THE UNIVERSITY OF WARWICK

FOURTH YEAR EXAMINATION: JUNE 2002

REPRESENTATION THEORY

Time Allowed: 3 hours

Read carefully the instructions on the answer book and make sure that the particulars required are entered.

ANSWER 4 QUESTIONS.

If you have answered more than the required 4 questions in this examination, you will only be given credit for your 4 best answers.

1.	a)	Give the definition of a division algebra over a field K .	[3]
	b)	Show that if K is an algebraically closed field then the only division algebra over K is K itself.	[9]
	c) Show that the quaternions are a division algebra over the field of	Show that the quaternions are a division algebra over the field of real numbers.	[3]
	d)	Let D be a division algebra over a field K and let n be a positive integer. Show that the algebra of $n \times n$ matrices with entries in D is a simple algebra.	[5]
	e)	Let A be the algebra of 2×2 matrices with entries in the quaternions. For each elementary 2×2 matrix find the elements of A which commute with the elementary matrix. Hence find the centre of the algebra A.	[5]
2.	Let right	A be a finite dimensional algebra and let J be the intersection of the maximal t ideals. Using Nakayama's lemma, or otherwise;	
	a)	Prove that J is a nilpotent ideal.	[9]
	b)	Prove that a minimal right ideal is either projective or else is a submodule of J .	[8]
	Let	A be the algebra over the real numbers, \mathbb{R} , defined by	
		$A = \mathbb{R}[x] / < (x^2 + 4)^3 >$	
	c)	Find the dimension of A .	[2]
	d)	Find the irreducible representations, and the radical, of the algebra A .	[6]
3.	Let	A be a finite dimensional algebra.	
	a)	Define a projective envelope of an A -module M .	[5]

- b) Show that any two projective envelopes of M are isomorphic. [5]
- c) Show that every finite dimensional A-module has a projective envelope. [15]

- **4.** Let A be a finite dimensional algebra.
 - a) Define the Cartan matrix of A.
 - b) Let A be the algebra over $\mathbb Q$ with basis 1,u,v,uv,vu and multiplication determined by

$$uu = u \quad vv = v$$
$$uvu = u \quad vuv = v$$

- (i) Find the irreducible representations of A.
 (ii) Find a non-trivial central idempotent in A.
 (iii) Find the Cartan matrix of A.
- 5. Let A be a finite dimensional K-algebra and M a module over A.

a)	Explain what it means to say that M is finitely generated.	[4]
b)	Show that M is finite dimensional if and only if M is finitely generated.	[4]
c)	State and prove Fitting's lemma for finite dimensional modules over A .	[5]
d)	State the Krull-Schmidt theorem.	[4]
e)	Give an example of an algebra A , a finitely generated module M , and two inequivalent decompositions of M into indecomposable modules.	[8]

[5]