Exercises for Monday April 14th

PICARD GROUPS

Exercise 1. Let Z be a prime divisor in a smooth variety X, and let U denote the complement $X \setminus Z$. Show that the sequence

$$\mathbb{Z} \to \operatorname{Pic} X \to \operatorname{Pic} U \to 0,$$

where the first map is $1 \mapsto Z$ and the second $D \mapsto D \cap U$, is exact.

Exercise 2. Use the result of Exercise 1 to show that $\operatorname{Pic} \mathbb{P}^n \cong \mathbb{Z}$, for any positive integer n.

Exercise 3. Let X be the projective quadric surface xy = zw, and let U be the open subset defined by $w \neq 0$.

- (1) Show that U is isomorphic to \mathbb{A}^2 , and deduce that $\operatorname{Pic} U = 0$.
- (2) Show that $X \setminus U$ consists of two straight lines. Using the exact sequence of Exercise 1, show that $\operatorname{Pic} X \cong \mathbb{Z}^2$, generated by the classes of these two straight lines.

(*Hint:* to show that the two lines are not equivalent, you may like to use intersection numbers.)

CANONICAL DIVISORS

Exercise 4. Consider the differential dx/y on the affine curve C in $\mathbb{A}^2(x,y)$ given by $y^2 = f(x)$ for some separable polynomial f. Show that ω is regular at every point of C. Show that this is consistent with Proposition 1.12. Show that if f has degree at least 3, then ω is in fact regular on the entire projective closure of C in \mathbb{P}^3 .

Exercise 5. Show that if X is a hypersurface in \mathbb{P}^n for $n \geq 3$, then $\Gamma(\Omega_X) = 0$.

Exercise 6. Show that if X is a complete intersection in \mathbb{P}^n of dimension at least 2, then $\Gamma(\Omega_X) = 0$.

Exercise 7. Compute the divisor (dt) on $\mathbb{P}^1(x, y)$ with t = x/y.

Exercise 8. Compute the divisor (dx/y) on the projective closure in \mathbb{P}^2 of the affine curve given by $y^2 = f(x)$ with f a separable polynomial of degree 2, 3, 4, general d.

Exercise 9. Compute the divisor $(dt_1 \wedge \ldots \wedge dt_n)$ on $\mathbb{P}^n(x_0, x_1, \ldots, x_n)$ with $t_i = x_i/x_0$.

Exercise 10. Let X be a hypersurface in $\mathbb{P}_k^n(x_0, \ldots, x_n)$ given by the homogeneous polynomial F of degree d, let L be any linear form in $k[x_0, \ldots, x_n]$, and set

$$\omega = \frac{x_0^n L^{-n-1+d}}{\partial F / \partial x_0} dt_1 \wedge \ldots \wedge dt_{n-1}$$

with $t_i = x_i/x_0$. After checking that all degrees work out to make ω a well-defined element of $\bigwedge^{n-1} \Omega_{k(X)/k}$, show that we have $(\omega) = (-n-1+d)(H \cap X)$, where H is the hyperplane given by L = 0.

Exercise 11. Let $X \subset \mathbb{A}^n(x_1)$ be a smooth complete intersection of dimension n-k, defined by the polynomials $f_1, \ldots, f_k \in k[x_1, \ldots, x_n]$. Let J be a sequence as above, and let I be the increasing sequence of the elements of $\{1, \ldots, n\} \setminus J$. Then up to sign the differential $\omega_J = M_J^{-1} dx_{i_1} \wedge \ldots \wedge dx_{i_{n-k}}$ is independent of the choice of J.

Exercise 12. Use the notation as in the previous exercise, and assume P is a point on X. Then there is a particular sequence J as in that exercise such that $M_J(P) \neq 0$ and for the corresponding sequence I, the elements $x_i - x_i(P)$ with $i \in I$ form a set of local parameters at P. Conclude that $(\omega_J) = 0$ on $X \subset \mathbb{A}^n$.

Exercise 13. Homogenize the previous exercises to find out the contribution to (ω) of the hyperplane at infinity of the projective closure of X. Check that your answer agrees with Proposition 3.6.

Exercise 14. Suppose X is a smooth complete intersection as in Proposition 3.6, and assume that X is a surface. Compute the self-intersection of a canonical divisor on X.

Exercise 15. Let $\mathbb{P}(w_0, w_1, \ldots, w_n)$ be weighted projective n-space with coordinates x_0, \ldots, x_n such that x_i has weight w_i , and assume $w_0 = 1$. Let X be a smooth hypersurface in $\mathbb{P}(w_0, w_1, \ldots, w_n)$ of (weighted) degree d. Set $D = X \cap H$ where H is the hyperplane given by $x_0 = 0$. Then any canonical divisor on X is linearly equivalent to $(d - \sum_i w_i)D$.

Exercise 16. Find an example of a variety X of dimension n for which the map $\bigwedge^{n}(\Gamma(\Omega_{X})) \to \Gamma(\omega_{X})$ is not surjective.

Exercise 17. Let C be the curve in $\mathbb{P}^3(x, y, z, w)$ parametrized by $(u^4 : u^3t : ut^3 : t^4)$. Let H be the hyperplane given by w = 0 and set $D = C \cap H$. Show that the functions 1, x/w, y/w, z/w do not generate $\Gamma(\mathcal{L}(D))$. (Hint: find an isomorphism from C to \mathbb{P}^1 and find what divisor D corresponds to on \mathbb{P}^1 .)

Exercise 18. Use Proposition 4.3 to show that the geometric genus of a hypersurface in \mathbb{P}^n of degree d equals $\binom{d-1}{n}$.

Exercise 19. Show that the g_i in Example 4.4 are global sections of $\mathcal{L}(D)$ with $D = (\omega_0)$. More precisely, show that for any $\omega \in \bigwedge^n \Omega_{k(X)/k}$, the sheaf ω_X is isomorphic to $\mathcal{L}(D)$ for $D = (\omega)$.

Exercise 20. Show that any divisor that is linearly equivalent to a very ample divisor, is in fact itself very ample.

Exercise 21. Find all sequences (d_1, \ldots, d_r) with $d_i \geq 2$ such that a canonical divisor on a smooth complete intersection X in \mathbb{P}^{r+2} of hypersurfaces of degree d_1, \ldots, d_r is not very ample. (Compare this to the next lecture.)

HODGE DIAMONDS

Exercise 22. Compute the Hodge numbers of \mathbb{P}^2 .

Exercise 23. Compute the Hodge numbers of $C_1 \times C_2$, where C_1 and C_2 are smooth curves of genus g_1 and g_2 respectively.

Exercise 24. Compute the Hodge numbers of smooth curves of degree d in \mathbb{P}^2 .

Exercise 25 (*). Compute the Hodge numbers of smooth surfaces in \mathbb{P}^4 that are intersections of two hypersurfaces of degree d and e.