THE UNIVERSITY OF WARWICK

FOURTH YEAR EXAMINATION: JUNE 2002

REPRESENTATION THEORY

Time Allowed: 3 hours

Read carefully the instructions on the answer book and make sure that the particulars required are entered.

ANSWER 4 QUESTIONS.

If you have answered more than the required 4 questions in this examination, you will only be given credit for your 4 best answers.

1. a) Give the definition of a division algebra over a field K.
b) Show that if K is an algebraically closed field then the only division algebra over K is K itself.
c) Show that the quaternions are a division algebra over the field of real numbers.
d) Let D be a division algebra over a field K and let n be a positive integer. Show that the algebra of $n \times n$ matrices with entries in D is a simple algebra.
e) Let A be the algebra of 2×2 matrices with entries in the quaternions. For each elementary 2×2 matrix find the elements of A which commute with the elementary matrix. Hence find the centre of the algebra A.
2. Let A be a finite dimensional algebra and let J be the intersection of the maximal right ideals. Using Nakayama's lemma, or otherwise;
a) Prove that J is a nilpotent ideal.
b) Prove that a minimal right ideal is either projective or else is a submodule of J.

Let A be the algebra over the real numbers, \mathbb{R}, defined by

$$
A=\mathbb{R}[x] /<\left(x^{2}+4\right)^{3}>
$$

c) Find the dimension of A.
d) Find the irreducible representations, and the radical, of the algebra A.
3. Let A be a finite dimensional algebra.
a) Define a projective envelope of an A-module M.
b) Show that any two projective envelopes of M are isomorphic.
c) Show that every finite dimensional A-module has a projective envelope.
4. Let A be a finite dimensional algebra.
a) Define the Cartan matrix of A.
b) Let A be the algebra over \mathbb{Q} with basis $1, u, v, u v, v u$ and multiplication determined by

$$
\begin{array}{cc}
u u=u & v v=v \\
u v u=u & v u v=v
\end{array}
$$

(i) Find the irreducible representations of A.
(ii) Find a non-trivial central idempotent in A.
(iii) Find the Cartan matrix of A.
5. Let A be a finite dimensional K-algebra and M a module over A.
a) Explain what it means to say that M is finitely generated.
b) Show that M is finite dimensional if and only if M is finitely generated.
c) State and prove Fitting's lemma for finite dimensional modules over A.
d) State the Krull-Schmidt theorem.
e) Give an example of an algebra A, a finitely generated module M, and two inequivalent decompositions of M into indecomposable modules.

