Efficient computation of the Hasse-Weil zeta function

Problem I:

Develop an efficient algorithm that determines the number of zeroes of any given polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in a finite field \mathbb{F}_{q}.

Naively checking for every $\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{F}_{q}\right)^{n}$ whether $f\left(a_{1}, \ldots, a_{n}\right)=0$ is not efficient!
\rightsquigarrow takes at least q^{n} steps

Write $N_{k}:=\#\left\{\left(a_{i}\right) \in\left(\mathbb{F}_{q^{k}}\right)^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\}$ and define the zeta function

$$
\left.Z_{f}(T)=\exp \left(\sum_{k=1}^{\infty} N_{k} \frac{T^{k}}{k}\right) \quad \in \mathbb{Q}[[T]]\right]
$$

which turns out to be a rational function (Dwork) that can be algorithmically determined (Bombieri).

Problem II:

Develop an efficient algorithm that determines the zeta function of any given polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in a finite field \mathbb{F}_{q}.

In general, both problems are far from being solved (in every reasonable sense of the word efficient).

- If $n=1 \rightsquigarrow$ solved

■ polynomial factorization over \mathbb{F}_{q} (Berlekamp)

- count the number of linear factors

■ If $n=2 \rightsquigarrow$ good progress
■ reduce to irreducible case via

$$
\# Z(f g)=\# Z(f)+\# Z(g)-\#(Z(f) \cap Z(g))
$$

using polynomial factorization (Lenstra, Wan)
■ irreducible-but-not-absolutely-irreducible case is easy (point enumeration) \rightsquigarrow reduce to absolutely irreducible case
■ use geometric and arithmetric properties of the curve $Z(f)$
■ If $n>2 \rightsquigarrow$ some generalizations, mostly only in theory

This talk: $\mathrm{n}=2$, i.e.
■ $f \in \mathbb{F}_{q}[x, y]$ is absolutely irreducible.
■ Thus it defines a curve \widetilde{C} in $\mathbb{A}_{\mathbb{F}_{q}}^{2}$.
■ Generalized zeta function: for any quasi-projective curve C / \mathbb{F}_{q} we define

$$
Z_{C}(T)=\exp \left(\sum_{k=1}^{\infty} \# C\left(\mathbb{F}_{q^{k}}\right) \frac{T^{k}}{k}\right)
$$

Thus $Z_{\tilde{c}}(T)=Z_{f}(T)$.
$■$ Note that $Z_{C}(T)$ only depends on the isomorphism class [C].

Theorem (Weil):

Let C be a smooth projective curve of genus g. Then we can write

$$
Z_{C}(T)=\frac{P(T)}{(1-T)(1-q T)}
$$

for a degree $2 g$ polynomial $P(T) \in \mathbb{Z}[T]$. Moreover

- $P(T)$ factors as

$$
\prod_{i=1}^{2 g}\left(1-\alpha_{i} T\right)
$$

for algebraic integers $\alpha_{i} \in \mathbb{C}$.
$■$ For $i=1, \ldots, 2 g$ we have $\left|\alpha_{i}\right|=\sqrt{q}$ (Riemann hypothesis).
\square For a suitable choice of indices, we have $\alpha_{i} \alpha_{2 g-i}=q$ for $i=1, \ldots, g$.
■ $C\left(\mathbb{F}_{q^{k}}\right)=q^{k}+1-\sum_{i=1}^{2 g} \alpha_{i}^{k}$.

- If \tilde{C} is any quasi-projective curve, and C is its complete nonsingular model, then

$$
Z_{\tilde{C}}(T)=Z_{C}(T)\left(1-T^{\kappa_{1}}\right)\left(1-T^{\kappa_{2}}\right)\left(1-T^{\kappa_{t}}\right)
$$

where $\kappa_{1}+\cdots+\kappa_{t}$ is the number of 'points missing'.

- The κ_{i} depend on the degrees of the field extensions over which these points are defined.

In the case of a smooth projective $g=1$ curve, we have the group law

For higher genus, a smooth projective curve C / \mathbb{F}_{q} can be embedded in a 'smallest' abelian variety $\operatorname{Jac}_{\mathbb{F}_{q}}(C)$ (it has dimension g).

Theorem (Tate):
$\# \mathrm{Jac}_{\mathbb{F}_{q}}(C)=P(1)$

Most famous application and research motivation:

$b P$

$$
(a b) P=a(b P)
$$

$$
(a b) P=b(a P)
$$

■ Security is believed to depend on the hardness of the discrete \log problem: given P and $n P$, find $n \ldots$
■ ... which is easy if $\# E\left(\mathbb{F}_{q}\right)$ contains no big prime factors.

First method. Computing in $\mathrm{Jac}_{\mathbb{F}_{q}}(C)$.

Idea:
■ Arithmetic in $\mathrm{Jac}_{\mathbb{F}_{q}}(C)$ can be performed efficiently (Hess, Khuri-Makdisi).
■ Use this to compute the order of a generic point.
■ Try to recover $Z_{C}(T)$ from $P(1)=\# \mathrm{Jac}_{\mathbb{F}_{q}}(C) \ldots$
$■ \ldots$ and some additional info if $g>1$ (becomes hard when g gets big).
■ Example: in genus 2, q odd, every ordinary curve C has a quadratic twist C^{t}. If

$$
Z_{C}(T)=\frac{P(T)}{(1-T)(1-q T)}
$$

then

$$
Z_{C^{t}}(T)=\frac{P(-T)}{(1-T)(1-q T)}
$$

$\rightsquigarrow \operatorname{recover} Z_{C}(T)$ from $P(1)$ and $P(-1)$.

First method. Computing in $\mathrm{Jac}_{\mathbb{F}_{q}}(C)$.

Shanks' method to compute $N=\# \operatorname{Jac}_{\mathbb{F}_{q}}(C)$ (case $g=1$).
■ By Weil's theorem: $q+1-2 \sqrt{q} \leq N \leq q+1+2 \sqrt{q}$.
\square Choose a random point $P \in C\left(\mathbb{F}_{q}\right)=\mathrm{Jac}_{\mathbb{F}_{q}}(C)$.
■ Baby steps: make a list of the first $s \approx \sqrt[4]{q}$ multiples

$$
0, \pm P, \pm 2 P, \pm 3 P, \ldots, \pm s P
$$

■ Giant steps: compute $Q=(2 s+1) P$ and $R=(q+1) P$ and for $t=\lceil 2 \sqrt{q} /(2 s+1)\rceil \approx \sqrt[4]{q}$, produce the list

$$
R, R \pm Q, R \pm 2 Q, \ldots, R \pm t Q
$$

■ Find match

$$
R+i Q=j P
$$

\square Then $m P=(q+1+(2 s+1) i-j) P=0$. If the match is unique, then $\# C\left(\mathbb{F}_{q}\right)=m$. If not, try another P.
\square Running time is $\widetilde{O}(\sqrt[4]{q})$. For $g \rightarrow \infty$, the advantage poured out of the Weil bound becomes smaller: $\widetilde{O}\left(q^{(2 g-1) / 4}\right)$.

First method. Computing in $\mathrm{Jac}_{\mathbb{F}_{q}}(C)$.

State of the art: thanks to improvements by Mestre, Kedlaya, Sutherland, generic group methods make it feasible to compute $Z_{C}(T)$ for (roughly)

■ $q<10^{40}$ if $g=1$, easily outperforms naive counting as soon as $q>10^{3}$
■ $q<10^{13}$ if $g=2$
■ $q<10^{8}$ if $g=3$
If one is only interested in $\# \mathrm{Jac}_{\mathbb{F}_{q}}(C)$, then also higher genera can be dealt with, over moderately sized finite fields...

Second method. Computing in the Tate module.

Theorem (Tate):

For any prime ℓ different from the field characteristic p, and any $k \in \mathbb{N}$ we have that

$$
\operatorname{Jac}_{\overline{\mathbb{F}}_{q}}(C)\left[\ell^{k}\right] \cong\left(\frac{\mathbb{Z}}{\ell^{k} \mathbb{Z}}\right)^{2 g}
$$

Define

$$
T_{\ell}(C)=\lim _{\llcorner }^{k} \operatorname{Jac}_{\overline{\mathbb{F}}_{q}}(C)\left[\ell^{k}\right] \cong \mathbb{Z}_{\ell}^{2 g}
$$

Let $\chi(T)$ be the characteristic polynomial of Frobenius acting on $T_{\ell}(C)$. Then
$\square \chi(T) \in \mathbb{Z}[T]$ and does not depend on ℓ

$$
Z_{C}(T)=\frac{T^{2 g} \chi(1 / T)}{(1-T)(1-q T)}
$$

Second method. Computing in the Tate module.

Idea (Schoof):
■ Compute
$\chi(T) \bmod \ell$
as the characteristic polynomial of Frobenius acting on $\# \mathrm{Jac}_{\overline{\mathbb{F}}_{q}}[\ell]$ for various primes ℓ.
■ Use the Chinese Remainder Theorem to recover $\chi(T)$ $\bmod \prod \ell$.

- If $\Pi \ell$ is big enough, Weil's theorem allows us to recover $\chi(T)$.

Second method. Computing in the Tate module.

In practice for elliptic curves $E: y^{2}=x^{3}+A x+B$.

- The characteristic polynomial of Frobenius is of the form

$$
T^{2}-t T+q
$$

and we need to recover t. By Weil's bound, $|t| \leq 2 \sqrt{q}$.
■ Caley-Hamilton: Frobenius map φ should satisfy its own characteristic polynomial

$$
\varphi^{2}-t \varphi+q=0
$$

■ There exist polynomials $\Psi_{\ell} \in \mathbb{F}_{q}[x]$ that vanish precisely at the ℓ-torsion points of E (example: $\Psi_{2}=x$).

- For small ℓ, check for which $t^{\prime}=t \bmod \ell$ the relation

$$
\left(x^{q^{2}}, y^{q^{2}}\right)-t^{\prime}\left(x^{q}, y^{q}\right)+(q \bmod \ell)(x, y)
$$

holds in $\mathbb{F}_{q}[x, y] /\left(\Psi_{\ell}, y^{2}-x^{3}-A x-B\right)$.
■ If $\Pi \ell>4 \sqrt{q}$, use CRT to recover t.

Second method. Computing in the Tate module.

■ Using smart speed-ups by Atkin and Elkies, Schoof's algorithm has become very efficient for elliptic curves ($q \approx 10^{60}$ in a couple of seconds).
■ Seems hopeless to generalize this to high genera, because of the need of explicit formulas for $\# \mathrm{Jac}_{\mathbb{F}_{q}}(C)$.
■ Small advances in genus 2 by Gaudry and Schost ($q \approx 10^{24}$ in about a week).

Third method. p-Adic cohomology.

First step: lift the curve to characteristic 0.

- Let $\bar{C}(x, y) \in \mathbb{F}_{q}[x, y]$ define a smooth curve in $\mathbb{A}_{\mathbb{F}_{q}}^{2}$, and write

$$
\bar{A}=\frac{\mathbb{F}_{q}[x, y]}{(\bar{C}(x, y))}
$$

for its coordinate ring.

- Write $q=p^{n}$ where p is the field characteristic.

■ Let \mathbb{Q}_{q} be the unramified degree n extension of \mathbb{Q}_{p}.
■ Let \mathbb{Z}_{q} be its ring of integers. This is a complete DVR with local parameter p and residue field \mathbb{F}_{q}.
■ Let $C(x, y) \in \mathbb{Z}_{q}[x, y]$ be such that it reduces to $\bar{C}(x, y)$ $\bmod p$ and write

$$
A=\frac{\mathbb{Z}_{q}[x, y]}{(C(x, y))}
$$

Third method. p-Adic cohomology.

Problem: Geometric properties of C / \mathbb{Q}_{q} depend on the choice of the lift: different genus, different endomorphism ring, ...

■ Define

$$
\mathbb{Z}_{q}\langle x, y\rangle^{\dagger}=\left\{\sum_{i, j \in \mathbb{N}} a_{i j} x^{i} y^{j} \mid \exists \rho \in\right] 0,1\left[: \frac{\left|a_{i j}\right| p}{\rho^{i+j}} \rightarrow 0 \text { if } i+j \rightarrow \infty\right\}
$$

■ Note that $\mathbb{Z}_{q}\langle x, y\rangle^{\dagger}$ is closed under integration and that there is a natural map $\pi: \mathbb{Z}_{q}\langle x, y\rangle^{\dagger} \rightarrow \mathbb{F}_{q}[x, y]$.

- Define

$$
A^{\dagger}=\frac{\mathbb{Z}_{q}\langle x, y\rangle^{\dagger}}{(C(x, y))}
$$

Theorem (Monsky, Washnitzer):

A^{\dagger} does not depend on the choice of C, and for every morphism $\bar{\varphi}: \bar{A} \rightarrow \bar{A}$ there exists a morphism $\varphi: A^{\dagger} \rightarrow A^{\dagger}$ that lifts $\bar{\varphi}$ in the sense that $\bar{\varphi} \circ \pi=\pi \circ \varphi$.

Third method. p-Adic cohomology.

Consider the module of differentials

$$
D^{1}\left(A^{\dagger}\right)=\frac{A^{\dagger} d x+A^{\dagger} d y}{\left(\frac{\partial C}{\partial x} d x+\frac{\partial C}{\partial y} d y\right)}
$$

and let $d: A^{\dagger} \rightarrow D^{1}\left(A^{\dagger}\right)$ be the usual exterior derivation. Then define the cohomology space

$$
H_{M W}^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)=\frac{D^{1}\left(A^{\dagger}\right)}{d\left(A^{\dagger}\right)} \otimes_{\mathbb{Z}_{q}} \mathbb{Q}_{q} .
$$

Every \mathbb{Z}_{q}-algebra morphism $\varphi: A^{\dagger} \rightarrow A^{\dagger}$ induces a map

$$
\varphi^{*}: D^{1}\left(A^{\dagger}\right) \rightarrow D^{1}\left(A^{\dagger}\right): f d x+g d y \mapsto \varphi(f) d \varphi(x)+\varphi(g) d \varphi(y)
$$

which is well-defined on $H_{M W}^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)$.

Third method. p-Adic cohomology.

Theorem (Monsky, Washnitzer):

Let $\overline{\mathcal{F}}_{q}: \bar{A} \rightarrow \bar{A}: a \mapsto a^{q}$ and let $\mathcal{F}_{q}: \bar{A}^{\dagger} \rightarrow \bar{A}^{\dagger}$ be a lift. Then

$$
Z_{\bar{C}}(T)=\frac{\operatorname{det}\left(\mathbb{I}-q \mathcal{F}_{q}^{*-1} T \mid H_{M W}^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)\right)}{(1-q T)}
$$

If $\chi(T)$ is the characteristic polynomial of \mathcal{F}_{q}^{*} acting on $H_{M W}^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)$, then one can verify that

$$
Z_{\bar{C}}(T)=\frac{\frac{1}{q^{g+R-1}} \chi(q T)}{(1-q T)}
$$

where R is the number of points at infinity.

Third method. p-Adic cohomology.

Kedlaya's method:
■ Compute a lift of Frobenius \mathcal{F}_{q}.
■ Compute a basis of $H_{M W}^{1}\left(\bar{A} / \mathbb{Q}_{q}\right)$.
\square Let \mathcal{F}_{q}^{*} act on this basis.
\square Re-express the result in terms of the basis, hence obtain a matrix of Frobenius.

- Compute its characteristic polynomial.

■ By Weil's theorem, it suffices to do this modulo a certain p-adic precision.

- Problem: the resulting algorithms have running time $O(q)$ and are therefore slower than generic methods.
\square Solution if n is big and p is small: split up $\overline{\mathcal{F}_{q}}=\overline{\mathcal{F}_{p}} \circ \cdots \circ \overline{\mathcal{F}_{p}}$ \rightsquigarrow running time becomes typically $O(p)$.
■ Hopeless if p is big.

Third method. p-Adic cohomology.

So far:
■ Elliptic curves, in slightly different framework (Satoh, ...): works extremely fast ($q \approx 10^{60}$ in a fraction of a second).
■ Hyperelliptic curves (Kedlaya, Denef, Vercauteren): works fast (matter of seconds for cryptographic ranges and high genera).
■ Superelliptic curves (Gaudry, Gürel): idem.
$\square C_{a b}$ curves (Denef, Vercauteren): slow performance due to different Frobenius lifting technique.
■ Nondegenerate curves (curves in toric surfaces) (C., Denef, Vercauteren): idem.

Third method. p-Adic cohomology.

Deformation (Lauder):
■ Idea: put the curve of interest into a 1-parameter family

with $\bar{S}=\mathbb{F}_{q}\left[t, \bar{r}(t)^{-1}\right]$.
■ Define the relative cohomology as above, now taking coefficients in a ring S^{\dagger}.
$■$ 'Specifying' $t=t_{0}$ gives us the cohomology of the fibre above t_{0}.

Third method. p-Adic cohomology.

- The relative matrix of Frobenius $F(t)$ can be computed from an initial value by solving a differential equation

$$
N \cdot F-\frac{d}{d t} F=q t^{q-1} \cdot F \cdot N\left(t^{q}\right),
$$

where N is easy to compute (Gauss-Manin connection).

- Lauder's idea: take as initial value an 'easy’ curve (e.g. one whose actual field of definition is a small subfield of $\left.\mathbb{F}_{q}\right)$, compute $F(t)$ and specify at the curve of interest.

Advantages:
■ Avoid slow lifting of Frobenius.
■ Algorithms become more memory efficient.
\square Finding curves with prime order Jacobian is easier: specify at various values in the family.
So far:
■ Works already well in elliptic and hyperelliptic case (Hubrechts).
■ Gives satisfactory results in $C_{a b}$ case (C., Hubrechts, Vercauteren).
■ Probably as well in nondegenerate case (Tuitman, in progress)
Deformation might be the key towards dealing with arbitrary curves!
Remember: all this is over fields of small characteristic.

Some overall remarks on p-adic methods.

- The theoretical framework is very robust, results in algorithms that have polynomial running time in the genus, and applies to a wide range of varieties. In fact:

Theorem (Lauder, Wan):

If we fix the field characteristic p and the dimension n, there exists a polynomial running time algorithm (although nonpractical) to compute the zeta function of an arbitrary polynomial in n variables.

■ Dependency on p is $O(p)$, but in case of hyperelliptic curves this has been reduced to $O(\sqrt{p})$ by Harvey \rightsquigarrow outperforms generic methods from genus 3 on.
\square Interesting question: can deformation be done in $O(\sqrt{p})$?

That's it (phew)!

