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Data? Rewind Tape

Then five minutes, fingers crossed,
hoping not to witness the terror
of “R: Tape Loading Error”

– M J Hibbett, Hey Hey 16K

Two weekends in a row I came in and found that all my
stuff had been dumped and nothing was done. I was really
aroused and annoyed because I wanted those answers and
two weekends had been lost. And so I said ‘Damn it, if
the machine can detect an error, why can’t it locate the
position of the error and correct it?’

– Richard W Hamming
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The problem

Problem

Reliable storage of data on fallible media

≡

Reliable transmission of data over a noisy channel
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Shannon’s Theorem

Theorem (Noisy Channel Coding Theorem)

1 For every discrete memoryless channel, the channel capacity

C = maxPX
I (X ; Y )

has the property that for any ε > 0 and R < C , for large
enough N, there exists a code of length N and rate > R, and a
decoding algorithm, such that the maximal probability of block
error is < ε

2 If a probability of bit error pb is acceptable, rates of up to

R(pb) =
C

1− H2(pb)

are achievable.

3 For any pb, rates greater than R(pb) are not achievable
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Shannon’s Theorem

Theorem (Paraphrase)

Information can be communicated over a noisy channel at a nonzero
rate with arbitrarily small error probability.

Nicholas Jackson The Bits Between The Bits



Encoding scheme

Binary channel: Data transmitted as streams of 1s and 0s.
Most of what we want to store or transmit isn’t like this, so encode
it using a collection of codewords, such as a character set.

ASCII American Standard Code for Information Interchange

EBCDIC Extended Binary Coded Decimal Interchange Code
An alleged character set used on IBM dinosaurs. It
exists in at least six mutually incompatible versions,
all featuring such delights as non-contiguous letter
sequences and the absence of several ASCII
punctuation characters fairly important for modern
computer languages. . . See also fear and loathing.
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Encoding scheme

So. Let’s use ASCII. . .

H 72 01001000
E 69 01000101
L 76 01001100
L 76 01001100
O 79 01001111

Transmit (or store)

01001000 01000101 01001100 01001100 01001111

Decode at the other end by splitting up into eight-bit chunks and
reversing the encoding process.
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Transmission error

But suppose something goes wrong in transmission.

01001000 01000101 01001100 01001100 01001111 = HELLO

Question

How do we know that an error has occurred?

Answer

Design a clever coding scheme so that we can tell when something’s
gone wrong.

We can still use ASCII, but we introduce an extra transmission
coding/decoding step in the middle.

Better answer

Design an even cleverer coding scheme so that we can tell what the
message should have been.
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Block repetition codes

Näıve but valid approach

SSeenndd eeaacchh ccooddeewwoorrdd ttwwiiccee

If one letter/codeword in a given pair doesn’t agree with the other
one, then we know an error has occurred.

Cleverer but still näıve approach

SSSeeennnddd eeeaaaccchhh cccooodddeeewwwooorrrddd
ttthhhrrriiiccceee

Assuming we’ve tweaked transmission rate so that the error
probability is small enough, then we can detect and correct single
errors.
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Block repetition codes

HELLO −→ HHHEEELLLLLLOOO −→ HDHEEELL?LLLKOO

Now use a majority voting algorithm (FPTP!) to correct the error:

HDH −→ H
EEE −→ E
LL? −→ L
LLL −→ L

KOO −→ O
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Rate

This works, but it’s not a very efficient way of doing things. We
have to transmit three bits of data for every bit of actual
information.

Rate =
message bits

total bits

In general we’ll talk about (n, r) codes: n total bits, r message bits.

The triple block repetition code has parameters (3, 1), and rate
1
3 ≈ 0.333.
We expect a certain amount of trade-off for the security of
error-correction, but surely we can do better than this?
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Parity check

Better approach (error detection)

Turn 8–bit codewords into 9–bit codewords by adding a parity check
bit at the end, so that the total number of 1s is even.

(This is like check digits in credit card numbers and ISBNs.)

H 72 01001000 010010000
E 69 01000101 010001011
L 76 01001100 010011001
L 76 01001100 010011001
O 79 01001111 010011111

We can detect single bit errors in any codeword: if the parity is
wrong then we know the message has been corrupted during
transmission.
The rate of this code is 8

9 ≈ 0.889.
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Hamming’s (7, 4) code H7

Richard Hamming devised a (7, 4) code H7 with rate 4
7 ≈ 0.571.

Each codeword has three parity bits and four message bits:

P1 P2 D1 P3 D2 D3 D4

and each message bit is checked by at least two of the parity bits:

P1 checks D1 D2 D4

P2 checks D2 D3 D4

P3 checks D1 D3 D4 P1

P2

P3D1

D2 D3
D4

Choose P1, P2 and P3 so that each circle has an even number of 1s.
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Hamming’s (7, 4) code H7

H7 can detect and correct a single bit error in any codeword:

1101 −→ 1010101 −→ 1010101

1

0

0
1

1 0
1

P1 = 1
P2 = 0
P3 = 0

H7 is one of a family of codes like this.
Use four overlapping spheres to get H15, the Hamming code with
parameters (15, 11) and rate 11

15 ≈ 0.733.
More generally, get a family of (2n−1, 2n−n−1) single
error-correcting codes. By increasing n we can get a rate arbitrarily
close (but not equal) to 1.
Practical tradeoff: longer codewords impact on coding/decoding
efficiency.
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Hamming’s work

Published as an internal memorandum at Bell Labs, Jul–Sep 1948.

Published externally as
RW Hamming, Error detecting and error correcting codes, Bell
Systems Tech. J. 29 (1950) 147–160
Publication delayed due to patent application.

I didn’t believe that you could patent a bunch of
mathematical formulas. I said they couldn’t. They said
“Watch us.” They were right. And since then I have
known that I have a very weak understanding of patent
laws because, regularly, things that you shouldn’t be able
to patent – it’s outrageous – you can patent.
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Golay codes

1949: Marcel Golay discovers a perfect 3–error-correcting binary
code C23 with parameters (23, 12) and rate 12

23 ≈ 0.522.

1979–1981: Voyager 1 and 2 used C24, a modified 24-bit version of
this code (with an extra parity bit) to transmit pictures of Jupiter
and Saturn.
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Other codes

BCH (Bose–Chaudhuri–Hocquenghem) codes: cyclic
polynomial codes over finite fields (1959–1960).

Reed–Solomon codes (1960). Used in CDs, DVDs, DSL, RAID
6, etc.

Convolutional codes.

Low-Density Parity Check codes (1960).

Turbo codes (1993).
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Sphere packing

Apparently unrelated problem

What is the most optimal way of packing together (hyper)spheres in
n–dimensional Euclidean space Rn?

Considered by Kepler (1611), Lagrange (1773) and Gauss (1831)
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Sphere packing

Consider regular or lattice packings of spheres with same radius.

Density Proportion of Rn occupied by the spheres.

Kissing number Number of adjacent spheres to a given sphere.

Voronoi cell Polygonal/polyhedral/polytopal cell containing the
spheres.

Packing radius Half the minimal distance between lattice points.
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Zn lattices

Zn: the n–dimensional cubic lattice

Density Vn
2n

Packing radius 1
2

Kissing number 2n

Vn = πn/2

(n/2)! (volume of n–dimensional ball)
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An lattices

Family of lattices based on the An root system.

Density Vn√
2n(n+1)

Packing radius 1√
2

Kissing number n(n + 1)

A2 A3

hexagonal face-centred cubic rhombic dodecahedron
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Kepler’s Conjecture

Kepler (1611): A3 (face-centred cubic) packing is
the densest three-dimensional sphere packing.

Gauss (1831): it’s the densest regular packing.

1900: Part of problem 18 on David Hilbert’s list of
23 important unsolved problems.

1953: László Fejes Tóth proves there are only
finitely many irregular lattices to consider.

1993: Hsiang publishes possibly incomplete proof.

1998: Thomas Hales announces proof.

2003: Referees announce they’re “99% certain”
that Hales’ proof is complete.

Greengrocers nonplussed.
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that Hales’ proof is complete.

Greengrocers nonplussed.
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1953: László Fejes Tóth proves there are only
finitely many irregular lattices to consider.

1993: Hsiang publishes possibly incomplete proof.

1998: Thomas Hales announces proof.

2003: Referees announce they’re “99% certain”
that Hales’ proof is complete.

Greengrocers nonplussed.

Nicholas Jackson The Bits Between The Bits



Kepler’s Conjecture

Kepler (1611): A3 (face-centred cubic) packing is
the densest three-dimensional sphere packing.

Gauss (1831): it’s the densest regular packing.

1900: Part of problem 18 on David Hilbert’s list of
23 important unsolved problems.

1953: László Fejes Tóth proves there are only
finitely many irregular lattices to consider.

1993: Hsiang publishes possibly incomplete proof.

1998: Thomas Hales announces proof.

2003: Referees announce they’re “99% certain”
that Hales’ proof is complete.

Greengrocers nonplussed.

Nicholas Jackson The Bits Between The Bits



Dn lattices

Dn: the n–dimensional chessboard lattice.
Points of Zn whose coordinates add up to an even number.

Density Vn√
2−(n+2)

Packing radius 1√
2

Kissing number 2n(n − 1)

D2 is Z2 (scaled by
√

2 and rotated)

D3 is A3 (face-centred cubic)

Voronoi cell of D4 is a 24–cell
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D+
n lattices

D+
n is two copies of Dn interleaved.

D+
2 is Z2

D+
3 is the molecular structure of diamond

D+
4 is Z4

D+
8 is E8 (one of a finite series with E6 and E7)
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Records

Dimension 1 2 3 4 5 6 7 8

Density Z A2 A3 D4 D5 E6 E7 E8

Kissing number Z A2 A3 D4 D5 E6 E7 E8

2 6 12 24 40 72 126 240

Dimension 12 16 24

Density K12 Λ16 Λ24

Kissing number P12a Λ16 Λ24

840 4320 196560
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Relation to codes

Question

What does this have to do with codes?

Answer

Good (perfect) codes have an optimal arrangement of codewords in
the space of possible codewords: maximise distance between
codewords (to allow error correction) and number of codewords
used.

Distribute codewords throughout space of n–bit binary strings so
that the Hamming spheres don’t overlap, but also don’t leave many
(ideally, any) gaps. Maximise error correction and use of codeword
space.
This is a sphere-packing problem on a 2n–vertex, n–dimensional
hypercube.
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Construction A

Choose a linear binary code C with parameters (n, r).
(A code is linear if the sum, modulo 2, of any two codewords is also
a codeword.)

A point (x1, . . . , xn) in Zn is a lattice point if the least significant
bits (the 1s columns) of the numbers x1, . . . , xn give a codeword of
C.

Geometrically: depict n–bit codewords as vertices of an
n–dimensional hypercube, and then glue together lots of copies.

The (n, n−1) parity check code gives the Dn lattice.

The (3, 2) parity check code gives D2 = A2, the face-centred
cubic lattice.

H7 gives the E7 lattice.

H8 (H7 with an extra parity bit) gives E8 = D+
8 .
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Construction B

Variation on Construction A:

A point (x1, . . . , xn) in Zn is a lattice point if the least significant
bits (the 1s columns) of the numbers x1, . . . , xn give a codeword of
C and if the sum x1 + · · ·+ xn is divisible by 4.

Like Construction A but discard some of the points.

The (8, 1) repetition code gives the lattice E8 = D+
8 .

C24 gives an interesting 24–dimensional lattice. Slot together
two copies of this to get Λ24, the Leech lattice.
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The Leech lattice Λ24

Discovered in 1964 by John Leech (and independently by Ernst
Witt in 1940).

Densest 24–dimensional lattice (density = π12

12! ≈ 0.00193).
Densest regular packing; no non-regular packing can be more
than 1.65×10−30 denser.

Voronoi cell is a 24–dimensional polytope (hyper-polyhedron)
with 16 969 680 faces.

Related (via vertex algebras and conformal field theory) to
string theory.

Can also be constructed as the product of three copies of E8.
(And in many other ways: qv JH Conway, NJA Sloane,
Twenty-three constructions for the Leech lattice, chapter 24 of
SPLAG.)

Nicholas Jackson The Bits Between The Bits



Driven to abstraction

Third strand of talk: group theory.
Mathematicians like to generalise and abstract things, so let’s do
this with the fundamental properties of arithmetic.

The integers

A set Z together with addition, a way of combining two
elements to get a third (binary operation).

Associativity: (a + b) + c = a + (b + c)

Commutativity: a + b = b + a

Special number 0 (identity) such that a + 0 = 0 + a = a

Inverses: (−a) + a = 0 = a + (−a)

Closure: a + b is also an integer
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Groups

Generalise this to get a group:

A set G and a binary operation ∗ such that:

∗ is associative: can ignore parentheses

Special identity element e in G such that e ∗ g = g ∗ e = g

Inverses g−1 such that g ∗ g−1 = g−1 ∗ g = e

Closure: g ∗ h is in G for all g and h

(∗ is commutative: can ignore order, so g ∗ h = h ∗ g)
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Examples

Cyclic groups

Zn = {0, . . . , n−1} with modulo–n addition.

+n 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Klein 4–group

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

See also “Finite Simple Group of Order 2”.

Mainly interested in the underlying structure (isomorphism)
Nicholas Jackson The Bits Between The Bits



Symmetries

Symmetries of geometric objects are a rich source of interesting
group structures. Also, groups are a good way of describing
symmetry.

Dihedral groups

m1

m2 m3

e r+ r− m1 m2 m3

e e r+ r− m1 m2 m3

r+ r+ r− e m2 m3 m1

r− r− e r+ m3 m1 m2

m1 m1 m3 m2 e r− r+
m2 m2 m1 m3 r+ e r−
m3 m3 m2 m1 r− r+ e

Elements are “ways you can flip a triangle round”

Multiplication operation is “do one after another”

Nonabelian group (commutativity fails)
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Subgroups

Subgroup A smaller group embedded inside a larger one.
e r+ r− m1 m2 m3

e e r+ r− m1 m2 m3

r+ r+ r− e m2 m3 m1

r− r− e r+ m3 m1 m2

m1 m1 m3 m2 e r− r+
m2 m2 m1 m3 r+ e r−
m3 m3 m2 m1 r− r+ e

Normal subgroup Special sort of subgroup: can decompose
larger groups nicely as a product of normal subgroups
(qv prime factorisation of integers)

Simple group A group with no proper, nontrivial normal
subgroups (qv prime numbers)
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Simple groups

Classification of finite simple groups

If G is simple, then it is one of the following types:

1 Zp where p is prime

2 An where n ≥ 5

3 a finite group of Lie type

4 one of 26 others (sporadic groups)

Group Order Group Order Group Order
M11 7920 M12 95040 M22 443520
M23 10200960 M24 244823040 J1 175560
J2 604800 J3 50232960 J4 ≈ 8.68×1019

Fi22 ≈ 6.46×1013 Fi23 ≈ 4.09×1018 Fi24 ≈ 1.26×1024

Co1 ≈ 4.16×1018 Co2 ≈ 4.23×1013 Co3 ≈ 4.96×1011

HS 44352000 McL 898128000 He 4030387200
Ru ≈ 1.46×1011 Suz ≈ 4.48×1011 O ′N ≈ 4.61×1011

HN ≈ 2.73×1014 Ly ≈ 5.18×1016 Th ≈ 9.07×1016

B ≈ 4.15×1033 M ≈ 8.08×1053
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The symmetry group of Λ24

Leech suspected that the symmetry group of his lattice Λ24 might
contain some interesting simple groups.
1968: The problem came to the attention of John Horton Conway

Conway sets aside 6 hours on Wednesday afternoons and 12 hours
on Saturdays to solve the problem

. . . and finishes just after midnight
on the first Saturday, having calculated the structure of the
symmetry group Co0, and found three new sporadic groups Co1,
Co2 and Co3.
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