Classification and the Minimal Model Program; the Hodge
diamond

Damiano Testa

Let k be a field and let X be a smooth projective variety defined over k. The
aim of the Minimal Model Program is to find a variety X', a minimal model, which
reflects as much as possible the properties of the variety X, and which is as simple
as possible. The criterion to decide whether a variety is simple enough to be called
a minimal model is based on intersection properties of the canonical divisor with
curves on X. In order to simplify the statements, we shall assume for this talk that
the base field k is algebraically closed and that char(k) = 0.

Minimal models (of surfaces). The definition of a minimal model involves in-
tersection numbers. Recall the definition of a nef divisor.

Definition 1. A divisor N on X is nef if for all curves C' in X we have N -C > 0.

An ample divisor H is certainly nef: in this case all intersection numbers of
curves with H are strictly positive. Also, an irreducible curve C' on X such that
C-C = C? > 0is nef: for all curves D not containing C' as a component, the
intersection number C - D is non-negative more or less by construction.

Let K = Kx denote a canonical divisor on X, and recall that K is only well-
defined up to linear equivalence: this is not a problem, since all that we are going
to need are intersection numbers. The divisor K is a finite linear combination
of codimension one subvarieties of X. One of the starting points of the Minimal
Model Program was the following remarkable implication: if the canonical divisor
of X has negative intersection number with a curve C C X, then each point of
C is contained in a rational curve. Varieties containing many rational curves have
special properties; such varieties are not going to be minimal models.

Definition 2. A smooth projective variety X is a minimal model if Kx is a nef
divisor.

Note that this definition works for varieties X of all dimensions. In particular,
if we take X to be a smooth curve, then X is a minimal model if and only if X
has genus at least one. Thus every smooth projective curve different from P! is
a minimal model, which agrees with our intuitive notion that P! is the “casiest”
curve.

For surfaces X the situation is more intricate. The first main difference with
curves is that it is no longer true that a birational map between two smooth pro-
jective surfaces can be extended to an isomorphism. The universal example of why
this happens is the blow-up. Given a surface X and smooth point p € X, the blow-
up of X at p is a surface Bl,(X) together with a morphism 7: Bl,(X) — X. The
morphism 7 is an isomorphism above all points of X different from p and the fiber
E of m above p is isomorphic to P'. Intuitively the blow-up of X at p is obtained
by replacing the point p by all the tangent directions at p: the tangent directions
at p of X are parameterized by E ~ P!, which is the fiber of = at p. The fiber F
of m at p is often called the exceptional divisor. It is a fact (see Proposition ?7)
that Kp;,(x) - E = —1; therefore Bl,(X) is not a minimal model. It follows that
if X is a minimal model, X is not the blow-up of another smooth surface, and this
partially justifies the terminology. Thus in our search for minimal models we can
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restrict our attention to surfaces that are not blow-ups of smooth surfaces; such
surfaces are classically called minimal.

Theorem 3. Suppose that X is a minimal surface that is not a minimal model;
then either X ~ P2, or X is ruled, that is there is a morphism b: X — C, where C
is a smooth curve and the fibers of b are isomorphic to P'.

The next theorem lists the minimal models of surfaces in increasing order of com-
plexity, mentioning for each type the classical name of the corresponding surface.
We give some further properties and some examples after the statement.

Theorem 4. Let X be a smooth projective surface and a minimal model (and hence
also minimal).

(1) Suppose that (Kx)? = 0.
o [f Kx is linearly equivalent to zero, then X is either an abelian surface
or a K3 surface.
o If Kx is numerically equivalent to zero, but not linearly equivalent to
zero, then either X is an Enriques surface or X is a bielliptic surface.
o If Kx is not numerically equivalent to zero, then X is an elliptic sur-
face.
(2) Suppose that (Kx)? > 0, then X is a surface of general type.

An abelian surface is a smooth projective variety together with the structure of
an algebraic group, e.g. the Jacobian of a genus two curve. A K3 surface is a simply-
connected surface with trivial canonical divisor, e.g. a smooth quartic surface in P3.
An Enriques surface is a quotient of a K3 surface by a fixed-point free involution.
A bielliptic surface is a quotient of a product of two elliptic curves by some special
finite group acting on both curves. An elliptic surface is a surface admitting a
morphism to a curve, with genus one curves as general fibers.

The Hodge diamond. Given a variety X, let Q% := A" Qx the p-the exterior
power of the sheaf of differential one-forms. The dimensions hP'? of the vector
spaces HY (X , Qg() are called the Hodge numbers. If X is a smooth projective
variety defined over the complex numbers, then the singular cohomology C-vector
spaces HF (X , (C) admit a direct sum decomposition

HE(X,C) = €P HY(X, %)
pt+q=k
called the Hodge decomposition. If X has dimension n, then the Hodge numbers
satisfy the identities

hP4 = RAP
n—pn—q — pPd
h I

coming from the fact that H?(X, Q%) = H?(X,Q%) and from Poincaré duality,
respectively. Moreover we also have the identity

top(X) = 3 (1)t app
p,q

where e, is the topological Euler characteristic of the topological space associated
to X, with the induced Euclidean topology.
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Typically, the Hodge numbers are written in the following way:

R
hn,nfl hnfl,n
hn,n72 hnfl,nfl hnf2,n
hl,O hO,l
hO’O

which takes the name Hodge diamond, for obvious reasons! We have h%0 = " =
1. For a surface the Hodge diamond is

h2’2
h2,1 h1’2
h2,0 hl’l h0’2
hl,O hO,l
h0,0

where X(X, (’)X) = h00 — 01 4 p02 =1 — B0 4 B02 is the Euler characteristic of
the structure sheaf and p, := h®2 — h%! is the arithmetic genus.

Smooth surfaces in P3. Let X C P3? be a smooth surface of degree d; we wish to
determine the Hodge numbers of X. First, by one exercise of one of the previous
lectures we know that A% = 0 and hence h%! = h?! = A2 = 0; thus we have

1
0 0
h0’2 hl’l h0,2
0 0
1

To compute the remaining two Hodge numbers we are going to compute X(X ,O X)
and egop(X).

The Euler characteristic X(X , OX) is the evaluation at n = 0 of the Hilbert
polynomial X(X ,Ox (n)), which, for n large enough, coincides with the dimension
of the degree n part of the graded ring k[ X, X1, X2, X3]/(F), where Xg, X1, X2, X3
are homogeneous coordinates on P? and F is a non-zero homogeneous polynomial
of degree d, vanishing along X. The space of homogeneous polynomials of degree n
in P3 has dimension (";f?’) The dimension of the space of polynomials of degree n
vanishing along X has dimension (”Jrg*d), since such polynomials are exactly the
multiples of F. Thus the homogeneous part of degree n of k[Xo, X1, X2, X3]/(F)
has dimension

n+3 n+3—d 1. 5 1 9 1, 4 o
() () s b s
for n > d. Since the expression on the right of the last equation is a polynomial, it
is the Hilbert polynomial of X C P3; evaluating at n = 0 and subtracting one we
find A% = (4;1).

To compute the topological Euler characteristic of X, we shall follow two strate-
gies: the first uses an identity called Noether’s formula; the second uses Chern
classes.



Noether’s formula is the following identity:

X(X7 OX) = %(Kg( + €top(X)).

In our case Kx is linearly equivalent to (d — 4)Hx, where Hx is the restriction of
a plane to X. Since H% = d, we find e;0,(X) = 12x(X,Ox) — d(d — 4)®. This

d(2d? —6d+T7)

allows us to conclude that h! = -

Alternatively, we use the sequences
0— Q]}DB — OPS(—1)4 — O]p:i — 0
0— Ox(—d) — Q]P’3|X — Qx — 0.

Both sequences were introduced in the previous lecture. The first is the Euler
sequence. The second comes from the fact that any cotangent vector to P? induces
a cotangent vector to X; the kernel of this morphism is generated by the differential
of the equation of X. Denote by H the hyperplane class in P? and by Hx its
restriction to X; taking total Chern classes, we find that

L+ (P?) 4+ co(P?) +e3(P)=(1— H)*=1—-4H + 6H? — 4H?

1+ e (X) + ep(X) = WraEle@raEIlx — (1 - 4Hy +6H%)(1 + dHx + d*HY).

We have c2(X) = e40p(X), and, since X has degree d, also d[point] = H%; combin-
ing everything we conclude that

etop(X) = d® — 4d* + 6d
and finally the Hodge diamond of X is

1
0 0
(dgl) d(2d? g6d+7) (dgl)
0 0
1

Exercise 5. Compute the Hodge numbers of P2.

Exercise 6. Compute the Hodge numbers of Cy x Co, where Cy and Cy are smooth
curves of genus g1 and gs.

Exercise 7. Compute the Hodge numbers of smooth curves of degree d in P?.

Exercise 8 (x). Compute the Hodge numbers of smooth surfaces in P* that are
intersections of two hypersurfaces of degree d and e.



