0 = 0.

where an, . . . , a0 are integers. Then any rational solution x = p
q

must satisfy:

p is an integer factor of a0, and

q is an integer factor of an.
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Duplication

Doubling the cube fails for similar reasons. This time, we’re trying
to find a rational root for the polynomial

x3 − 2.

The Rational Root Theorem says that any such root must be x = p
q

with q = ±1 and p = ±1 or ±2. Hence x = ±1 or ±2. But

(1)3 − 2 = −1 (−1)3 − 2 = −3

(2)3 − 2 = 6 (−2)3 − 2 = −10

So x3 − 2 doesn’t have a rational root, and hence the cube can’t be
doubled in volume using just compassess and straightedge.
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Galois Theory

This is an application of a branch of mathematics called Galois
Theory, named after the French mathematician Évariste Galois
(1811–1832).

Studied advanced mathematics as a teenager.

Failed entrance exam to the École
Polytechnique, instead went to the École
Normale (1828).

Published four papers in 1829–1830, on
continued fractions, number theory and
solutions of polynomial equations.

Expelled from the École Normale in 1831,
arrested and imprisoned for republican
activism.

Died following a pistol duel in May 1832.
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