THE UNIVERSITY OF WARWICK

FOURTH YEAR EXAMINATION: JUNE 2004

REPRESENTATION THEORY

Time Allowed: 3 hours

Read carefully the instructions on the answer book and make sure that the particulars required are entered.

ANSWER 4 QUESTIONS.
If you have answered more than the required 4 questions in this examination, you will only be given credit for your 4 best answers.

1. Let A be the subspace of $M_{3}(\mathbb{C})$ of matrices $\left(a_{i j}\right)$ which satisfy $a_{i j}=0$ for $i<j$ and $a_{11}=a_{33}$.
a) Show that A is an algebra.
b) Give the definition of a composition series for a representation.
c) Consider the inclusion of A in $M_{3}(\mathbb{C})$ as a representation and find a composition
series.
[5]
d) Hence find the dimension vector of this representation.
e) Find a nilpotent endomorphism of this representation.
2. a) Define the nilpotent radical of an algebra.

Let A be the algebra $\mathbb{R}[x] /<p(x)\rangle$ where $p(x)$ is a polynomial.
b) Find the radical of A for:
(i) $p(x)=(x-2)^{2}$.
(ii) $p(x)=x^{2}+9$.
c) Show, that in each case, the radical satisfies the definition you have given in a).
d) Give the definition of a local algebra.
e) Show that each algebra in b) is a local algebra.
3. a) State the classification of semisimple algebras over \mathbb{C}.
b) Give the classification of semisimple algebras over \mathbb{C} of dimension at most three.
c) Show that there are just five three dimensional algebras over \mathbb{C} (up to isomorphism). You may use any results from the course without proof but these should be clearly stated.
4. a) Give the definition of a projective module.
b) Give the definition of a projective cover of a module M.
c) Prove that any two projective covers of M are isomorphic.
5. Let A be the quiver algebra of the quiver

$$
e \bullet \underset{\beta}{\stackrel{\alpha}{\leftrightarrows}} \bullet f
$$

with the relation $\alpha \beta \alpha=0$.
a) Find a basis of A where each element is a path.
b) Find the simple modules.
c) Find the indecomposable projective modules.
d) Give the definition of the Cartan matrix of an algebra.
e) Find the Cartan matrix of A.

