Efficient computation of the

Hasse-Weil zeta function

Wouter Castryck Efficient zeta function computation

Problem I:

Develop an efficient algorithm that determines the number of
zeroes of any given polynomial f(xy, ..., Xn) with coefficients in
a finite field Fy.

— #{(a) € (Fg)" [f(as, ..., an) = 0}

Naively checking for every (ay,...,an) € (Fq)" whether
f(as,...,an) = 0is not efficient!

~ takes at least q" steps

Wouter Castryck Efficient zeta function computation

Write Ny = # { (ai) € (Fge)" ‘f(al, ...,an) = 0} and define
the zeta function

oo k
Zi(T) = exp (Z Nka> € Q[[T]]]
k=1

which turns out to be a rational function (Dwork) that can be
algorithmically determined (Bombieri).

Problem II:

Develop an efficient algorithm that determines the zeta function
of any given polynomial f(xy, ..., Xn) with coefficients in a finite
field Fy.

Wouter Castryck Efficient zeta function computation

In general, both problems are far from being solved (in every
reasonable sense of the word efficient).

mIfn=1~ solved

m polynomial factorization over Fq (Berlekamp)
m count the number of linear factors

m If n =2 ~ good progress
m reduce to irreducible case via

#2(fg) = #2(f) + #2(9) — #(2(f)nZ(9))

using polynomial factorization (Lenstra, \Wan)

m irreducible-but-not-absolutely-irreducible case is easy (point
enumeration) ~~ reduce to absolutely irreducible case
B use geometric and arithmetric properties of the curve Z(f)

m If n > 2 ~~ some generalizations, mostly only in theory

Wouter Castryck Efficient zeta function computation

This talk: n=2, i.e.
m f € Fq[x,y] is absolutely irreducible.
m Thus it defines a curve C in A]%q.

m Generalized zeta function: for any quasi-projective curve
C/Fq we define

o0 k
Zc(T) = exp (Z #C(Fqk)I() .
k=1
Thus Zé(T) = Zf(T)

m Note that Z¢(T) only depends on the isomorphism class
[C].

Wouter Castryck Efficient zeta function computation

Theorem ():

Let C be a smooth projective curve of genus g. Then we can

write
P(T)

C@-ma-an
for a degree 2g polynomial P(T) € Z[T]. Moreover
m P(T) factors as

Zc(T)

29

[[@-aT)

i=1
for algebraic integers o; € C.

m Fori=1,...,29 we have |¢;| = \/q (Riemann hypothesis).

m For a suitable choice of indices, we have ajayy_; = q for
i=1,...,0.

m #C(F) =qX +1 - 379, ok

Wouter Castryck Efficient zeta function computation

mIfCis any quasi-projective curve, and C is its complete
nonsingular model, then

7~

c(M)=Zc(MEA-T™)A -T=)1-T7)

where k1 + - - - + k¢ is the number of ‘points missing’.

m The x; depend on the degrees of the field extensions over
which these points are defined.

Wouter Castryck Efficient zeta function computation

In the case of a smooth projective g = 1 curve, we have the
group law

: Q// :
|
|
|
kjLQ

For higher genus, a smooth projective curve C/IFq can be
embedded in a ‘smallest’ abelian variety Jacg,(C) (it has

dimension Q).

O, \T

2P

P+Q=0

Theorem ():
#Jacy,(C) = P(1)

Wouter Castryck Efficient zeta function computation

Most famous application and research motivation:

i@\ P € E(Fy) %"‘ ’-:-‘?g

aP

aeN

bP
beN

|(ab)P = a(bP)]| |(ab)P = b(aP)]|

m Security is believed to depend on the hardness of the
discrete log problem: given P and nP, findn ...

m ...which is easy if #E(Fq) contains no big prime factors.

Wouter Castryck Efficient zeta function computation

First method. Computing in Jacg, (C).

Idea:

m Arithmetic in Jacy, (C) can be performed efficiently (Hess,
Khuri-Makdisi).

m Use this to compute the order of a generic point.

m Try to recover Z¢(T) from P(1) = #Jacg,(C) ...

m ...and some additional info if g > 1 (becomes hard when
g gets big).

m Example: in genus 2, g odd, every ordinary curve C has a
quadratic twist Ct. If

e
M =ma—ma_qn

then PLT)
2e(M=a-n@ _—an

~ recover Z¢(T) from P(1) and P(—1).

Wouter Castryck Efficient zeta function computation

First method. Computing in Jacg, (C).

Shanks’ method to compute N = #Jacr,(C) (case g = 1).
m By Weil's theorem: q+1-2,/ <N <qg+1+2,4.
m Choose a random point P € C(Fq) = Jacg,(C).

m Baby steps: make a list of the first s ~ {/q multiples

0,+P,+2P,+3P, ... +sP.

m Giant steps: compute Q = (2s +1)P and R = (q + 1)P
and for t = [2,/9/(2s + 1)] = /q, produce the list
R,R+Q,R+2Q,...,R+tQ.
m Find match

R+iQ =jP.
m ThenmP = (q+ 1+ (2s +1)i —j)P = 0. If the match is
unique, then #C(Fq) = m. If not, try another P.

m Running time is O(y/q). For g — oo, the advantage poured
out of the Weil bound becomes smaller: O(q(29-1)/4),

Wouter Castryck Efficient zeta function computation

First method. Computing in Jacg, (C).

State of the art: thanks to improvements by Mestre, Kedlaya,
Sutherland, generic group methods make it feasible to compute
Zc(T) for (roughly)

m g < 10%0 if g = 1, easily outperforms naive counting as

soon as q > 10°

mqg<10B¥ifg=2

mq<10®ifg=3
If one is only interested in #Jacr, (C), then also higher genera
can be dealt with, over moderately sized finite fields. ..

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

Theorem ():

For any prime ¢ different from the field characteristic p, and any
k € N we have that

k Z *
Jach(C)[ﬂ = (M) .
Define
T¢(C) = lim Jacg, (C)[¢X] = Z{°.
k

—

Let x(T) be the characteristic polynomial of Frobenius acting
on Ty(C). Then

m x(T) € Z[T] and does not depend on ¢

|
T29x(1/T)

2D =@ 7)1 —qr)

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

Idea (Schoof):
m Compute
x(T) mod ¢

as the characteristic polynomial of Frobenius acting on
#Jacg, [¢] for various primes /.

m Use the Chinese Remainder Theorem to recover x(T)
mod [] 4.

m If [¢ is big enough, Weil's theorem allows us to recover
x(T).

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

In practice for elliptic curves E : y? = x3 + Ax + B.
m The characteristic polynomial of Frobenius is of the form

T2 1T +q,

and we need to recover t. By Weil’'s bound, |t| < 2,/7.

m Caley-Hamilton: Frobenius map ¢ should satisfy its own
characteristic polynomial

©? —tp+q=0.

m There exist polynomials ¥, € Fq[x] that vanish precisely at
the /-torsion points of E (example: W, = x).

m For small ¢, check for which t" =t mod ¢ the relation

(x%,y%) = t'(x%,y%) + (a mod £)(x,)

holds in Fq[x,y]/(Ws, y2 — X3 — Ax — B).
m If [[¢ > 4,/q, use CRT to recover t.

Wouter Castryck Efficient zeta function computation

Second method. Computing in the Tate module.

m Using smart speed-ups by Atkin and Elkies, Schoof’s
algorithm has become very efficient for elliptic curves
(q ~ 1089 in a couple of seconds).

m Seems hopeless to generalize this to high genera,
because of the need of explicit formulas for #Jacr, (C).

m Small advances in genus 2 by Gaudry and Schost
(q ~ 10%* in about a week).

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

First step: lift the curve to characteristic 0.

m Let C(X,y) € Fq[x,y] define a smooth curve in Azq, and
write

K: Iil[x7y]

(C(x.y))
for its coordinate ring.
m Write g = p" where p is the field characteristic.
m Let Qq be the unramified degree n extension of Qp.

m Let Zq be its ring of integers. This is a complete DVR with
local parameter p and residue field Fy.
m Let C(X,y) € Zq[x,y] be such that it reduces to C(x,y)
mod p and write
— ZCI [X7y]
(C(x,y))

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Problem: Geometric properties of C/Qqy depend on the choice
of the lift: different genus, different endomorphism ring, ...
m Define

Zg(x,y)T {Zau x'y)

1) €N

3p €]0,1]: ‘ ”'p — 0 ifi+] —>oo}.
m Note that Zq(x,y)T is closed under integration and that
there is a natural map 7 : Zq(X,y)" — Fq[x,y].
m Define
Zq <X7y>T
(C(x.y))

Theorem (,):

Al =

Af does not de_pend_on the choice of C, and for every
morphism % : A — A there exists a morphism ¢ : Al — Af that
lifts in the sense that p o™ = 7 o .

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Consider the module of differentials
Afdx + Afdy

DY(A") =
(S dx + Gdy)

and letd : AT — D1(A") be the usual exterior derivation. Then
define the cohomology space

Every Zq-algebra morphism ¢ : Af — Af induces a map
" : DY(AT) — D(A") : fdx + gdy — ¢(f)de(x) + ¢(g)de(y)

which is well-defined on H,,, (A/Qq).

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Theorem (:):
Let 7y :A—A:a— adandlet 7 : A — A be a lift. Then

det (I - qF5 T |Hhw (A/Qq)
Ze(T) = (q(l_q’T)MW !)

If x(T) is the characteristic polynomial of 7§ acting on
HL (A/Qq), then one can verify that

W]I;HX(qT)
(1—qT)

where R is the number of points at infinity.

Zs(T) =

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Kedlaya’s method:

m Compute a lift of Frobenius 7.

m Compute a basis of HY,\, (A/Qq).

m Let F; act on this basis.

m Re-express the result in terms of the basis, hence obtain a
matrix of Frobenius.

m Compute its characteristic polynomial.

m By Weil's theorem, it suffices to do this modulo a certain
p-adic precision.

m Problem: the resulting algorithms have running time O(q)
and are therefore slower than generic methods.

m Solution if n is big and p is small: splitup Fq = Fpo---0Fp
~+ running time becomes typically O(p).

m Hopeless if p is big.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

So far:

m Elliptic curves, in slightly different framework (Satoh, ...):
works extremely fast (q ~ 1080 in a fraction of a second).

m Hyperelliptic curves (Kedlaya, Denef, Vercauteren): works
fast (matter of seconds for cryptographic ranges and high
genera).

m Superelliptic curves (Gaudry, Gurel): idem.

m Cy, curves (Denef, Vercauteren): slow performance due to
different Frobenius lifting technique.

m Nondegenerate curves (curves in toric surfaces) (C.,
Denef, Vercauteren): idem.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

Deformation (Lauder):
m Idea: put the curve of interest into a 1-parameter family

SpecA
with S = Fqt, 7(t)71].

m Define the relative cohomology as above, now taking
coefficients in a ring St.

m ‘Specifying’ t = tp gives us the cohomology of the fibre
above to.

Wouter Castryck Efficient zeta function computation

Third method. p-Adic cohomology.

m The relative matrix of Frobenius F(t) can be computed
from an initial value by solving a differential equation

N-F —%F =qt9 1. F-N(t9),

where N is easy to compute (Gauss-Manin connection).

m Lauder’s idea: take as initial value an ‘easy’ curve (e.g.
one whose actual field of definition is a small subfield of
[Fq), compute F(t) and specify at the curve of interest.

Wouter Castryck Efficient zeta function computation

Advantages:
m Avoid slow lifting of Frobenius.
m Algorithms become more memory efficient.

m Finding curves with prime order Jacobian is easier: specify
at various values in the family.

So far:

m Works already well in elliptic and hyperelliptic case
(Hubrechts).

m Gives satisfactory results in C,, case (C., Hubrechts,
Vercauteren).

m Probably as well in nondegenerate case (Tuitman, in
progress)

Deformation might be the key towards dealing with arbitrary
curves!
Remember: all this is over fields of small characteristic.

Wouter Castryck Efficient zeta function computation

Some overall remarks on p-adic methods.

m The theoretical framework is very robust, results in
algorithms that have polynomial running time in the genus,
and applies to a wide range of varieties. In fact:

Theorem (,):

If we fix the field characteristic p and the dimension n, there
exists a polynomial running time algorithm (although
nonpractical) to compute the zeta function of an arbitrary
polynomial in n variables.

m Dependency on p is O(p), but in case of hyperelliptic
curves this has been reduced to O(,/p) by Harvey ~
outperforms generic methods from genus 3 on.

m Interesting question: can deformation be done in O(,/p)?

Wouter Castryck Efficient zeta function computation

That'’s it (phew)!

t zeta function computatio

