
Monday, Lecture 2, Ronald van Luijk, rmluijk@gmail.com

Please let us know about mistakes in these notes!

1. Module of Differentials

Much of this section is taken from [3], section II.8, which contains more elab-
orate proofs and references. See also [2], chapter 16. Although we try to define
everything rigorously, the goal is to make everything explicit so we can actually do
computations. Some of the proofs, however, may require more background than
the mere prerequisites for this workshop.

Let A be a commutative ring (with identity) and B a commutative A-algebra.

Definition 1.1. An A-derivation of B into a B-module M is a map d : B → M
such that d is additive, satisfies the Leibniz rule d(bb′) = bd(b′) + b′d(b) for all
b, b′ ∈ B, and d(a) = 0 for all a ∈ A.

Definition 1.2. The module of relative differential forms of B over A is a B-
module ΩB/A, together with an A-derivation d : B → ΩB/A satisfying the following
universal property: for any B-module M and for any A-derivation d′ : B → M ,
there exists a unique B-module homomorphism f : ΩB/A → M such that d′ = f ◦d.

If DerA(B,M) denotes the set of all A-derivations from B into M , then we have
a natural bijection DerA(B,M) ↔ HomB(ΩB/A,M).

Proposition 1.3. The module of relative differential forms ΩB/A exists and is
unique up to a unique isomorphism of B-modules.

Proof. Take the free B-module generated by the symbols {db : b ∈ B} and divide
out by the required relations. The derivation is given by sending b ∈ B to db. �

Example 1.4. If B = A[x1, . . . , xn] is a polynomial ring over A, then ΩB/A is the
free B-module of rank n generated by the dxi.

Proposition 1.5. Let I be an ideal of B and set C = B/I. Then there is a natural
exact sequence of C-modules

I/I2 → ΩB/A ⊗B C → ΩC/A → 0,

where the first map sends the image of b ∈ I in I/I2 to db ⊗ 1.

Example 1.6. If A = k is a field, B = k[x, y], and C = k[x, y]/(x2 + y2 − 1), then
ΩC/A is the C-module generated by dx and dy with relation 2xdx + 2ydy = 0.

Example 1.7. If A = k is a field, and B = k[ε]/(ε2), then ΩB/A is the B-module
generated by dε and the relation 2εdε = 0.

There are many more interesting exact sequences describing for instance the
behavior of modules of relative differential forms under tensor products, and the
relation of the modules ΩB/A, ΩC/A, ΩC/B for any B-algebra C, see [3], section
II.8. Here we will only present what we need for our purposes.

Proposition 1.8. If B is an integral domain with fraction field K, then ΩK/A
∼=

ΩB/A ⊗B K.
1
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Let k be an algebraically closed field (don’t worry, later this week we will certainly
drop this assumption!). For this lecture, all our varieties will be defined over k,
nonsingular, and irreducible. In particular, each variety X will have a function
field, denoted by k(X).

Definition 1.9. We say that ω ∈ Ωk(X)/k is regular at a point P ∈ X if there
exists an affine open neighborhood U ⊂ X of P , with coordinate ring B, such that
the B-submodule ΩB/k of Ωk(X)/k contains ω.

Example 1.10. Consider P
1(x, y) with function field k(t) for t = x/y, and set

ω = dt. Then the affine part y 6= 0 can be identified with A
1(t), which has coordinate

ring k[t]. Since the k[t]-module Ωk[t]/k is generated by dt, we find that ω is regular

at every point of A
1.

Definition 1.11. For every open subset U ⊂ X we let OX(U) denote the subring
of k(X) of functions that are regular at every point of U , and we let ΩX(U) denote
the OX(U)-submodule of Ωk(X)/k consisting of differentials ω that are regular at
every point of U . This defines the structure sheaf OX and the sheaf of differentials
ΩX on the variety X.

Proposition 1.12. If U is an affine subvariety of X with coordinate ring B, then
we have OX(U) = OU (U) = ΩB/k.

The space of regular global sections is an essential invariant of a variety. For any
sheaf F on a variety X, we will write Γ(F) = Γ(X,F) = F(X).

Example 1.13. Consider P
1(x, y) with function field K = k(t) = k(s) for t = x/y

and s = t−1. Then the regular differentials on A
1(t) are in the k[t]-module generated

by dt, while those on A
1(s) are in the k[s]-module generated by ds = d(t−1) =

−t−2dt. The intersection in ΩK/k is 0, so Γ(ΩP1) = 0, i.e., there are no nonzero

differentials that are regular on P
1.

Exercise 1. Consider the differential dx/y on the affine curve C in A
2(x, y) given

by y2 = f(x) for some separable polynomial f . Show that ω is regular at every point
of C. Show that this is consistent with Proposition 1.12. Show that if f has degree
at least 3, then ω is in fact regular on the entire projective closure of C in P

3.

Exercise 2 (*). Show that if X is a hypersurface in P
n for n ≥ 3, then Γ(ΩX) = 0.

Exercise 3 (*). Show that if X is a complete intersection in P
n of dimension at

least 2, then Γ(ΩX) = 0.

When studying the rational points on a variety X over a number field, it is often
tempting to try to map X to another variety Y on which we can control the set of
points more easily. Every rational point on X would then map to a rational point of
Y , so all we would need to check is which rational points of Y lift to rational points
on X, a process that is particularly easy when Y does not contain any rational
points. Given X, the following proposition gives restrictions on Y (to the extend
that it may show this approach is useless for X).

Proposition 1.14. If f : X → Y is a surjective morphism of smooth irreducible
varieties, and f is generically smooth (which is automatic in characteristic 0), then
then the induced map f∗ : ΩY (Y ) → ΩX(X) is injective.
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Proof. Since f is generically smooth, there is an open subset U ⊂ X such that
f : U → Y is smooth (cf. [3], Lemma III.10.5). This is equivalent to saying that
for any point x ∈ U , and y = f(x), the induced map Tx → Ty on Zariski tangent
spaces is surjective, or equivalently, the map my/m2

y → mx/m2
x is injective, where

mx and my denote the maximal ideals of the local rings at x and y respectively (see
[3], Prop. III.10.4). Now take any nonzero differential ω ∈ Γ(ΩY ). Since f(U) is
dense in Y and ω can not vanish on an open subset, there is a y ∈ f(U) such that
ω does not vanish at y. Take any x ∈ U such that f(x) = y. Then by the above the
map my/m2

y → mx/m2
x is injective. These k-vectorspaces are the stalks at y and x

of the sheaves ΩY/k and ΩX/k respectively. Since ω does not vanish at y, its image
in the stalk at y is nonzero, and by injectivity, so is its image in the stalk at x, and
therefore the image of ω in ΩX(X) is nonzero. �

Corollary 1.15. If Γ(ΩX) = 0, and char k = 0, then there is no surjective mor-
phism from X to a nonsingular curve of positive genus or to an abelian variety of
positive dimension.

Proof. Suppose f : X → Y is a surjective morphism for some Y . Since the char-
acteristic is zero, the morphism f is generically smooth, so Proposition 1.14 tells
us that Γ(Y,ΩY ) = 0. This prevents Y from being a curve of genus g > 0, or an
abelian variety of dimension g > 0, both of would satisfy dimk Γ(ΩY ) = g. �

Exercise 3.6 and Corollary 1.15 show that if X is a complete intersection of
dimension at least 2, then there is no hope for a morphism from X to a curve of
positive genus or an abelian variety of positive dimension.

2. Differential n-forms

For this section, we still refer to [3], II.8.

Definition 2.1. Let K be a field extension of k. Then K is separably generated
over k if there exists a transcendence base {tλ} for K/k such that K is a separable
algebraic extension of k({tλ}).

Proposition 2.2. Let K be a finitely generated extension field of a field k. Then
dimK ΩK/k ≥ tr.d. K/k, and equality holds of and only if K is separably generated
over k.

Note that when we have K = k(X), then tr.d. K/k = dimX. Since we are
assuming that X is geometrically irreducible and reduced, we find dimK ΩK/k =
dimX. If X is nonsingular, then ΩX is a locally free shef of rank dimX, which
means that we can cover X by open subsets U such that for each U the OX(U)-
module ΩX(U) is free of rank dimX.

Example 2.3. On P
n we have an exact sequence of sheaves

0 → ΩPn → OPn(−1)n+1 → OPn → 0.

Definition 2.4. Let ωX denote the sheaf
∧n

ΩX with n = dimX. The sections
of ωX , i.e., the elements of ωX(U), are called n-forms on X. This defines the
canonical sheaf ωX on X.

As ΩX is a locally free sheaf of rank dimX, the canonical sheaf is a locally free
sheaf of rank 1, i.e., a socalled invertible sheaf. Because of the sheafification process,
it is in general not true that we get ωX(U) =

∧n
(ΩX(U)). It is for instance possible
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that we have Γ(ΩX) = 0, while Γ(ωX) 6= 0. Instead of explaining sheafification, we
will clarify the definition of ωX by making it more explicit. Note that

∧n
Ωk(X)/k

is a 1-dimensional vectorspace over k(X).

Definition 2.5. Take an n-form ω ∈
∧n

Ωk(X)/k and a point P on X. Let
t1, . . . , tn be a set of local parameters at P . Then there is a unique g ∈ k(X)
such that ω = gdt1 ∧ . . . ∧ dtn. We say that ω is regular at P if this g is regular at
P .

Proposition 2.6. For any open subset U ⊂ X, the OX(U)-module ωX(U) consists
of all n-forms ω ∈

∧n
Ωk(X)/k that are regular at all points P ∈ U .

Definition 2.7. The geometric genus of a smooth variety X over k is g(X) =
dimk Γ(X,ωX).

Example 2.8. For a curve C we have ΩC = ωC , so we have already seen that
ωP1(P1) = 0 and thus g(P1) = 0.

3. Associating a divisor to an n-form

Proposition 3.1. The localization of a regular local ring at any prime ideal is
again a regular local ring.

Proposition 3.2. A regular local ring of dimension 1 is a discrete valuation ring.

Let P be a point on X, which we still assume to be nonsingular and irreducible.
Let C be an irreducible closed subvariety of codimension 1 on X (i.e., a prime
divisor) that contains P . Then C corresponds to a prime ideal p of the local ring
OX,P of P in X. The local ring OX,C at C in X is the localization of the regular
local ring OX,P at p, so it is regular as well. As OX,C has dimension 1, it is a
discrete valuation ring with associated valuation vC : k(X) → Z.

Definition 3.3. Take an n-form ω ∈
∧n

Ωk(X)/k. Let t1, . . . , tn be a set of local
parameters at P . Then there is a unique g ∈ k(X) such that ω = gdt1 ∧ . . . ∧ dtn.
We set vC(ω) = vC(g).

Definition 3.4. To any nonzero n-form ω ∈
∧n

Ωk(X)/k we associate the divisor
(ω) =

∑

C vC(ω)C ∈ Div X, where the summation is over all prime divisors of X.

For any two nonzero ω, ω′ ∈
∧n

Ωk(X)/k there is a g ∈ k(X) such that ω = gω′,
so (ω) and (ω′) are linearly equivalent.

Definition 3.5. The class of any, and thus all, (ω) in Pic X is called the canonical
divisor class of X. The divisors in this class are called canonical divisors.

Note that if X is a projective variety in P
N , then any two hypersurface sections

of X of the same degree are linearly equivalent.

Exercise 4. Compute the divisor (dt) on P
1(x, y) with t = x/y.

Exercise 5. Compute the divisor (dx/y) on the projective closure in P
2 of the

affine curve given by y2 = f(x) with f a separable polynomial of degree 2, 3, 4,
general d.

Exercise 6. Compute the divisor (dt1 ∧ . . . ∧ dtn) on P
n(x0, x1, . . . , xn) with ti =

xi/x0.
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Exercise 7. Let X be a hypersurface in P
n
k (x0, . . . , xn) given by the homogeneous

polynomial F of degree d, let L be any linear form in k[x0, . . . , xn], and set

ω =
xn

0L−n−1+d

∂F/∂x0
dt1 ∧ . . . ∧ dtn−1

with ti = xi/x0. After checking that all degrees work out to make ω a well-defined

element of
∧n−1

Ωk(X)/k, show that we have (ω) = (−n− 1 + d)(H ∩X), where H
is the hyperplane given by L = 0.

Note that with the notation of the previous exercise, there exist n-forms that
are regular everywhere if and only if d ≥ n + 1, while there are no regular 1-forms
if n > 2. The following proposition is a generalization of the previous exercise.

Proposition 3.6. Let X ⊂ P
n be a smooth complete intersection of dimension

n−k, defined by the polynomials F1, . . . , Fk of degrees d1, . . . , dk respectively. Then

every canonical divisor on X is linearly equivalent to (−n − 1 +
∑k

i=1 di)H where
H is any hyperplane section of X.

Proposition 3.6 follows from [3], Prop. II.8.20, see [3], Exerc. II.8.4. Besides
the sheaf-theoretic proof given there, the following exercises also lead to a (fairly
heavily) computational proof.

For any k polynomials f1, . . . , fk ∈ k[x1, . . . , xn], and any sequence J = (jl)
k
l=1

with 1 ≤ j1 < . . . < jk ≤ n we define MJ = MJ(f1, . . . , fk) to be the determinant
of the matrix A = (∂fi/∂xjl

)k
i,l=1.

Exercise 8. Let X ⊂ A
n(x1, ) be a smooth complete intersection of dimension

n− k, defined by the polynomials f1, . . . , fk ∈ k[x1, . . . , xn]. Let J be a sequence as
above, and let I be the increasing sequence of the elements of {1, . . . , n} \ J . Then
up to sign the differential ωJ = M−1

J dxi1 ∧ . . .∧dxin−k
is independent of the choice

of J .

Exercise 9. Use the notation as in the previous exercise, and assume P is a point
on X. Then there is a particular sequence J as in that exercise such that MJ(P ) 6= 0
and for the corresponding sequence I, the elements xi −xi(P ) with i ∈ I form a set
of local parameters at P . Conclude that (ωJ ) = 0 on X ⊂ A

n.

Exercise 10. Homogenize the previous exercises to find out the contribution to (ω)
of the hyperplane at infinity of the projective closure of X. Check that your answer
agrees with Proposition 3.6.

Exercise 11. Suppose X is a smooth complete intersection as in Proposition 3.6,
and assume that X is a surface. Compute the self-intersection of a canonical divisor
on X.

The following exercise gives another generalization of exercise 7.

Exercise 12. Let P(w0, w1, . . . , wn) be weighted projective n-space with coordinates
x0, . . . , xn such that xi has weight wi, and assume w0 = 1. Let X be a smooth
hypersurface in P(w0, w1, . . . , wn) of (weighted) degree d. Set D = X ∩ H where
H is the hyperplane given by x0 = 0. Then any canonical divisor on X is linearly
equivalent to (d −

∑

i wi)D.

Exercise 13. Find an example of a variety X of dimension n for which the map
∧n

(Γ(ΩX)) → Γ(ωX) is not surjective.
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4. Morphisms to projective space

For more details about the subject of this section, see [3], section II.7.
To any locally free sheaf F on X of rank 1, an open subset U ⊂ X, and a

sequence (s0, . . . , sr) of sections of F(U), not all 0, we can associate a rational
map from U to P

r by using the sections as coordinates. Even though the si are
not necessarily functions on U , this still works because the stalk of F at a point
P ∈ U has dimension 1 over k, so any two elements si, sj in this stalk determine a
well-defined ratio, provided they do not both vanish at P .

Example 4.1. Let D be a divisor on X and let L(D) be the sheaf of functions
with a pole at most at D. More precisely, we have L(D)(U) = { f ∈ k(X) :
(f)|U + D|U ≥ 0 } ∪ {0}. Assume Γ(L(D)) is nonzero. Let s0, . . . , sr be a basis
for Γ(L(D)). In this case the si actually are functions and we get a rational map
X 99K P

r defined by P 7→ (s0(P ) : . . . : sr(P )).

Example 4.2. Let X be a projective subvariety of P
n(x0, . . . , xn). Let H ⊂ P

n

be the hyperplane given by x0 = 0 and set D = X ∩ H. The functions xi/x0 are
contained in Γ(L(D)) and determine the embedding of X in P

n. The functions
xixj/x2

0 are contained in Γ(L(2D)) and determine the embedding of X in P
N with

N =
(

n+2
2

)

− 1. (Note that we did not claim to be taking a basis here.)

Exercise 14. Let C be the curve in P
3(x, y, z, w) parametrized by (u4 : u3t : ut3 :

t4). Let H be the hyperplane given by w = 0 and set D = C ∩ H. Show that the
functions 1, x/w, y/w, z/w do not generate Γ(L(D)). (Hint: find an isomorphism
from C to P

1 and find what divisor D corresponds to on P
1.)

The next proposition will be needed in an exercise. Note that any smooth variety
is normal.

Proposition 4.3. Let X be a normal complete intersection in P
n and H a hyper-

plane in P
n. Then the map Γ(Pn,L(nH)) → Γ(X,L(nH ∩ X)) is surjective.

Proof. See [3], exerc. II.8.4(c). �

Exercise 15. Use Proposition 4.3 to show that the geometric genus of a hypersur-
face in P

n of degree d equals
(

d−1
n

)

.

Example 4.4. Let ω0, . . . , ωr be global sections of Γ(ωX). Since
∧n

Ωk(X)/k, with
n = dim X, is 1-dimensional over k(X), there are rational functions g1, . . . , gr such
that ωi = giω0. The asssociated rational map is then given by P 7→ (1 : g1(P ) : . . . :
gr(P )).

Exercise 16. Show that the gi in Example 4.4 are global sections of L(D) with
D = (ω0). More precisely, show that for any ω ∈

∧n
Ωk(X)/k, the sheaf ωX is

isomorphic to L(D) for D = (ω).

In all examples we were in fact able to find the ratios of the sections as rational
functions globally, rather than finding the ratios in the stalks at the points. This
reflects the fact that every invertible sheaf is in fact isomorphic to a subsheaf of the
constant sheaf on X associated to k(X) (see [3], Prop. II.6.15).

Definition 4.5. We say that a divisor D on a projective variety X is very ample if a
basis of sections of Γ(L(D)) determines a morphism X → P

n that is an immersion.
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Exercise 17. Show that any divisor that is linearly equivalent to a very ample
divisor, is in fact itself very ample.

Example 4.6. If X is embedded in P
n, then any hyperplane section of X is a very

ample divisor.

Conversely, every very ample divisor on X is of this form for some embedding
X → P

r.

Definition 4.7. A divisor D on X is called ample is some positive multiple of D
is very ample.

Example 4.8. Let C be a smooth curve. Then any divisor of positive degree is
ample by Riemann-Roch. However, a divisor of degree 1 is very ample if and only
if C has genus 0.

Example 4.9. Consider the cone X given by x2 + y2 = z2 in P
3. Show that any

two lines on X through the vertex of X are linearly equivalent. Show that each of
these lines is ample, but not very ample (ok, this is cheating, as we said X would
always be smooth; tomorrow we will see del Pezzo surfaces, for some of which the
anticanonical sheaf is ample, yet not very ample).

Exercise 18. Find all sequences (d1, . . . , dr) with di ≥ 2 such that a canonical
divisor on a smooth complete intersection X in P

r+2 of hypersurfaces of degree
d1, . . . , dr is not very ample. (Compare this to the next lecture.)
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Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977.
[2] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[3] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in

Mathematics, No. 52.

[4] Yu. I. Manin. Cubic forms, volume 4 of North-Holland Mathematical Library. North-Holland
Publishing Co., Amsterdam, second edition, 1986. Algebra, geometry, arithmetic, Translated
from the Russian by M. Hazewinkel.

[5] J. Milne. Class Field Theory. http://www.jmilne.org/math/CourseNotes/math776.html.

[6] B. Poonen. Rational points on varieties. http://math.berkeley.edu/~poonen/math274.html.


