
Efficient computation of the
Hasse-Weil zeta function

Wouter Castryck Efficient zeta function computation

Problem I:

Develop an efficient algorithm that determines the number of
zeroes of any given polynomial f (x1, . . . , xn) with coefficients in
a finite field Fq.

f −→ −→ #
{

(ai) ∈ (Fq)n ∣∣ f (a1, . . . , an) = 0
}

Naively checking for every (a1, . . . , an) ∈ (Fq)n whether
f (a1, . . . , an) = 0 is not efficient!

 takes at least qn steps

Wouter Castryck Efficient zeta function computation

Write Nk := #
{

(ai) ∈
(
Fqk

)n
∣∣∣ f (a1, . . . , an) = 0

}
and define

the zeta function

Zf (T) = exp

(
∞∑

k=1

Nk
T k

k

)
∈ Q[[T]]]

which turns out to be a rational function (Dwork) that can be
algorithmically determined (Bombieri).

Problem II:

Develop an efficient algorithm that determines the zeta function
of any given polynomial f (x1, . . . , xn) with coefficients in a finite
field Fq.

f −→ −→ Zf (T)

Wouter Castryck Efficient zeta function computation

In general, both problems are far from being solved (in every
reasonable sense of the word efficient).

If n = 1 solved

polynomial factorization over Fq (Berlekamp)
count the number of linear factors

If n = 2 good progress
reduce to irreducible case via

#Z (fg) = #Z (f) + #Z (g) − #(Z (f) ∩ Z (g))

using polynomial factorization (Lenstra, Wan)
irreducible-but-not-absolutely-irreducible case is easy (point
enumeration) reduce to absolutely irreducible case
use geometric and arithmetric properties of the curve Z (f)

If n > 2 some generalizations, mostly only in theory

Wouter Castryck Efficient zeta function computation

This talk: n=2, i.e.

f ∈ Fq[x , y] is absolutely irreducible.

Thus it defines a curve C̃ in A2
Fq

.

Generalized zeta function: for any quasi-projective curve
C/Fq we define

ZC(T) = exp

(
∞∑

k=1

#C(Fqk)
T k

k

)
.

Thus ZC̃(T) = Zf (T).

Note that ZC(T) only depends on the isomorphism class
[C].

Wouter Castryck Efficient zeta function computation

Theorem (Weil):

Let C be a smooth projective curve of genus g. Then we can
write

ZC(T) =
P(T)

(1 − T)(1 − qT)

for a degree 2g polynomial P(T) ∈ Z[T]. Moreover

P(T) factors as
2g∏

i=1

(1 − αiT)

for algebraic integers αi ∈ C.

For i = 1, . . . , 2g we have |αi | =
√

q (Riemann hypothesis).

For a suitable choice of indices, we have αiα2g−i = q for
i = 1, . . . , g.

#C(Fqk) = qk + 1 −∑2g
i=1 αk

i .

Wouter Castryck Efficient zeta function computation

If C̃ is any quasi-projective curve, and C is its complete
nonsingular model, then

ZC̃(T) = ZC(T)(1 − T κ1)(1 − T κ2)(1 − T κt)

where κ1 + · · · + κt is the number of ‘points missing’.

The κi depend on the degrees of the field extensions over
which these points are defined.

Wouter Castryck Efficient zeta function computation

In the case of a smooth projective g = 1 curve, we have the
group law

P
Q

P + Q

P

2P

P

Q

P + Q = O

For higher genus, a smooth projective curve C/Fq can be
embedded in a ‘smallest’ abelian variety JacFq (C) (it has
dimension g).

Theorem (Tate):

#JacFq (C) = P(1)

Wouter Castryck Efficient zeta function computation

Most famous application and research motivation:

P ∈ E(Fq)

a ∈ N
aP

bP
b ∈ N

(ab)P = a(bP) (ab)P = b(aP)

Security is believed to depend on the hardness of the
discrete log problem: given P and nP, find n . . .

. . . which is easy if #E(Fq) contains no big prime factors.

Wouter Castryck Efficient zeta function computation

First method. Computing in JacFq(C).

Idea:
Arithmetic in JacFq (C) can be performed efficiently (Hess,
Khuri-Makdisi).
Use this to compute the order of a generic point.
Try to recover ZC(T) from P(1) = #JacFq (C) . . .
. . . and some additional info if g > 1 (becomes hard when
g gets big).
Example: in genus 2, q odd, every ordinary curve C has a
quadratic twist Ct . If

ZC(T) =
P(T)

(1 − T)(1 − qT)

then

ZCt (T) =
P(−T)

(1 − T)(1 − qT)

 recover ZC(T) from P(1) and P(−1).

Wouter Castryck Efficient zeta function computation

First method. Computing in JacFq(C).

Shanks’ method to compute N = #JacFq (C) (case g = 1).
By Weil’s theorem: q + 1 − 2

√
q ≤ N ≤ q + 1 + 2

√
q.

Choose a random point P ∈ C(Fq) = JacFq (C).
Baby steps: make a list of the first s ≈ 4

√
q multiples

0,±P,±2P,±3P, . . . ,±sP.

Giant steps: compute Q = (2s + 1)P and R = (q + 1)P
and for t = d2√q/(2s + 1)e ≈ 4

√
q, produce the list

R, R ± Q, R ± 2Q, . . . , R ± tQ.

Find match
R + iQ = jP.

Then mP = (q + 1 + (2s + 1)i − j)P = 0. If the match is
unique, then #C(Fq) = m. If not, try another P.

Running time is Õ(4
√

q). For g → ∞, the advantage poured
out of the Weil bound becomes smaller: Õ(q(2g−1)/4).

Wouter Castryck Efficient zeta function computation

First method. Computing in JacFq(C).

State of the art: thanks to improvements by Mestre, Kedlaya,
Sutherland, generic group methods make it feasible to compute
ZC(T) for (roughly)

q < 1040 if g = 1, easily outperforms naive counting as
soon as q > 103

q < 1013 if g = 2

q < 108 if g = 3

If one is only interested in #JacFq (C), then also higher genera
can be dealt with, over moderately sized finite fields. . .

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

Theorem (Tate):

For any prime ` different from the field characteristic p, and any
k ∈ N we have that

Jac
Fq

(C)[`k] ∼=
(

Z

`kZ

)2g

.

Define
T`(C) = lim

k
←

Jac
Fq

(C)[`k] ∼= Z
2g
` .

Let χ(T) be the characteristic polynomial of Frobenius acting
on T`(C). Then

χ(T) ∈ Z[T] and does not depend on `

ZC(T) =
T 2gχ(1/T)

(1 − T)(1 − qT)
.

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

Idea (Schoof):

Compute
χ(T) mod `

as the characteristic polynomial of Frobenius acting on
#Jac

Fq
[`] for various primes `.

Use the Chinese Remainder Theorem to recover χ(T)
mod

∏
`.

If
∏

` is big enough, Weil’s theorem allows us to recover
χ(T).

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

In practice for elliptic curves E : y2 = x3 + Ax + B.
The characteristic polynomial of Frobenius is of the form

T 2 − tT + q,

and we need to recover t . By Weil’s bound, |t | ≤ 2
√

q.
Caley-Hamilton: Frobenius map ϕ should satisfy its own
characteristic polynomial

ϕ2 − tϕ + q = 0.

There exist polynomials Ψ` ∈ Fq[x] that vanish precisely at
the `-torsion points of E (example: Ψ2 = x).
For small `, check for which t ′ = t mod ` the relation

(xq2
, yq2

) − t ′(xq, yq) + (q mod `)(x , y)

holds in Fq[x , y]/(Ψ`, y2 − x3 − Ax − B).
If
∏

` > 4
√

q, use CRT to recover t .

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

Using smart speed-ups by Atkin and Elkies, Schoof’s
algorithm has become very efficient for elliptic curves
(q ≈ 1060 in a couple of seconds).

Seems hopeless to generalize this to high genera,
because of the need of explicit formulas for #JacFq (C).

Small advances in genus 2 by Gaudry and Schost
(q ≈ 1024 in about a week).

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

First step: lift the curve to characteristic 0.

Let C(x , y) ∈ Fq[x , y] define a smooth curve in A2
Fq

, and
write

A =
Fq[x , y]

(C(x , y))

for its coordinate ring.

Write q = pn where p is the field characteristic.

Let Qq be the unramified degree n extension of Qp.

Let Zq be its ring of integers. This is a complete DVR with
local parameter p and residue field Fq.

Let C(x , y) ∈ Zq[x , y] be such that it reduces to C(x , y)
mod p and write

A =
Zq[x , y]

(C(x , y))
.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Problem: Geometric properties of C/Qq depend on the choice
of the lift: different genus, different endomorphism ring, . . .

Define

Zq〈x , y〉† =

∑

i,j∈N

aijx
iy j

∣∣∣∣∣∣
∃ρ ∈]0, 1[:

|aij |p
ρi+j → 0 if i + j → ∞

 .

Note that Zq〈x , y〉† is closed under integration and that
there is a natural map π : Zq〈x , y〉† → Fq[x , y].
Define

A† =
Zq〈x , y〉†
(C(x , y))

.

Theorem (Monsky, Washnitzer):

A† does not depend on the choice of C, and for every
morphism ϕ : A → A there exists a morphism ϕ : A† → A† that
lifts ϕ in the sense that ϕ ◦ π = π ◦ ϕ.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Consider the module of differentials

D1(A†) =
A†dx + A†dy(
∂C
∂x dx + ∂C

∂y dy
)

and let d : A† → D1(A†) be the usual exterior derivation. Then
define the cohomology space

H1
MW (A/Qq) =

D1(A†)
d(A†)

⊗Zq Qq.

Every Zq-algebra morphism ϕ : A† → A† induces a map

ϕ∗ : D1(A†) → D1(A†) : fdx + gdy 7→ ϕ(f)dϕ(x) + ϕ(g)dϕ(y)

which is well-defined on H1
MW (A/Qq).

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Theorem (Monsky, Washnitzer):

Let Fq : A → A : a 7→ aq and let Fq : A
† → A

†
be a lift. Then

ZC(T) =
det
(
I − qF∗−1

q T
∣∣∣H1

MW (A/Qq)
)

(1 − qT)
.

If χ(T) is the characteristic polynomial of F∗q acting on
H1

MW (A/Qq), then one can verify that

ZC(T) =

1
qg+R−1 χ(qT)

(1 − qT)

where R is the number of points at infinity.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Kedlaya’s method:

Compute a lift of Frobenius Fq.

Compute a basis of H1
MW (A/Qq).

Let F∗q act on this basis.

Re-express the result in terms of the basis, hence obtain a
matrix of Frobenius.

Compute its characteristic polynomial.

By Weil’s theorem, it suffices to do this modulo a certain
p-adic precision.

Problem: the resulting algorithms have running time O(q)
and are therefore slower than generic methods.

Solution if n is big and p is small: split up Fq = Fp ◦ · · · ◦ Fp

 running time becomes typically O(p).

Hopeless if p is big.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

So far:

Elliptic curves, in slightly different framework (Satoh, . . .):
works extremely fast (q ≈ 1060 in a fraction of a second).

Hyperelliptic curves (Kedlaya, Denef, Vercauteren): works
fast (matter of seconds for cryptographic ranges and high
genera).

Superelliptic curves (Gaudry, Gürel): idem.

Cab curves (Denef, Vercauteren): slow performance due to
different Frobenius lifting technique.

Nondegenerate curves (curves in toric surfaces) (C.,
Denef, Vercauteren): idem.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Deformation (Lauder):

Idea: put the curve of interest into a 1-parameter family

t0, r(t0) 6= 0

t1, r(t1) = 0

Spec A

Spec At0

Spec S

with S = Fq[t , r(t)−1].

Define the relative cohomology as above, now taking
coefficients in a ring S†.

‘Specifying’ t = t0 gives us the cohomology of the fibre
above t0.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

The relative matrix of Frobenius F (t) can be computed
from an initial value by solving a differential equation

N · F − d
dt

F = qtq−1 · F · N(tq),

where N is easy to compute (Gauss-Manin connection).

Lauder’s idea: take as initial value an ‘easy’ curve (e.g.
one whose actual field of definition is a small subfield of
Fq), compute F (t) and specify at the curve of interest.

Wouter Castryck Efficient zeta function computation

Advantages:

Avoid slow lifting of Frobenius.

Algorithms become more memory efficient.

Finding curves with prime order Jacobian is easier: specify
at various values in the family.

So far:

Works already well in elliptic and hyperelliptic case
(Hubrechts).

Gives satisfactory results in Cab case (C., Hubrechts,
Vercauteren).

Probably as well in nondegenerate case (Tuitman, in
progress)

Deformation might be the key towards dealing with arbitrary
curves!
Remember: all this is over fields of small characteristic.

Wouter Castryck Efficient zeta function computation

Some overall remarks on p-adic methods.

The theoretical framework is very robust, results in
algorithms that have polynomial running time in the genus,
and applies to a wide range of varieties. In fact:

Theorem (Lauder, Wan):

If we fix the field characteristic p and the dimension n, there
exists a polynomial running time algorithm (although
nonpractical) to compute the zeta function of an arbitrary
polynomial in n variables.

Dependency on p is O(p), but in case of hyperelliptic
curves this has been reduced to O(

√
p) by Harvey

outperforms generic methods from genus 3 on.

Interesting question: can deformation be done in O(
√

p)?

Wouter Castryck Efficient zeta function computation

That’s it (phew)!

Wouter Castryck Efficient zeta function computation

