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Abstract

In many applications it is important to be able to sample paths of SDEs conditional on

observations of various kinds. This paper studies SPDEs which solve such sampling

problems. The SPDE may be viewed as an infinite dimensional analogue of the Lange-

vin equation used in finite dimensional sampling. In this paper conditioned nonlinear

SDEs, leading to nonlinear SPDEs for the sampling, are studied. In addition, a class of

preconditioned SPDEs is studied, found by applying a Green’s operator to the SPDE

in such a way that the invariant measure remains unchanged; such infinite dimensional

evolution equations are important for the development of practical algorithms for sam-

pling infinite dimensional problems.

The resulting SPDEs provide several significant challenges in the theory of SPDEs.

The two primary ones are the presence of nonlinear boundary conditions, involving

first order derivatives, and a loss of the smoothing property in the case of the pre-

conditioned SPDEs. These challenges are overcome and a theory of existence, unique-

ness and ergodicity developed in sufficient generality to subsume the sampling prob-

lems of interest to us. The Gaussian theory developed in Part I of this paper considers

Gaussian SDEs, leading to linear Gaussian SPDEs for sampling. This Gaussian theory

is used as the basis for deriving nonlinear SPDEs which effect the desired sampling in

the nonlinear case, via a change of measure.



INTRODUCTION 2

Keywords: Path sampling, stochastic PDEs, ergodicity

1 Introduction

The purpose of this paper is to provide rigorous justification for a recently introduced Stochastic

Partial Differential Equation (SPDE) based approach to infinite dimensional sampling problems

[SVW04, HSVW05]. The methodology has been developed to solve a number of sampling prob-

lems arising from Stochastic Differential Equations (SDEs; assumed to be finite-dimensional

unless stated otherwise), conditional on observations.

The setup is as follows. Consider the SDE

dX = AX du+ f (X) du+B dW x, X(0) = x− (1.1)

where f (x) = −BB∗∇V (x), V : Rd → R, B ∈ Rd×d is invertible and W x is a standard

d-dimensional Brownian motion. We consider three sampling problems associated with (1.1):

1. free path sampling, to sample paths of (1.1) unconditionally;

2. bridge path sampling, to sample paths of (1.1) conditional on knowing X(1) = x+;

3. nonlinear filter/smoother, to sample paths of (1.1), conditional on knowledge of (Y (u))u∈[0,1]

solving

dY = ÃX dt+ B̃dW y, Y (0) = 0 (1.2)

where Ã ∈ Rm×d is arbitrary and B̃ ∈ Rm×m is invertible, and W y is a standard

m-dimensional Brownian motion.

The methodology proposed in [SVW04] is to extend the finite dimensional Langevin sam-

pling technique [RC99] to infinite dimensional problems such as those listed in 1. to 3. This

leads to SPDEs which are ergodic and have stationary measure which solves the desired sam-

pling problem.

We believe that an infinite dimensional sampling technique can be derived by taking the

(formal) density of the target distribution and mimicking the procedure from the finite dimension

Langevin method. In this paper we provide a rigorous justification for this claim in the case of

equation (1.1) where the drift is linear plus a gradient, the noise is additive and, in case 3.,
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observations arise linearly as in (1.2). A conjecture for the case of general drift, and for a

nonlinear observation equation in place of (1.2), is described in Section 9 at the end of the paper.

For the problems considered here the resulting SDPEs are of the form

dx = (BB∗)−1∂2
ux dt−∇Φ(x) dt+

√
2 dw(t), (1.3)

and generalisations, where w is a cylindrical Wiener process (so that ∂w
∂t

is space-time white

noise) and Φ is some real-valued function on Rd. (Note that the ‘potential’ Φ is different from

V , see (5.3) below.) For problem 1. the resulting SPDE is not a useful algorithmic framework

in practise as it is straightforward to generate unconditioned, independent samples from 1. by

application of numerical methods for SDE initial value problems [KP99]; the Langevin method

generates correlated samples and hence has larger variance in any resulting estimators. However

we include analysis of problem 1. because it contributes to understanding of subsequent SPDE

based approaches. For problems 2. and 3. we believe that the proposed methodology is, poten-

tially, the basis for efficient Markov Chain Monte-Carlo (MCMC) based sampling techniques.

Some results about how such a MCMC method could be implemented in practice can be found

in [BRSV] and [?].

The resulting MCMC method, when applied to problem 3., results in a new method for solv-

ing non-linear filtering/smoothing problems. This method differs substantially from traditional

methods like particle filters which are based on the Zakai equation: while the latter equation

describes the density of the conditional distribution of the signal at fixed times t, our proposed

method samples full paths from the conditional distribution; statistical quantities can then be ob-

tained by considering ergodic averages. Consequently, while the proposed method cannot easily

be applied in online situations, it provides dynamic information on the paths, which cannot be

so easily read off the solutions of the Zakai equation. Another difference is that the indepen-

dent variables in the Zakai equation are in Rd whereas equation (1.3) is always indexed by

[0,∞)× [0, 1] and only takes values in Rd. Thus, the proposed method should be advantageous

in high dimensions. For further discussion and applications see [?].

In making such methods as efficient as possible, we are lifting ideas from finite dimensional

Langevin sampling into our infinite dimensional situation. One such method is to use precon-

ditioning which changes the evolution equation, whilst preserving the stationary measure, in an
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attempt to roughly equalise relaxation rates in all modes. This leads to SPDEs of the form

dx = G(BB∗)−1∂2
ux dt− G∇Φ(x) dt+

√
2G1/2 dw(t), (1.4)

and generalisations, where w, again, is a cylindrical Wiener process. In the finite-dimensional

case it is well-known that the invariant measure for (1.4) is the same as for (1.3). In this paper we

will study the methods proposed in [BRSV] which precondition the resulting infinite dimensional

evolution equation (1.3) by choosing G as a Green’s operator. We show that equation (1.4), in its

stationary measure, still samples from the desired distribution.

For both preconditioned and unpreconditioned equations the analysis leads to mathematical

challenges. First, when we are not conditioning on the end-point (in problems 1. and 3.), we get

an SPDE with a non-linear boundary condition of the form

∂ux(t, 1) = f (x(t, 1)) ∀t ∈ (0,∞)

where f is the drift of the SDE (1.1). In the abstract formulation using Hilbert-space valued

equations this translates into an additional drift term of the form f (x(t, 1))δ1 where δ1 is the

delta distribution at u = 1. This forces us to consider equations with values in the Banach space

of continuous functions (so that we can evaluate the solution x at the point u = 1) and to allow

the drift to take distributions as values. Unfortunately the theory for this situation is not well-

developed in the literature. Therefore we provide here proofs for the existence and uniqueness

of solutions for the considered SPDEs. This machinery is not required for problem 2. and that

the Hilbert space setting [Zab88, Cer99, DPZ92, DPZ96] can be used there.

We also prove ergodicity of these SPDEs. A second challenge comes here from the fact that

we consider the preconditioned equation (1.4). Since we want to precondition with operators G

which are close to (∂2
u)−1 it is not possible to use smoothing properties of the heat semigroup

any more, and the resulting process no longer has the strong Feller property. Instead we show

that the process has the recently introduced asymptotic strong Feller property (see [HM04]) and

use this to show existence of a unique stationary measure for the preconditioned case.

The paper is split into two parts. The first part, consisting of sections 2, 3 and 4, introduces

the general framework while the second part, starting at section 5, uses this framework to solve

the three sampling problems stated above. Readers only interested in the applications can safely
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skip the first part on first reading. The topics presented there are mainly required to understand

the proofs in the second part.

The two parts are organised as follows: In section 2 we introduce the technical framework

required to give sense to equations like (1.3) and (1.4) as Hilbert-space valued SDEs. The main

results of this section are Theorem 3.4 and Theorem 3.6, showing the global existence of so-

lutions of these SDEs. In section 3 we identify a stationary distribution of these equations.

This result is a generalisation of a result by Zabczyk [Zab88]; the generalisation allows us to

consider the Banach space valued setting required for the nonlinear boundary conditions, and

is also extended to consider the preconditioned SPDEs. In section 4 we show that the station-

ary distribution is unique and that the considered equations are ergodic (see Theorem 4.10 and

Theorem 4.11). This justifies their use as the basis for an MCMC method.

In the second part of the paper, we apply the abstract theory to derive SPDEs which sample

conditioned diffusions. Section 5 outlines the methodology. Then, in sections 6, 7 and 8, we

discuss the sampling problems 1., 2. and 3. respectively, proving the desired property for both

the SPDEs proposed in [SVW04], and the preconditioned method proposed in [BRSV]. In the

case 2., bridges, the SPDE whose invariant measure is the bridge measure was also derived in

one dimension in [RVE05]. In section 9 we give a heuristic way to derive SPDEs for sampling,

which applies in greater generality than the specific set-ups considered here. Specifically we

show how to derive the SPDE when the drift vector field in (1.1) is not of the form linear plus

gradient; and for signal processing we show how to extend beyond the case of linear observation

equation (1.2). This section will be of particular interest to the reader concerned with applying

the technique for sampling which we study here. The gap between what we conjecture to be the

correct SPDEs for sampling in general, and the cases considered here, points to a variety of open

and interesting questions in stochastic analysis; we highlight these.

To avoid confusion we use the following naming convention. Solutions to SDEs like (1.1)

which give our target distributions are denoted by upper case letters like X . Solutions to infinite

dimensional Langevin equations like (1.3) which we use to sample from these target distributions

are denoted by lower case letters like x. The variable which is time in equation (1.1) and space in

(1.3) is denoted by u and the time direction of our infinite dimensional equations, which indexes

our samples, is denoted by t.
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2 The Abstract Framework

In this section we introduce the abstract setting for our Langevin equations, proving existence

and uniqueness of global solutions. We treat the non-preconditioned equation (1.3) and the

preconditioned equation (1.4) separately. The two main results are Theorem 2.6 and 2.10. Both

cases will be described by stochastic evolution equations taking values in a real Banach space

E continuously embedded into a real separable Hilbert space H. In our applications in the later

sections the space H will always be the space of L2 functions from [0, 1] to Rd and E will be

some subspace of the space of continuous functions.

Our application requires the drift to be a map from E to E∗. This is different from the

standard set-up as found in e.g. [DPZ92] where the drift is assumed to take values in the Hilbert

space H.

2.1 The non-preconditioned case

In this subsection we consider semilinear SPDEs of the form

dx = Lx dt+ F (x) dt+
√

2 dw(t), x(0) = x0, (2.1)

where L is a linear operator onH, the drift F mapsE intoE∗, w is a cylindrical Wiener process

on H, and the process x takes values in E. We seek a mild solution of this equation, defined

precisely below.

Recall that a closed densely defined operator L on a Hilbert space H is called strictly dis-

sipative if there exists c > 0 such that 〈x,Lx〉 ≤ −c‖x‖2 for every x ∈ D(L). We make the

following assumptions on L.

(A1) Let L be a self-adjoint, strictly dissipative operator on H which generates an analytic

semigroup S(t). Assume that S(t) can be restricted to a C0-semigroup of contraction

operators on E.

Since −L is self-adjoint and positive one can define arbitrary powers of −L. For α ≥ 0

let Hα denote the domain of the operator (−L)α endowed with the inner product 〈x, y〉α =

〈(−L)αx, (−L)αy〉. We furthermore define H−α as the dual of Hα with respect to the inner

product in H (so that H can be seen as a subspace of H−α). Denote the Gaussian measure with

mean µ ∈ H and covariance operator C on H by N (µ, C).
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(A2) There exists an α ∈ (0, 1/2) such that Hα ⊂ E (densely), (−L)−2α is nuclear in H, and

the Gaussian measure N (0, (−L)−2α) is concentrated on E.

This condition implies that the stationary distribution N (0, (−L)−1) of the linear equation

dz = Lz dt+
√

2 dw(t) (2.2)

is concentrated on E.

Under assumption (A2) we have the following chain of inclusions:

H1/2 ↪→ Hα ↪→ E ↪→ H ↪→ E∗ ↪→ H−α ↪→ H−1/2.

Since we assumed that E is continuously embedded into H, each of the corresponding inclusion

maps is bounded and continuous. Therefore we can, for example, find a constant cwith ‖x‖E∗ ≤

c‖x‖E for all x ∈ E. Later we will use the fact that, in this situation, there are constants c1 and c2

with

‖S(t)‖E∗→E ≤ c1‖S(t)‖H−α→Hα ≤ c2t
−2α. (2.3)

We start our study of equation (2.1) with the following, preliminary result which shows that the

linear equation takes values in E.

Lemma 2.1 Assume (A1) and (A2) and define the H-valued process z by the stochastic convo-

lution

z(t) =
√

2

Z t

0

S(t− s) dw(s) ∀t ≥ 0 (2.4)

where w is a cylindrical Wiener process on H. Then z has an E-valued continuous version.

Furthermore, its sample paths are almost surely β-Hölder continuous for every β < 1/2 − α.

In particular, for such β there exist constants Cp,β such that

E sup
s≤t

‖z(s)‖p
E ≤ Cp,βt

βp, (2.5)

for every t ≤ 1 and every p ≥ 1.

Proof. Let i be the inclusion map from Hα into E and j be the inclusion map from E into H.

Since 〈x, y〉α = 〈(−L)2αjix, jiy〉 for every x, y in Hα, one has

〈x, jiy〉 = 〈i∗j∗x, y〉α = 〈(−L)2αjii∗j∗x, jiy〉 ,
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for every x ∈ H and every y ∈ Hα. Since Hα is dense in H, this implies that jii∗j∗ =

(−L)−2α. Thus (A2) implies that ii∗ is the covariance of a Gaussian measure on E, which is

sometimes expressed by saying that the map i is γ-radonifying.

The first part of the result then follows directly from [BvN00, Theorem 6.1]. Conditions (i)

and (ii) there are a direct consequence of our assumptions (A1) and (A2). Condition (iii) there

states that the reproducing kernel Hilbert spaceHt associated to the bilinear form 〈x,L−1(eLt−

1) y〉 has the property that the inclusion map Ht → E is γ-radonifying. Since we assumed that

L is strictly dissipative, it follows thatHt = H1/2. Since we just checked that the inclusion map

from H1/2 into E is γ-radonifying, the required conditions hold.

If we can show that E‖z(t + h) − z(t)‖E ≤ C|h|1/2−α for some constant C and for

h ∈ [0, 1], then the second part of the result follows from Fernique’s theorem [Fer70] combined

with Kolmogorov’s continuity criterion [RY99, Theorem 2.1]. One has

E‖z(t+ h)− z(t)‖E ≤ E‖S(h)z(t)− z(t)‖E +
√

2E
‚‚‚Z h

0

S(s) dw(s)
‚‚‚

E
= T1 + T2.

The random variable z(t) is Gaussian on H with covariance given by

Qt = (−L)−1(I − S(2t)).

This shows that the covariance of (S(h)− I)z(t) is given by

(S(h)− I)Qt(S(h)− I) = (−L)−αAα(I − S(2t))Aα(−L)−α,

with

Aα = (−L)α−1/2(S(h)− I).

Since (A2) implies that (−L)−α is γ-radonifying from H to E and (S(2t)− I) is bounded by 2

as an operator from H to H, we have

T1 ≤ C‖Aα‖L(H) ≤ C|h|1/2−α,

where the last inequality follows from the fact that L is self-adjoint and strictly dissipative. The

bound on T2 can be obtained in a similar way. From Kolmogorov’s continuity criterion we get

that z has a modification which is β-Hölder continuous for every β < 1/2− α.

Since we now know that z is Hölder continuous, the expression

sup
s,t∈[0,1]

s 6=t

‖z(s)− z(t)‖E

|t− s|β . (2.6)
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is finite almost surely. Since the field z(s)−z(t)
|t−s|β is Gaussian, it then follows from Fernique’s

theorem that (2.6) also has moments of every order.

Remark 2.2 The standard factorisation technique [DPZ92, Theorem 5.9] does not apply in this

situation since in general there exists no interpolation space Hβ such that Hβ ⊂ E and z takes

values in Hβ : for Hβ ⊆ E one would require β > 1/4 but the process takes values in Hβ

only for β < 1/4. Lemma 2.1 should rather be considered as a slight generalisation of [DPZ92,

Theorem 5.20].

Definition 2.3 The subdifferential of the norm ‖ · ‖E at x ∈ E is defined as

∂‖x‖E = {x∗ ∈ E∗ | x∗(x) = ‖x‖E and x∗(y) ≤ ‖y‖E ∀y ∈ E}.

This definition is equivalent to the one in [DPZ92, Appendix D] and, by the Hahn-Banach

theorem, the set ∂‖x‖E is non-empty. We use the subdifferential of the norm to formulate the

conditions on the nonlinearity F . Here and below C and N denote arbitrary positive constants

that may change from one equation to the other without warning.

(A3) The nonlinearity F : E → E∗ is Fréchet differentiable with

‖F (x)‖E∗ ≤ C(1 + ‖x‖E)N , and ‖DF (x)‖E→E∗ ≤ C(1 + ‖x‖E)N .

for every x ∈ E.

(A4) There exists a sequence of Fréchet differentiable functions Fn : E → E such that

lim
n→∞

‖Fn(x)− F (x)‖−α = 0

for all x ∈ E. For every C > 0 there exists a K > 0 such that for all x ∈ E with

‖x‖E ≤ C and all n ∈ N we have ‖Fn(x)‖−α ≤ K. Furthermore there is a γ > 0 such

that the dissipativity bound

〈x∗, Fn(x+ y)〉 ≤ −γ‖x‖E (2.7)

holds for every x∗ ∈ ∂‖x‖E and every x, y ∈ E with ‖x‖E ≥ C(1 + ‖y‖E)N .

As in [DPZ92, Example D.3], one can check that in the caseE = C([0, 1],Rd) the elements

of ∂‖x‖E can be characterised as follows: x∗ ∈ ∂‖x‖E if and only if there exists a probability
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measure |x∗| on [0, 1] with supp |x∗| ⊆ {u ∈ [0, 1] | |x(u)| = ‖x‖∞} and such that

x∗(y) =

Z D
y(u),

x(u)
|x(u)|

E
|x∗|(du), (2.8)

for every y ∈ E. Loosely speaking, the dissipativity condition in (A4) then states that the

drift Fn points inwards for all locations u ∈ [0, 1] where |x(u)| is largest and thus acts to

decrease ‖x‖E .

Definition 2.4 An E-valued and (Ft)-adapted process x is called a mild solution of equa-

tion (2.1), if almost surely

x(t) = S(t)x0 +

Z t

0

S(t− s)F (x(s)) ds+ z(t) ∀t ≥ 0 (2.9)

holds where z is the solution of the linear equation from (2.4).

Lemma 2.5 Let L satisfy assumptions (A1) and (A2). Let F : E → E∗ be Lipschitz continuous

on bounded sets, ψ : R+ → E be a continuous function and x0 ∈ H1/2. Then the equation

dx

dt
(t) = Lx(t) + F (x(t) + ψ(t)), x(0) = x0 (2.10)

has a unique, local, H1/2-valued mild solution.

Furthermore, the length of the solution interval is bounded from below uniformly in ‖x0‖1/2+

supt∈[0,1] ‖ψ(t)‖E .

Proof. Since ψ is continuous, ‖ψ(t)‖E is locally bounded. It is a straightforward exercise us-

ing (2.3) to show that, for sufficiently small T , the map MT acting from C([0, T ],H1/2) into

itself and defined by

(MT y)(t) = S(t)x0 +

Z t

0

S(t− s)F (y(s) + ψ(s)) ds

is a contraction on a small ball around the element t 7→ S(t)x0. Therefore, (2.10) has a unique

local solution in H1/2. The claim on the possible choice of T can be checked in an equally

straightforward way.

Theorem 2.6 Let L and F satisfy assumptions (A1)–(A4). Then for every x0 ∈ E the equa-

tion (2.1) has a global,E-valued, unique mild solution and there exist positive constantsKp and

σ such that

E‖x(t)‖p
E ≤ e−pσt‖x0‖p

E +Kp,
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for all times.

Proof. Let z be the solution of the linear equation dz = Lz(t) dt+
√

2 dw and for n ∈ N let yn

be the solution of

dyn

dt
(t) = Lyn(t) + Fn(yn(t) + z(t)), yn(0) = x0

where Fn is the approximation for F from (A4). From lemmas 2.1 and 2.5 we get that the

differential equation almost surely has a local mild solution. We start the proof by showing that

yn can be extended to a global solution and obtain an a-priori bound for yn which does not

depend on n.

Let t ≥ 0 be small enough that yn(t+ h) exists for some h > 0. As an abbreviation define

f (s) = Fn(yn(s) + z(s)) for all s < t+ h. Then we have

‖y(t+ h)‖E =
‚‚‚S(h)y(t) +

Z t+h

t

S(t+ h− s)f (s) ds
‚‚‚

E
.

Since f is continuous and the semigroup S is a strongly continuous contraction semigroup onE,

we get

‚‚‚Z t+h

t

S(t+ h− s)f (s) ds − hS(h)f (t)
‚‚‚

E

≤
Z t+h

t

‖S(t+ h− s)(f (s)− f (t))‖E + ‖(S(t+ h− s)− S(h))f (t)‖E ds

≤
Z t+h

t

‖f (s)− f (t)‖E ds+

Z h

0

‖(S(r)− S(0))f (t)‖E dr

= o(h)

and thus

‖y(t+ h)‖E = ‖S(h)y(t) + S(h)hf (t)‖E + o(h) ≤ ‖y(t) + hf (t)‖E + o(h)

as h ↓ 0. This gives

lim sup
h↓0

‖y(t+ h)‖E − ‖y(t)‖E

h

≤ lim
h↓0

‖y(t) + hf (t)‖E − ‖y(t)‖E

h
= max{〈y∗, f (t)〉 | y∗ ∈ ∂‖y(t)‖E},

where the last equation comes from [DPZ92, equation (D.2)]. Using assumption (A4) we get

lim sup
h↓0

‖yn(t+ h)‖E − ‖yn(t)‖E

h
≤ −γ‖yn(t)‖E
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Figure 1: This picture illustrates the a-priori bound on ‖yn‖E obtained in the proof

of Theorem 2.6. Whenever ‖yn(t)‖E is above a(t) = C(1 + ‖z(t)‖E)N it decays

exponentially. Therefore the thick line is an upper bound for ‖yn‖E .

for all t > 0 with ‖yn(t)‖E ≥ C(1 + ‖z(t)‖E)N .

An elementary proof shows that any continuous function f : [0, T ] → R with f (t) >

f (0) exp(−γt) for an t ∈ (0, T ] satisfies lim sup(f (s + h) − f (s))/h > −γf (s) for some

s ∈ [0, t). Therefore, whenever ‖yn(t)‖E ≥ C(1 + ‖z(t)‖E)N for all t ∈ [a, b], the solution yn

decays exponentially on this interval with

‖yn(t)‖E ≤ ‖yn(a)‖E e−γ(t−a)

for all t ∈ [a, b]. Thus (see figure 1 for illustration) we find the a-priori bound

‖yn(t)‖E ≤ e−γt‖x0‖ ∨ sup
0<s<t

Ce−γ(t−s)(1 + ‖z(s)‖E)N (2.11)

for the solution yn. Using this bound and Lemma 2.5 repeatedly allows us to extend the solution

yn to arbitrarily long time intervals.

Lemma 2.5 also gives local existence for the solution y of

dy

dt
(t) = Ly(t) + F (y(t) + z(t)), y(0) = x0. (2.12)

Once we have seen that the bound (2.11) also holds for y, we get the required global existence

for y. Let t be small enough for y(t) to exist. Then, using (2.3),

‖yn(s)− y(s)‖E ≤ C
‚‚‚Z s

0

S(s− r)(Fn(yn + z)− F (y + z)) dr
‚‚‚

α
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≤ C

Z s

0

(s− r)−2α‖Fn(yn + z)− F (y + z)‖−α dr

for every s ≤ t and thusZ t

0

‖yn − y‖E ds ≤ C

Z t

0

Z s

0

(s− r)−2α‖Fn(yn + z)− F (yn + z)‖−α dr ds

+ C

Z t

0

Z s

0

(s− r)−2α‖F (yn + z)− F (y + z)‖−α dr ds

=: C(I1 + I2).

The map F : E → E∗ is Lipschitz on bounded sets and thus has the same property when

considered as a map E → H−α. Using (2.11) to see that there is a ball in E which contains all

yn we get ‖F (yn + z)− F (y + z)‖−α ≤ C‖yn − y‖−α. Fubini’s theorem then gives

I2 =

Z t

0

‖yn(r)− y(r)‖−α

Z t

r

(s− r)−2α ds dr

≤ t1−2α

1− 2α

Z t

0

‖yn(r)− y(r)‖E dr

and by choosing t small enough and moving the I2-term to the left hand side we findZ t

0

‖yn(r)− y(r)‖E dr ≤ CI1.

By (A4) the term ‖Fn(yn +z)−F (yn +z)‖−α in the integral is uniformly bounded by some

constantK and thus (s−r)−2αM is an integrable, uniform upper bound for the integrand. Again

by (A4) the integrand converges to 0 pointwise, so that the dominated convergence theorem

yields Z t

0

‖yn(r)− y(r)‖E dr ≤ CI1 −→ 0 (2.13)

as n → ∞. Assume for contradiction that y violates the bound (2.11) for some time s ∈ [0, t].

Since t 7→ y(t) is continuous, the bound is violated for a time interval of positive length, so

that
R t

0
‖yn(r) − y(r)‖E dr is bounded from below uniformly in n. This is in contradiction

with (2.13), so that y must satisfy the a-priori estimate (2.11). Again we can iterate this step and

extend the solution y of (2.12) and thus the solution x = y + z of (2.1) to arbitrary large times.

Now the only thing left to do is to prove the given bound on E‖x(t)‖p
E : For k ∈ N let

ak = supk−1≤t≤k ‖z(t)‖E and

ξk = sup
k+1≤t≤k+2

√
2

‚‚‚Z t

k

S(s− k) dw(s)
‚‚‚

E
.



THE ABSTRACT FRAMEWORK 14

Then the ξk are identically distributed and for |k − l| ≥ 2 the random variables ξl and ξk are

independent. Without loss of generality we can assume ‖S(t)x‖E ≤ e−tε‖x‖E for some small

value ε > 0 (otherwise replace L with L − εI and F with F + εI where ε is chosen small

enough that (A4) still holds for F + εI). Thus for h ∈ [1, 2] we get

‖z(k + h)‖ ≤ ‖S(h)z(k)‖E +
√

2
‚‚‚Z k+h

k

S(s− k) dw(s)
‚‚‚

E
≤ e−εak + ξk,

and consequently ak+2 ≤ e−εak + ξk. Since the ξk, as well as a1 and a2 have Gaussian

tails, it is a straightforward calculation to check from this recursion relation that the expressionP
k=1...m eγ(m−k)aN

k has bounded moments of all orders that are independent of m. Since

the right-hand side of (2.11) is bounded by expressions of this type, the required bound on the

solutions x(t) follows immediately with σ = γ − ε.

2.2 The preconditioned case

In this section we consider semilinear SPDEs of the form

dx = G(Lx+ F (x)) dt+
√

2G1/2 dw(t), x(0) = x0, (2.14)

where L, F , and w are as before and G is a self-adjoint, positive linear operator onH. We seek a

strong solution of this equation, defined below. In order to simplify our notations, we define L̃ =

GL, F̃ = GF and w̃ = G1/2w. Then w̃ is a G-Wiener process on H and equation (2.14) can be

written as

dx = L̃x dt+ F̃ (x) dt+
√

2 dw̃(t), x(0) = x0.

For the operator L we will continue to use assumptions (A1) and (A2). For F we use the

growth condition (A3), but replace the dissipativity condition (A4) with

(A5) There is N > 0 such that F satisfies

〈x, F (x+ y)〉 ≤ C(1 + ‖y‖E)N

for every x, y ∈ E.

Remark 2.7 Note that (A5) is structurally similar to assumption (A4) above, except that we

now assume dissipativity in H rather than in E.

We make the following assumption on G.
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(A6) The operator G : H → H is trace class, self-adjoint and positive definite, the range of G

is dense in H, and the Gaussian measure N (0,G) is concentrated on E.

Define the space H̃ to be D(G−1/2) with the inner product 〈x, y〉H̃ = 〈x,G−1y〉. Then we

assume that G is equal to the inverse of L, up a ‘small’ error in the following sense:

(A7) We have GL = −I +K, where K is a bounded operator from H to H̃.

Lemma 2.8 Assume (A1), (A2), (A6), (A7). Then H̃ = H1/2. In particular, H̃ ⊂ E.

Proof. Note first that by [Yos80, Thm VII.1.3], the fact that GL is bounded on H implies that

range(G) ⊂ D(L). Furthermore, (A7) implies that D(L) ⊂ H̃. For every x ∈ rangeG, one has

|‖x‖2H̃ − ‖x‖
2
1/2| = |〈G−1/2x,G−1/2Kx〉|

≤ ‖x‖H̃‖Kx‖H̃ ≤ C‖x‖H̃‖x‖ ≤ C‖x‖H̃‖x‖1/2 ,

so that the norms ‖x‖H̃ and ‖x‖1/2 are equivalent. In particular, we have

range(G) ⊂ D(L) ⊂ H̃ ⊂ H1/2 .

The facts that range(G) is dense in H̃ and D(L) is dense in H1/2 conclude the proof.

Definition 2.9 An E-continuous and adapted process x is called a strong solution of (2.14), if it

satisfies

x(t) = x0 +

Z t

0

(GLx(s) + GF (x(s))) ds+
√

2 w̃(t) ∀t ≥ 0 (2.15)

almost surely.

Theorem 2.10 Let L̃, F̃ and G satisfy assumptions (A1)–(A3) and (A5)–(A7). Then for every

x0 ∈ E the equation (2.14) has a global, E-valued, unique strong solution. There exists a

constant N > 0 and for every p > 0 there are constants Kp, Cp and γp > 0 such that

E‖x(t)‖p
E ≤ Cp(1 + ‖x0‖E)Npe−γpt +Kp (2.16)

for all times.

Proof. Since it follows from (A6) and Kolmogorov’s continuity criterion that the process w̃(t) is

E-valued and has continuous sample paths, it is a straightforward exercise (use Picard iterations

pathwise) to show that (2.14) has a unique strong solution lying in E for all times. It is possible
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to get uniform bounds on this solution in the following way. Choose an arbitrary initial condition

x0 ∈ E and let y be the solution to the linear equation

dy = −y dt+ dw̃(t), y(0) = x0.

There exist constants K̃p such that

E‖y(t)‖p
E ≤ e−pt‖x0‖p

E + K̃p. (2.17)

Denote by z the difference z(t) = x(t) − y(t). It then follows that z satisfies the ordinary

differential equation

dz

dt
= L̃z(t) + F̃ (x(t)) +Ky(t), z(0) = 0.

Since L̃ is bounded from H̃ to H̃ by (A7) and F̃ (x)+Ky ∈ H̃ for every x, y ∈ E by Lemma 2.8,

it follows that z(t) ∈ H̃ for all times. Furthermore, we have the following bound on its moments:

d‖z‖2H̃
dt

≤ −2w‖z‖2H̃ + 〈F̃ (x), x− y〉H̃ + 〈Ky, z〉H̃

≤ C − 2w‖z‖2H̃ +
w

2
‖z‖2H̃ + C(1 + ‖y‖E)N +

1

2w
‖Ky‖2H̃

≤ −w‖z‖2H̃ + C(1 + ‖y‖E)N .

Using Gronwall’s lemma it thus follows from (2.17) that x satisfies a bound of the type (2.16)

for every p ≥ 0.

3 Stationary Distributions of Semilinear SPDEs

In this section we give an explicit representation of the stationary distribution of (2.1) and (2.14)

when F is a gradient, by comparing it to the stationary distribution of the linear equation

dz

dt
(t) = Lz(t) +

√
2
dw

dt
(t) ∀t ≥ 0

z(0) = 0.

(3.1)

The main results are stated in Theorems 3.4 and 3.6.

The solution of (3.1) is the process z from Lemma 2.1 and its stationary distribution is the

Gaussian measure ν = N (0,−L−1). In this section we identify, under the assumptions from

section 2 and with F = U ′ for a Fréchet differentiable function U : E → R, the stationary

distribution of the equations (2.1) and (2.14). It transpires to be the measure µ which has the

Radon-Nikodym derivative

dµ = c exp(U ) dν
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with respect to the stationary distribution ν of the linear equation, where c is the appropriate

normalisation constant. In the next section we will see that there are no other stationary distribu-

tions.

The results here are slight generalisations of the results in [Zab88]. Our situation differs

from the one in [Zab88] in that we allow the nonlinearity U ′ to take values in E∗ instead of H,

and that we consider preconditioning for the SPDE. We have scaled the noise by
√

2 to simplify

notation. Where possible we refer to the proofs in [Zab88] and describe in detail arguments

which require non-trivial extensions of that paper.

Let (en)n∈N be an orthonormal set of eigenvectors of L in H. For n ∈ N let En be the

subspace spanned by e1, . . . , en and let Πn be the orthogonal projection ontoEn. From [Zab88,

Proposition 2] we know that under assumption (A2) we have En ⊆ E for every n ∈ N.

Lemma 3.1 Assume that assumptions (A1) and (A2) are satisfied. Then there are linear op-

erators Π̂n : E → En which are uniformly bounded in the operator norm on E and satisfy

Π̂nΠn = Π̂n and ‖Π̂nx− x‖E → 0 as n→∞.

Proof. The semigroup S on H can be written as

S(t)x =

∞X
k=1

e−tλk 〈ek, x〉ek

for all x ∈ H and t ≥ 0 where the series converges in H. Since there is a constant c1 > 0

with ‖x‖H ≤ c1‖x‖E and from [Zab88, Proposition 2] we know there is a constant c2 > 0 with

‖ek‖E ≤ c2
√
λk, we get

‖e−tλk 〈ek, x〉ek‖E ≤ e−tλk‖ek‖H ‖x‖H ‖ek‖E ≤ c1c2e−tλk
p
λk ‖x‖E

for every k ∈ N. Consequently there is a constant c3 > 0 with

‖e−tλk 〈ek, x〉ek‖E ≤ c3t
−3/2λ−1

k ‖x‖E .

Now define Π̂n by

Π̂nx =

nX
k=1

e−tnλk 〈ek, x〉ek (3.2)

where

tn =
“ ∞X

k=n+1

λ−1
k

”1/3

.



STATIONARY DISTRIBUTIONS OF SEMILINEAR SPDES 18

(This series converges since Assumption (A2) implies that L−1 is trace class.) Then

‖(S(tn)− Π̂n)x‖E ≤ c3t
−3/2
n

∞X
k=n+1

λ−1
k ‖x‖E = c3t

3/2
n ‖x‖E .

We have ‖Π̂n‖E ≤ ‖S(tn) − Π̂n‖E + ‖S(tn)‖E . Since S is strongly continuous on E, the

norms ‖S(tn)‖E are uniformly bounded. Thus the operators Π̂n are uniformly bounded and

since tn → 0 we get ‖Π̂nx − x‖E ≤ ‖S(tn)x − Π̂nx‖E + ‖S(tn)x − x‖E → 0 as n → ∞.

Since the eigenvectors en are contained in each of the spaces Hα, we can consider Π̂n,

as defined by (3.2), to be an operator between any two of the spaces E, E∗, H, and Hα for

all α ∈ R. In the sequel we will just write Π̂n for all of these operators. Taken from H to H

this operator is self-adjoint. The adjoint of the operator Π̂n from E to E is just the Π̂n we get

by using (3.2) to define an operator from E∗ to E∗. Therefore in our notation we never need to

write Π̂∗N . As a consequence of Lemma 3.1 the operators Π̂n are uniformly bounded from E∗

to E∗.

Denote the space of bounded, continuous functions from E to R by Cb(E). We state and

prove a modified version of [Zab88, Theorem 2].

Theorem 3.2 Assume that assumptions (A1), (A2) are satisfied. Let G be a positive definite,

self-adjoint operator on H, let U : E → R be bounded from above and Fréchet-differentiable,

and for n ∈ N let (Pn
t )t>0 be the semigroup on Cb(E) which is generated by the solutions of

dx(t) = Gn

“
Lx+ Fn(x(t))

”
dt+

√
2G1/2

n Πn dw (3.3)

where Un = U ◦ Π̂n, Fn = U ′n, Gn = Π̂nGΠ̂n and w is a cylindrical Wiener process. Define

the measure µ by

dµ(x) = eU (x) dν(x)

where ν = N (0,−L−1). Let (Pt)t>0 be a semigroup on Cb(E) such that Pn
t ϕ(xn) → Ptϕ(x)

for every ϕ ∈ Cb(E), for every sequence (xn) with xn ∈ En and xn → x ∈ E, and for every

t > 0. Then the semigroup (Pt)t>0 is µ-symmetric.

Proof. From [Zab88, Theorem 1] we know that the stationary distribution of z is ν and from the

finite dimensional theory we know that (3.3) is reversible with a stationary distribution µn which
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is given by

dµn(x) = cn eUn(x) dνn(x),

where νn = ν ◦ Π−1
n and cn is the appropriate normalisation constant. Thus for all continuous,

bounded ϕ,ψ : E → R we haveZ
E

ϕ(x)Pn
t ψ(x) dµn(x) =

Z
E

ψ(x)Pn
t ϕ(x) dµn(x)

and substitution gives Z
E

ϕ(Πnx)Pn
t ψ(Πnx) eU (Π̂nx) dν(x)

=

Z
E

ψ(Πnx)Pn
t ϕ(Πnx) eU (Π̂nx) dν(x).

for every t ≥ 0 and every n ∈ N.

As in the proof of [Zab88, Theorem 2] we get Πnx → x in E for ν-a.a. x. Since U is

bounded from above and continuous and ϕ,ψ ∈ Cb(E) we can use the dominated convergence

theorem to concludeZ
E

ϕ(x)Ptψ(x) eU (x) dν(x) =

Z
E

ψ(x)Ptϕ(x) eU (x) dν(x).

This shows that the semigroup (Pt)t>0 is µ-symmetric.

3.1 The non-preconditioned case

We will apply Theorem 3.2 in two different situations, namely for G = I (in this subsection) and

for G ≈ −L−1 (in the next subsection). The case G = I is treated in [Zab88, Proposition 5]

and [Zab88, Theorem 4]. Since in the present text we allow the nonlinearity U ′ to take values

in E∗ instead of H, we repeat the (slightly modified) result here.

Lemma 3.3 For n ∈ N let Fn, F : E → E∗, T > 0, and ψn, ψ : [0, T ] → E be continuous

functions such that the following conditions hold.

• For every r > 0 there is a Kr > 0 such that ‖Fn(x) − Fn(y)‖E∗ ≤ Kr‖x − y‖E for

every x, y ∈ E with ‖x‖E , ‖y‖E ≤ r and every n ∈ N.

• Fn(x) → F (x) in E∗ as n→∞ for every x ∈ E.

• ψn → ψ in C([0, T ], E) as n→∞.
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• There is a p > 1 with Z T

0

‖S(s)‖ p
E∗→E ds <∞. (3.4)

Let un, u : [0, T ] → E be the solutions of

un(t) =

Z t

0

S(t− s)Fn(un(s)) ds+ ψn(t) (3.5)

u(t) =

Z t

0

S(t− s)F (u(s)) ds+ ψ(t). (3.6)

Then un → u in C([0, T ], E).

Proof. We have

‖un(t)− u(t)‖E ≤
‚‚‚Z t

0

S(t− s)(Fn(u(s))− F (u(s))) ds
‚‚‚

E

+
‚‚‚Z t

0

S(t− s)(Fn(un(s))− Fn(u(s))) ds
‚‚‚

E

+
‚‚‚ψn(t)− ψ(t)

‚‚‚
E

= I1(t) + I2(t) + I3(t)

for all t ∈ [0, T ]. We can choose q > 1 with 1/p+ 1/q = 1 to get

I1(t) ≤
Z t

0

‖S(t− s)(Fn(u(s))− F (u(s)))‖E ds

≤
Z t

0

‖S(t− s)‖E∗→E‖Fn(u(s))− F (u(s))‖E∗ ds

≤
“Z T

0

‖S(t− s)‖p
E∗→E ds

”1/p“Z T

0

‖Fn(u(s))− F (u(s))‖q
E∗ ds

”1/q

.

By dominated convergence the right hand side converges to 0 uniformly in t as n→∞.

For n ∈ N and r > 0 define

τn,r = inf
n
t ∈ [0, T ]

˛̨̨
‖u(t)‖E ≥ r or ‖un(t)‖E ≥ r

o
,

with the convention inf ∅ = T . For t ≤ τn,r we have

I2(t) ≤ Kr

Z t

0

‖S(t− s)‖E∗→E‖un(s)− u(s)‖E ds

and consequently

‖un(t)− u(t)‖E ≤ sup
0≤t≤T

I1(t) + ‖ψn(t)− ψ(t)‖E

+Kr

Z t

0

‖S(t− s)‖E∗→E‖un(s)− u(s)‖E ds.
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Using Gronwall’s lemma we can conclude

‖un(t)− u(t)‖E ≤
“

sup
0≤t≤T

I1(t) + ‖ψn(t)− ψ(t)‖E

”
· exp

“
Kr

Z T

0

‖S(s)‖E∗→E ds
”

for all t ≤ τn,r .

Now choose r > 0 such that sup0≤t≤T ‖u(t)‖E ≤ r/2. Then for sufficiently large n and

all t ≤ τn,r we have ‖un(t) − u(t)‖E ≤ r/2 and thus sup0≤t≤T ‖u(t)‖E ≤ r. This implies

τn,r = T for sufficiently large n and the result follows.

With all these preparations in place we can now show that the measure µ is a stationary

distribution of the non-preconditioned equation. The proof works by approximating the infinite

dimensional solution of (2.1) by finite dimensional processes. Lemma 3.3 shows then that these

finite dimensional processes converge to the solution of (2.1) and Theorem 3.2 finally shows that

the corresponding stationary distributions converge, too.

Theorem 3.4 Let U : E → R be bounded from above and Fréchet differentiable. Assume that

L and F = U ′ satisfy assumptions (A1)–(A4). Define the measure µ by

dµ(x) = c eU (x) dν(x), (3.7)

where ν = N (0,−L−1) and c is a normalisation constant. Then (2.1) has a unique mild

solution for every initial condition x0 ∈ E and the corresponding Markov semigroup on E is

µ-symmetric. In particular µ is an invariant measure for (2.1).

Proof. Let x0 ∈ E. From Theorem 2.6 the SDE (2.1) has a mild solution x starting in x0.

Defining ψ(t) = S(t)x0 + z(t) where z is given by (3.1) we can a.s. write this solution in the

form (3.6). Now consider a sequence (xn
0 ) with xn

0 ∈ En for all n ∈ N and xn
0 → x0 as n→∞.

Let G = I . Then for every n ∈ N the finite dimensional equation (3.3) has a solution xn with

start in xn
0 and this solution can a.s. be written in the form (3.5) with ψn = S(t)xn

0 + zn(t) and

zn = Πnz. From [Zab88, Proposition 1] we get that zn → z as n → ∞ and thus ψn → ψ in

C([0, T ], E) as n→∞.

Define Fn as in Theorem 3.2. Then we have Fn(x) = Π̂nF (Π̂nx) and thus Fn(x) → F (x)

as n → ∞ for every x ∈ E. Also, since F is locally Lipschitz and Π̂n : E → E as well as
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Π̂n : E∗ → E∗ are uniformly bounded, the Fn are locally Lipschitz where the constant can be

chosen uniformly in n. From (2.3) we getZ T

0

‖S(t)‖E∗→E dt ≤ c2

Z T

0

t−2α dt <∞

for every T > 0 and thus condition (3.4) is satisfied. Now we can use Lemma 3.3 to conclude

that xn → x in C([0, T ], E) as n → ∞ almost surely. Using dominated convergence we see

that Pn
t ϕ(xn) → Ptϕ(x) for every ϕ ∈ Cb(E) and every t > 0, where (Pn

t ) are the semigroups

from Theorem 3.2 and (Pt)t>0 is the semigroup generated by the solutions of (2.1). Now we can

apply Theorem 3.2 to conclude that (Pt)t>0 is µ-symmetric.

3.2 The preconditioned case

For the preconditioned case we require the covariance operator G of the noise to satisfy assump-

tions (A6) and (A7), it particular G is trace class. Thus we can use strong solutions of (3.3) here.

The analogue of Lemma 3.3 is given in the following lemma.

Lemma 3.5 Let T > 0 and for n ∈ N let L̃n, L̃ be bounded operators on E and F̃n, F̃ : E →

E as well as ψn, ψ : [0, T ] → E be continuous functions such that the following conditions

hold.

• L̃nx→ L̃x and F̃n(x) → F̃ (x) in E as n→∞ for every x ∈ E

• For every r > 0 there is a Kr > 0 such that

‖F̃n(x)− F̃n(y)‖E ≤ Kr‖x− y‖E (3.8)

for every x, y ∈ E with ‖x‖E , ‖y‖E ≤ r and every n ∈ N.

• ψn → ψ in C([0, T ], E) as n→∞.

Let un, u : [0, T ] → E be solutions of

un(t) =

Z t

0

(L̃nun(s) + F̃n(un(s))) ds+ ψn(t) (3.9)

u(t) =

Z t

0

(L̃u(s) + F̃ (u(s))) ds+ ψ(t) (3.10)

Then un → u in C([0, T ], E).
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Proof. We have

‖un(t)− u(t)‖E

≤
Z t

0

‚‚‚L̃nu(s)− L̃u(s) + F̃n(u(s))− F̃ (u(s))
‚‚‚

E
ds

+

Z t

0

‚‚‚L̃nun(s)− L̃nu(s) + F̃n(un(s))− F̃n(u(s))
‚‚‚

E
ds

+
‚‚‚ψn(t)− ψ(t)

‚‚‚
E

= I1(t) + I2(t) + I3(t)

for all t ∈ [0, T ]. By the uniform boundedness principle we have supn∈N ‖G̃n‖E <∞ and thus

we can choose Kr large enough to get

‖L̃nx− L̃ny + F̃n(x)− F̃n(y)‖E ≤ Kr‖x− y‖E

for every x, y ∈ E with ‖x‖E , ‖y‖E ≤ r and every n ∈ N. Also we have

sup
0≤t≤T

I1(t) ≤
Z T

0

‚‚‚L̃nu(s)− L̃u(s) + F̃n(u(s))− F̃ (u(s))
‚‚‚

E
ds −→ 0

as n→∞ by dominated convergence.

For n ∈ N and r > 0 define

τn,r = inf
n
t ∈ [0, T ]

˛̨̨
‖u(t)‖E ≥ r or ‖un(t)‖E ≥ r

o
,

with the convention inf ∅ = T . For t ≤ τn,r we have

I2(t) ≤ Kr

Z t

0

‖un(s)− u(s)‖E ds

and consequently

‖un(t)− u(t)‖E ≤ sup
0≤t≤T

I1(t) +Kr

Z t

0

‖un(s)− u(s)‖E ds+ ‖ψn(t)− ψ(t)‖E .

Using Gronwall’s lemma we can conclude

‖un(t)− u(t)‖E ≤ eKrT
“

sup
0≤t≤T

I1(t) + ‖ψn(t)− ψ(t)‖E

”
for all t ≤ τn,r .

Now choose r > 0 such that sup0≤t≤T ‖u(t)‖E ≤ r/2. Then for sufficiently large n and

all t ≤ τn,r we have ‖un(t) − u(t)‖E ≤ r/2 and thus sup0≤t≤T ‖u(t)‖E ≤ r. This implies

τn,r = T for sufficiently large n and the result follows.
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The following theorem shows now that the measure µ is also a stationary distribution of

the preconditioned equation. The proof works again by approximating the infinite dimensional

solution of (2.1) by finite dimensional processes.

Theorem 3.6 Let U : E → R be bounded from above and Fréchet differentiable. Assume that

the operators G and L and the drift F = U ′ satisfy assumptions (A1)–(A3), and (A5)–(A7).

Define the measure µ by

dµ(x) = c eU (x) dν(x), (3.11)

where ν = N (0,−L−1) and c is a normalisation constant. Then (2.14) has a unique strong so-

lution for every initial condition x0 ∈ E and the corresponding semigroup onE is µ-symmetric.

In particular µ is an invariant measure for (2.14).

Proof. Let x0 ∈ E. From Theorem 2.10 SDE (2.14) has a strong solution x starting in x0.

Defining ψ(t) = x0 + w̃(t) where w̃ = G1/2w is a G-Wiener process, we can a.s. write this

solution in the form (3.10). Now consider a sequence (xn
0 ) with xn

0 ∈ En for all n ∈ N

and xn
0 → x0 as n → ∞. Then for every n ∈ N the finite dimensional equation (3.3) has

a solution xn which starts in xn
0 and this solution can a.s. be written in the form (3.9) with

ψn = xn
0 + Π̂nG1/2w(t). Since the function ψ is continuous, it can approximated arbitrarily

well by a piecewise affine function ψ̂. Since the operators Π̂n are equibounded in E and satisfy

Π̂ny → y for every y ∈ E, it is easy to see that Π̂nψ̂ → ψ̂ in C([0, T ], E). On the other hand

‖ψn− Π̂nψ̂‖E is bounded by ‖Π̂nx0−xn
0 ‖E + ‖Π̂n‖E→E‖ψ− ψ̂‖E , so that it gets arbitrarily

small as well. This shows that ψn converges indeed to ψ in C([0, T ], E).

Because of (A6) and (A7) we have ‖G‖E→E <∞ and ‖GL‖E→E <∞. Let F = U ′ and

define Fn and Gn as in Theorem 3.2. Then we have Fn(x) = Π̂nF (Π̂nx). Let L̃n = GnL =

Π̂nGLΠ̂n, L̃ = GL, F̃n = GnFn, and F̃ = GF . Since ‖Π̂n‖E→E ≤ c for all n ∈ N and

some constant c < ∞ and since ‖Π̂nxn − x‖E ≤ ‖Π̂nxn − Π̂nx‖E + ‖Π̂nx − x‖E we get

Π̂nxn → x in E as n→∞ for every sequence (xn) with xn → x in E. Since GL is a bounded

operator on E, we can use this fact to get L̃nx → L̃x in E as n → ∞ for every x ∈ E. Since

GL is bounded from E to E and L(E) ⊇ L(H1/2) = H−1/2, the operator G is defined on all of

E∗ ⊆ H−1/2 and thus bounded from E∗ to E and we get F̃n(x) → F̃ (x) in E as n → ∞ for

every x ∈ E. Since F is locally Lipschitz and the Π̂n are uniformly bounded, both as operators
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from E to E and from E∗ to E∗, the Fn are locally Lipschitz where the constant can be chosen

uniformly in n. Therefore all the conditions of Lemma 3.5 are satisfied and we can conclude that

xn → x in C([0, T ], E) as n→∞ almost surely.

Using dominated convergence we see that Pn
t ϕ(xn) → Ptϕ(x) for every ϕ ∈ Cb(E) and

every t > 0, where (Pn
t ) are the semigroups from Theorem 3.2 and (Pt)t>0 is the semigroup

generated by the solutions of (2.1). Now we can apply Theorem 3.2 to conclude that (Pt)t>0 is

µ-symmetric.

4 Ergodic Properties of the Equations

In this section, we show that the measure µ from theorems 3.4 and 3.6 is actually the only

invariant measure for both (2.1) and (2.14). This result is essential to justify the use of ergodic

averages of solutions to (2.1) or (2.14) in order to sample from µ. We also show that a weak law

of large numbers holds for every (and not just almost every) initial condition. Theorems 4.10

and 4.11 summarise the main results.

These results are similar to existing results for (2.1), although our framework includes non-

linear boundary conditions and distribution-valued forcing in the equation. Furthermore, our

analysis seems to be completely new for (2.14). The problem is that (2.14) does not have any

smoothing property. In particular, it lacks the strong Feller property which is an essential tool

in most proofs of uniqueness of invariant measures for SPDEs. We show however that it enjoys

the recently introduced asymptotic strong Feller property [HM04], which can in many cases be

used as a substitute to the strong Feller property, as far as properties of the invariant measures

are concerned.

Recall that a Markov semigroup Pt over a Banach space is called strong Feller if it maps

bounded measurable functions into bounded continuous functions. It can be shown by a standard

density argument that if Assumption 1 holds for Pt, then it also has the strong Feller property.

We will not give the precise definition of the asymptotic strong Feller property in the present

article since this would require some preliminaries that are not going to be used in the sequel.

All we are going to use is that, in a similar way, if a Markov semigroupPt satisfies Assumption 2,

then it is also asymptotically strong Feller.
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4.1 Variations of the strong Feller property

Given a Markov process on a separable Banach space E, we call Pt the associated semigroup

acting on bounded Borel measurable functions ϕ : E → R. Let us denote by C1
b (E) the space of

bounded functions fromE to R with bounded Fréchet derivative. Let us for the moment consider

processes that satisfy the following property:

Assumption 1 The Markov semigroup Pt maps C1
b (E) into itself. Furthermore, there exists a

time t and a locally bounded function C : E → R+ such that the bound

‖DPtϕ(x)‖ ≤ C(x)‖ϕ‖∞, (4.1)

holds for every ϕ : E → R in C1
b (E) and every x ∈ E.

It is convenient to introduce

B(x) = {y ∈ E | ‖y − x‖E ≤ 1}, C̄(x) = sup
y∈B(x)

C(y). (4.2)

Note that a density argument given in [DPZ96] shows that if (4.1) holds for Fréchet differentiable

functions, then Ptϕ is locally Lipschitz continuous with local Lipschitz constant C(x)‖ϕ‖∞ for

every bounded measurable function ϕ. In particular, this shows that

‖Pt(x, · )− Pt(y, · )‖TV ≤ 1
2
C̄(x)‖x− y‖E , (4.3)

for every x, y ∈ E with ‖x − y‖E ≤ 1. (With the convention that the total variation distance

between mutually singular measures is 1.) Recall that the support of a measure is the smallest

closed set with full measure. We also follow the terminology in [DPZ96, Var01] that an invariant

measure for a Markov semigroup is called ergodic if the law of the corresponding stationary

process is ergodic for the time shifts. The following result follows immediately:

Lemma 4.1 Let Pt be a Markov semigroup on a separable Banach space E that satisfies (4.3)

and let µ and ν be two ergodic invariant measures for Pt. If µ 6= ν, then one has ‖x − y‖ ≥

min{1, 2/C̄(x)} for any two points (x, y) ∈ suppµ× supp ν.

Proof. Assume by contradiction that there exists a point (x, y) ∈ suppµ × supp ν with ‖x −

y‖ < 2/C̄(x) and ‖x − y‖ < 1. Let δ < 1 − ‖x − y‖ be determined later and call Bδ(x) the
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ball of radius δ centred in x. With these definitions, it is easy to check from (4.3) and the triangle

inequality that one has

‖Pt(x′, · )− Pt(y′, · )‖TV ≤ 1
2

(2δ + ‖x− y‖)C̄(x),

for every x′ ∈ Bδ(x) and y′ ∈ Bδ(y). Since we assumed that ‖x− y‖C̄(x)/2 < 1 it is possible,

by taking δ sufficiently small, to find a strictly positive α > 0 such that

‖Pt(x′, · )− Pt(y′, · )‖TV ≤ 1− α.

The invariance of µ and ν under Pt implies that

‖µ− ν‖TV ≤
Z

E2
‖Pt(x̃, · )− Pt(ỹ, · )‖TV µ(dx̃)ν(dỹ) ≤ 1− αµ(Bδ(x))ν(Bδ(y)).

Since the definition of the support of a measure implies that both µ(Bδ(x)) and ν(Bδ(y)) are

non-zero, this contradicts the fact that µ and ν are distinct and ergodic, and therefore mutually

singular.

It turns out in our case that we are unfortunately not able to prove that (4.1) holds for the

equations under consideration. However, it follows immediately from the proof of Lemma 4.1

that one has the following very similar result:

Corollary 4.2 Let Pt be a Markov semigroup on a separable Banach space E such that there

exists a continuous increasing function f : R+ → R+ with f (0) = 0, f (1) = 1 and

‖Pt(x, · )− Pt(y, · )‖TV ≤ C̄(x)f (‖x− y‖), (4.4)

for every x, y ∈ E with ‖x− y‖ ≤ 1. Let µ and ν be two ergodic invariant measures for Pt. If

µ 6= ν, then one has f (‖x−y‖) ≥ min{1, 1/C̄(x)} for any two points (x, y) ∈ suppµ×supp ν.

We will see in Theorem 4.7 below that the semigroups generated by the non-preconditioned

equations considered in the present article satisfy the smoothing property (4.4). However, even

the slightly weaker strong Feller property can be shown to fail for the semigroups generated by

the preconditioned equations. They however satisfy the following somewhat weaker condition.

Assumption 2 The Markov semigroup Pt maps C1
b (E) into itself. Furthermore, there exists a

decreasing function f : R+ → R+ converging to 0 at infinity and a locally bounded function
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C : E → R+ such that the bound

‖DPtϕ(x)‖ ≤ C(x)(‖ϕ‖∞ + f (t)‖Dϕ‖∞), (4.5)

holds for every ϕ : E → R in C1
b (E) and every x ∈ H.

A modification of the argument of Lemma 4.1 yields:

Lemma 4.3 Let Pt be a Markov semigroup on a separable Banach space E that satisfies As-

sumption 2 and let µ and ν be two ergodic invariant measures for Pt. If µ 6= ν, then one has

‖x − y‖ ≥ min{1, 2/C̄(x)} for any two points (x, y) ∈ suppµ × supp ν where C̄ is given

in (4.2).

Proof. Given a distance d on E, recall that the corresponding Wasserstein distance on the space

of probability measures on E is given by

‖π1 − π2‖d = inf
π∈C(π1,π2)

Z
E2
d(x, y)π(dx, dy), (4.6)

where C(π1, π2) denotes the set of probability measures on E2 with marginals π1 and π2.

Given the two invariant measures µ and ν, we also recall the useful inequality

‖µ− ν‖d ≤ 1−min{µ(A), ν(A)}
“
1− max

y,z∈A
‖Pt(z, · )− Pt(y, · )‖d

”
, (4.7)

valid for every t ≥ 0 and every measurable set A (see for example [HM04] for a proof).

For ε > 0, we define onH the distance dε(x, y) = 1∧ε−1‖x−y‖, and we denote by ‖ · ‖ε

the corresponding seminorm on measures given by (4.6). One can check from the definitions

that, in a way similar to the proof of [HM04, Prop. 3.12], (4.5) implies that the bound

‖Pt(x, · )− Pt(y, · )‖ε ≤ 1
2
‖x− y‖C̄(x)

“
1 +

2f (t)
ε

”
,

holds for every (x, y) ∈ E2 with ‖x − y‖ ≤ 1, so that the same argument as in the proof of

Lemma 4.1 yields α > 0 so that for δ sufficiently small one has the bound

‖Pt(x, · )− Pt(y, · )‖ε ≤ (1− α)
“
1 +

2f (t)
ε

”
,

for every x′ ∈ Bδ(x) and y′ ∈ Bδ(y). Note that one can choose δ independently of ε. Choosing

t as a function of ε sufficiently large so that f (t) < αε/2 say, it follows from (4.7) that

‖µ1 − µ2‖ε ≤ 1− α2 min{µ1(Bδ(x)), µ2(Bδ(x))},
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for every ε > 0. Since limε→0 ‖µ1 − µ2‖ε = ‖µ1 − µ2‖TV (see [HM04]), the claim follows in

the same way as in Lemma 4.1.

4.2 Conditions for (4.4) to hold

In this subsection, we show that the equation (2.1) arising from the non-preconditioned case

satisfies the bound (4.4). Our main result is the following theorem.

The proof of the results is closely related to standard arguments that can be found for ex-

ample in [DPZ96, Cer99, MS99]. However, the situation in these works is different from ours,

mainly because we only have local bounds on the derivative of the flow with respect to the initial

condition. This forces us to use an approximation argument which in turn only yields a bound of

type (4.4) rather than the bound (4.1) obtained in the previously mentioned works. The present

proof unfortunately requires (4.8) as an additional assumption on the nonlinearity F , even though

we believe that this is somewhat artificial.

Theorem 4.4 Assume that assumptions (A1)–(A4) hold. Assume furthermore that for everyR >

0, there exists a Fréchet differentiable function FR : E → E∗ such that

FR(x) = F (x), for ‖x‖E ≤ R,

FR(x) = 0, for ‖x‖E ≥ 2R,

(4.8)

and such that there exist constants C and N such that

‖FR(x)‖+ ‖DFR(x)‖ ≤ C(1 +R)N ,

for every x ∈ E. Then, there exist exponents Ñ > 0 and α > 0 such that the solutions to the

SPDE (2.1) satisfy (4.4) with f (r) = rα and C̄(x) = (1 + ‖x‖E)Ñ .

Proof. Fix x0 ∈ E and define R = 2‖x0‖E . Denote by ΦR
t : E → E the flow induced by the

solutions to the truncated equation

dx = Lx dt+ FR(x) dt+
√

2 dw(t). (4.9)

Denote furthermore by z the solution to the linearised equation defined in (2.4). It follows im-

mediately from Picard iterations that ΦR
t is Fréchet differentiable and that there exists a constant

C such that

‖ΦR
t (x)‖E ≤ ‖x‖E + ‖z(t)‖E + Ct1−2α(1 +R)N ,

‖DΦR
t (x)‖E→E ≤ 2,

(4.10)
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for every t with

t1−2α ≤ 1

C(1 +R)N
. (4.11)

Note that the bounds in (4.10) are almost sure bounds and that (4.11) is a deterministic condition

on the time interval we are allowed to consider.

Denote now by PR
t the Markov semigroup generated by (4.9). For an arbitrary function

ϕ ∈ C1
b (E) and an arbitrary vector ξ ∈ E, the Bismut-Elworthy-Li formula [EL94, DPZ96]

yields

|DPR
t ϕ(x)ξ| = 1

t
E

“
ϕ(ΦR

t (x))
Z t

0

〈DΦR
s (x)ξ, dw(s)〉

”
≤ 1

t
‖ϕ‖∞

“
E

Z t

0

‖DΦR
s (x)ξ‖2H ds

”1/2

.

Combining this with (4.10) shows that there exists a constant C such that

‖PR
t (x, · )− PR

t (y, · )‖TV ≤
C√
t
‖x− y‖E , (4.12)

provided that t is sufficiently small so that (4.11) holds. The bound (4.10) shows that there exists

θ > 0 such that

P
“

sup
s∈[0,t]

‖x(s)‖E ≥ R
”
≤ Ctθ

R
, (4.13)

for every t such that (4.11) holds and every x0 such that ‖x0‖E ≤ R/2.

Furthermore, it is clear that the solution to (4.9) agrees with the solution to (2.1) as long as

it stays inside of a ball of radius R, so that (4.13) implies that under the same conditions,

‖Pt(x, · )− PR
t (x, · )‖TV ≤

Ctθ

R
. (4.14)

Combining (4.14) and (4.12) yields

‖Pt(x, · )− Pt(y, · )‖TV ≤
C√
t
‖x− y‖E +

Ctθ

R
, (4.15)

for all pairs (x, y) ∈ E×E such that sup{‖x‖E , ‖y‖E} ≤ R/2 and all times t satisfying (4.11).

Since one has

‖Pt(x, · )− Pt(y, · )‖TV ≤ ‖Ps(x, · )− Ps(y, · )‖TV

for s ≤ t, (4.15) actually implies that

‖Pt(x, · )− Pt(y, · )‖TV ≤ inf
s≤t

“ C√
s
‖x− y‖E +

Csθ

R

”
,

which immediately yields a bound of the type (4.4) holds, with C̄(x) growing polynomially in

‖x‖E .
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Corollary 4.5 Let U : E → R be bounded from above and Fréchet differentiable. Assume

that L and F = U ′ satisfy the assumptions of Theorem 4.4. Then the SDE (2.1) has a unique

stationary distribution, which is given by (3.7).

Proof. Denote by E the set of all ergodic invariant measures for (2.1). It follows from Theo-

rem 3.4 that µ as given by (3.7) is an invariant measure for (2.1), so that E is not empty. Note

also that the support of µ is equal toE since the embeddingH1/2 ⊂ E is dense by (A2). Assume

now that E contains at least two elements ν1 and ν2. In this case, it follows from Theorem 4.4

that there exists an open set A ⊂ E such that A ∩ supp ν = ∅ for every ν ∈ E . Since every

invariant measure is a convex combination of ergodic invariant measures [Var01, Thm. 6.6], this

implies that µ(A) = 0, which is a contradiction to the fact that suppµ = E.

Remark 4.6 Since we obtain the strong Feller property for (2.1), as well as the existence of a

Lyapunov function (see equation (2.16)), we can apply the machinery exposed in [?] in order to

obtain the exponential convergence (in a weighted total variation norm) of transition probabilities

to the unique invariant measure. The only additional ingredient that is required is the fact that the

level sets of the Lyapunov function are ‘small’. This can be checked by a standard controllability

argument.

4.3 Conditions for (4.5) to hold

In this subsection we show that the equations arising from the non-preconditioned case satisfy a

bound of the type (4.5).

Theorem 4.7 Let L, F and G satisfy (A1)–(A3) and (A5)–(A7). Then, the Markov semigroup on

H generated by the solutions of (2.14) satisfies the bound (4.5) with C(x) ≤ C(1 + ‖x‖E)N for

some constants C and N . In particular it is asymptotically strong Feller.

Remark 4.8 Note that it is not generally true that these assumptions imply that the process is

strong Feller. A counterexample is given by the case where L̃ is minus the identity, F = 0,

and G : H → H is any positive definite trace class operator. This counterexample comes very

close to the situation studied in this paper, so that the strong Feller property is clearly not an

appropriate concept here.
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Proof. It follows from standard arguments that the evolution map Φs,t : E ×Ω → E is Fréchet

differentiable. We denote in the sequel its Fréchet derivative by Js,t.

The family of (random) linear operators Js,t : E → E that are given in the following way.

For every ξ ∈ E, Js,tξ solves the equation

∂tJs,tξ = L̃Js,tξ +DF̃ (x(t)) Js,tξ, Js,sξ = ξ.

We also define a family of (random) linear operators At : L2([0, t],H) → E by

Atv =

Z t

0

Js,tG1/2v(s) ds.

This is well-defined since G1/2 maps H into E by Lemma 2.8. Recall that Atv is the Malliavin

derivative of the flow at time t in the direction of the Cameron-Martin vector v. We will also

denote this by Atv = DvΦ0,t.

Given a perturbation ξ in the initial condition for x, the idea is to find a perturbation v in the

direction of the Cameron-Martin space of the noise such that these perturbations ‘cancel’ each

other for large times t. Given a square-integrable H-valued process v, we therefore introduce

the notation

ρ(t) = J0,tξ −Atv[0,t],

where vJ denotes the restriction of v to the interval J . Note that ρ(t) is the solution to the

differential equation

∂tρ(t) = L̃ρ(t) +DF̃ (x(t)) ρ(t)− G1/2 v(t), ρ(0) = ξ ∈ E. (4.16)

The reason for introducing this process ρ is clear from the approximate integration by parts

formula (see [HM04] for more details), which holds for every bounded function ϕ : E → R

with bounded Fréchet derivative:

〈DPtϕ(x), ξ〉 = E
“
〈D(ϕ(xt)), ξ〉

”
= E

“
(Dϕ)(xt)J0,tξ

”
= E

“
(Dϕ)(xt)Atv[0,t]

”
+ E((Dϕ)(xt)ρt)

= E
“
Dv[0,t]ϕ(xt)

”
+ E((Dϕ)(xt)ρt)

= E
“
ϕ(xt)

Z t

0

〈v(s), dw(s)〉
”

+ E((Dϕ)(xt)ρt)

≤ ‖ϕ‖∞

s
E

Z t

0

‖v(s)‖2 ds+ ‖Dϕ‖∞E‖ρt‖E . (4.17)
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In this formula, w denotes a cylindrical Wiener process on H, so that w̃ = G1/2w. This formula

is valid for every adapted square integrable H-valued process v.

It remains to choose an adapted process v such that ρ(t) → 0. For

v(t) = G−1/2(DF̃ (x(t)) +K)e−tξ.

it is easy to check that equation (4.16) reduces to ∂tρ = −ρ, and so ‖ρ(t)‖E = e−t. Fur-

thermore, Theorem 2.10 together with assumptions (A3) and (A7) ensures that E‖v(t)‖2H ≤

C(1 + ‖x‖E)N e−wt for some constants C, N , and w, so that (4.17) immediately implies (4.5).

Corollary 4.9 Let U : E → R be bounded from above, Fréchet differentiable, and such that

(A1)–(A3) and (A5)–(A7) hold for F = U ′. Then the SDE (2.14) has a unique stationary

distribution, which is given by (3.11).

Proof. The proof follows exactly the same pattern as the proof of Corollary 4.5, but we replace

references to Theorem 4.4 by references to Theorem 4.7 and Lemma 4.3.

4.4 Law of large numbers

In this section, we use the results of the previous section in order to show that the solutions to

our equations satisfy a law of large numbers. We first show that

Theorem 4.10 Assume that (A1)–(A4) and (4.8) hold and let µ be an ergodic invariant proba-

bility measure for (2.1). Then, one has

lim
T→∞

1

T

Z T

0

ϕ(x(t)) dt =

Z
E

ϕ(x)µ(dx), almost surely (4.18)

for every initial condition x0 in the support of µ and for every bounded measurable function

ϕ : E → R.

Proof. Denote byA ⊂ E the set of initial conditions for which (4.18) holds and by S the support

of µ. We know from Birkhoff’s ergodic theorem that µ(A) = 1, and therefore that A is dense in

S. Let now x0 ∈ S and ε > 0 be arbitrary and choose a sequence xn
0 of points in A converging

to x0.
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Fix an arbitrary time t0 > 0. Since by Theorem 4.4 Pt(x, · ) is continuous in x (in the

topology of total variation), there exists n such that

‖Pt0 (xn
0 , · )− Pt0 (x0, · )‖TV < ε. (4.19)

Let xn( · ) denote the trajectories starting from xn
0 and x(t) denote the trajectories starting from

x0. By the Markov property, the bound (4.19) implies that there exists a coupling between the

laws of xn( · ) and x( · ) such that with probability larger than 1 − ε, one has xn(t) = x(t) for

every t ≥ t0. This immediately shows that

lim
T→∞

1

T

Z T

0

ϕ(x(t)) dt =

Z
E

ϕ(x)µ(dx),

on a set of measure larger than 1− ε. Since ε was arbitrary, this shows the desired result.

In the preconditioned case, we have the following somewhat weaker form of the law of large

numbers:

Theorem 4.11 Assume that (A1)–(A3) and (A5)–(A7) hold and let µ be an ergodic invariant

probability measure for (2.14). Then, one has

lim
T→∞

1

T

Z T

0

ϕ(x(t)) dt =

Z
E

ϕ(x)µ(dx), in probability (4.20)

for every initial condition x(0) in the support of µ and for every bounded function ϕ : E → R

with bounded Fréchet derivative.

Proof. Denote as before by A ∈ E the set of initial conditions for which (4.20) holds and by S

the support of µ. Since convergence in probability is weaker than almost sure convergence, we

know from Birkhoff’s ergodic theorem that µ(A) = 1, and therefore that A is dense in S.

Define

ET
ϕ (x) =

1

T

Z T

0

ϕ(x(t)) dt, with x(0) = x.

The idea is to use the following chain of equalities, valid for every pair of bounded functions

ϕ : E → R and ψ : R → R with bounded Fréchet derivatives. The symbol D denotes the

Fréchet derivative of a given function and the symbol D denotes its Malliavin derivative. One

has

DEψ(ET
ϕ (x))ξ = E

“
(Dψ)(ET

ϕ )
1

T

Z T

0

(Dϕ)(x(t))J0,tξ dt
”
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= E(Dvψ(ET
ϕ )) + E

“
(Dψ)(ET

ϕ )
1

T

Z T

0

(Dϕ)(x(t))ρ(t) dt
”

≤ E(ψ(ET
ϕ )

Z T

0

v(t) dt) +
‖Dψ‖∞‖Dϕ‖∞

T
E

Z T

0

|ρ(t)| dt

≤ C
“
‖ψ‖∞ +

‖Dψ‖∞‖Dϕ‖∞
T

”
‖ξ‖.

Denote now by µT
ϕ (x) the law of ET

ϕ (x). The above chain of inequalities shows that

‖µT
ϕ (x)− µT

ϕ (y)‖W ≤ C
“
1 +

‖Dϕ‖∞
T

”
‖x− y‖,

for some constant C, where ‖ · ‖W denotes the Wasserstein distance between two probability

measures with respect to the distance function 1 ∧ ‖x − y‖. Since the Wasserstein distance

metrises the weak convergence topology and weak convergence to a delta measure is the same as

convergence in probability to the point at which the measure is located, this implies that (4.20)

holds for every initial condition x in S.

Remark 4.12 It is possible to extend the above argument to a larger class of continuous test

functions ϕ by introducing a time-dependent smoothing (and possibly cutoff).

Remark 4.13 If we wish to obtain a statement which is valid for every initial condition, it is

in general impossible to drop the continuity assumption on ϕ. Consider for example the trivial

dynamic ẋ = −x on R with invariant measure δ0. It is obvious that if we take x0 = 1, ϕ(0) = 1,

and ϕ(x) = 0 for x 6= 0, then the left hand side of (4.20) is 0 whereas the right hand side is 1.

5 Conditioned SDEs

In this section we outline how the preceding material can be used to construct SPDEs which

sample from the distribution of conditioned SDEs. The programme outlined here will be carried

out in the subsequent sections in three specific contexts.

We start the section by explaining the common structure of the arguments used in each of

the following three sections; we also outline the required common technical tools. We then make

some remarks concerning the conversion between Hilbert space valued SDEs and SPDEs, and in

particular discuss how the framework developed in preceding sections enables us to handle the

nonlinear boundary conditions which arise.
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Consider the following Rd-valued SDEs, both driven by a d-dimensional Brownian motion,

with invertible covariance matrix BB∗:

dX = AX du+ f (X) du+B dW, X(0) = x− (5.1)

and

dZ = AZ du+B dW, Z(0) = x−. (5.2)

Our aim is to construct an SPDE which has the distribution of X , possibly conditioned by ob-

servations, as its stationary distribution. The construction consists of the following steps. We

symbolically denote the condition on X and Z by C here and we set m(u) = E(Z(u)|C).

1. Use the Girsanov formula (Lemma 5.2 below) to find the density of the distribution L(X)

w.r.t. L(Z).

2. Use results about conditional distributions (Lemma 5.3 below) to derive the density of the

conditional distribution L(X|C) w.r.t. L(Z|C). Using substitution this gives the density of

the shifted distribution L(X|C)−m w.r.t. the centred measure L(Z|C)−m.

3. Use the results of the companion paper [HSVW05] to obtain an L2-valued SDE which

has the centred Gaussian measure L(Z|C) − m as its stationary distribution. This also

gives a representation of m as the solution of a boundary value problem.

4. Use the results of sections 2 and 3 and the density from step 2 to derive an C([0, 1],Rd)-

valued SDE with stationary distribution L(X|C)−m. Use the results of section 4 to show

ergodicity of the resulting SDE.

5. Write the L2-valued SDE as an SPDE, reversing the centring from step 2 in the process.

Combining all these steps leads to an SPDE which samples from the conditional distributionL(X|C)

in its stationary measure. In the remaining part of this section we will elaborate on the parts of

the outlined programme which are common to all three of our applications.

We will assume throughout the rest of this article that the drift f for X is of the form f =

−BB∗∇V where the potential V satisfies the following polynomial growth condition:

(M) The potential V : Rd → R is a C4-function which can be written as

V (x) = M (x, . . . , x) + Ṽ (x)
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where M : (Rd)
2p

→ R is 2p-linear with

M (x, . . . , x) ≥ c|x|2p ∀x ∈ Rd

for some p ∈ N and c > 0, and Ṽ : Rd → R satisfies

|DkṼ (x)|
1 + |x|2p−k

→ 0 as |x| → ∞

for every k-fold partial derivative operator Dk with k = 0, . . . , 4.

Under condition (M) the potential V is bounded from below and grows like |x|2p as |x| → ∞.

From [Mao97, Section 2.3, Theorem 3.6] we know that under this condition on f the SDE (5.1)

has a non-exploding, unique solution.

Later, when checking assumption (A4) and the boundedness of U in Theorem 3.4, we have

to estimate terms which involve both the nonlinearity f and the linear part A of the drift. If

condition (M) is satisfied for p > 1 we will get the estimates from the superlinear growth of f .

For p = 1 we use the following, additional assumption on A:

(Q) For p = 1 the matrices A,B from (5.1) satisfy QA + A∗Q − QBB∗Q < 0 (as a

symmetric matrix), where Q ∈ Rd×d is the symmetric matrix defined by the relation

M (x, x) = 1
2
〈x,Qx〉 for all x ∈ Rd.

Notation 5.1 Introduce the inner product and related norm

〈a, b〉B = a∗(BB∗)−1b, |a|2B = 〈a, a〉B ,

defined for any invertible B.

The densities in step 1 above will be calculated from the Girsanov formula. As an abbrevia-

tion let

Φ =
1

2
(|f |2B + div f). (5.3)

When expressed in terms of V this becomes

Φ =
1

2
(|B∗∇V |2 − (BB∗) :D2V ),

where : denotes the Frobenius inner-product and D2V denotes the Hessian of V .
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Lemma 5.2 Assume that (5.1) has a solution without explosions on the interval [0, 1]. Let Q

(resp. P) be the distribution on path space C([0, 1],Rd) of the solution of (5.2) (resp. (5.1)).

Then

dP(Z) =
1

ϕ(Z)
dQ(Z)

where

lnϕ(Z) = −
Z 1

0

〈f (Z(u)), ◦ dZ(u)〉B +

Z 1

0

(Φ(Z(u)) + 〈f (Z(u)), AZ(u)〉B) du.

Proof. Since X (by assumption) and Z (since it solves a linear SDE) have no explosions, we

can apply Girsanov’s theorem [Elw82, Theorem 11A] which yields

lnϕ(Z) = −
Z 1

0

〈B−1f (Z(u)), dW (u)〉 −
Z 1

0

1

2
|f (Z(u))|2Bdu.

But Z 1

0

〈B−1f (Z(u)), dW (u)〉

=

Z 1

0

〈f (Z(u)), dZ(u)〉B − 〈f (Z(u), AZ(u)〉Bdu−
Z 1

0

|f (Z(u))|2Bdu.

Converting the first integral on the right hand side to Stratonovich form gives the desired result.

Writing the Radon-Nikodym derivative in terms of a Stratonovich integral in the lemma

above is helpful when studying its form in the case of gradient vector fields; the stochastic

integral then reduces to boundary contributions.

We will handle the conditioning in step 2 of the programme outlined above with the help of

Lemma 5.3 below. We will use it in two ways: to condition on paths X which end at X(1) =

x+; and, for the filtering/smoothing problem where X will be replaced by a pair (X,Y ), to

condition the signal (X(u))u∈[0,1] on the observation (Y (u))u∈[0,1]. Since the proof of the lemma

is elementary, we omit it here (see section 10.2 of [Dud02] for reference).

Lemma 5.3 Let P,Q be probability measures on S×T where (S,A) and (T,B) are measurable

spaces and letX : S×T → S and Y : S×T → T be the canonical projections. Assume that P

has a densityϕw.r.t. Q and that the conditional distribution QX|Y =y exists. Then the conditional
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distribution PX|Y =y exists and is given by

dPX|Y =y

dQX|Y =y

(x) =

8>><>>:
1

c(y)ϕ(x, y), if c(y) > 0, and

1 else

(5.4)

with c(y) =
R

S
ϕ(x, y) dQX|Y =y(x) for all y ∈ T .

The linear, infinite dimensional SDEs from [HSVW05] which we will use in step 3 are

defined on the space H = L2([0, 1],Rd) and the generator of the corresponding semigroup is

the self-adjoint operator L on H which is the extension of the differential operator

L = (∂u +A∗)(BB∗)−1(∂u −A)

with appropriate boundary conditions. When studying the filtering/smoothing problem, the op-

erator L will include additional lower order terms, which we omit here for clarity.

The non-linear, infinite dimensional SDEs derived in step 4 are of the form (2.1) or (2.14).

They share the operatorLwith the linear equations but have an additional nonlinear driftF : E →

E∗, where the space E will be a subspace of C([0, 1],Rd). The main difficulty in step 4 is to

verify that assumptions (A1)–(A4) for the non-preconditioned case or (A1)–(A3), (A5)–(A7) for

the preconditioned case hold under conditions (M) and (Q). The nonlinearity F is of the form

(F (ω))(u) = ϕ(ω(u)) + h0(ω(0)) δ(u) + h1(ω(1)) δ(1− u) (5.5)

for all u ∈ [0, 1], where ϕ, h0, and h1 are functions from Rd to Rd. The symbols δ(u) and

δ(1− u) denote Dirac mass terms at the boundaries. The functions ϕ, h0, and h1 are calculated

from the potential V and in our applications the growth conditions from (A3) will be a direct

consequence of condition (M). The following lemma, in conjunction with condition (M), will

help us to verify assumption (A4).

Lemma 5.4 Let c, γ > 0 and h : Rd → Rd be continuous with 〈h(x), x〉 ≤ −γ|x|2 for every

x ∈ Rd with |x| > c. Then

〈ω∗, h(ω)〉 ≤ −γ‖ω‖∞ ∀ω∗ ∈ ∂‖ω‖∞,

and for all continuous functions ω : [0, 1] → Rd such that ‖ω‖∞ ≥ c.
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Proof. Using the characterisation (2.8) of ∂‖ω‖∞ from the remark after (A4), we get

〈ω∗, h(ω)〉 =

Z 1

0

D
h(ω(u)),

ω(u)
|ω(u)|

E
|ω∗|(du)

≤ −γ
Z 1

0

|ω(u)| |ω∗|(du) = −γ‖ω‖∞.

This completes the proof.

Remark 5.5 The special choice of E, L and F allows us to rewrite the Hilbert-space valued

SDEs as Rd-valued SPDEs in step 5. We obtain SPDEs of the following form:

∂tx(t, u) = Lx(t, u) + g(u) + ϕ(x(t, u)) + h0(x(t, 0)) δ(u) + h1(x(t, 1)) δ(1− u)

+
√

2 ∂tw(t, u) ∀(t, u) ∈ (0,∞)× [0, 1],

D0x(t, 0) = α, D1x(t, 1) = β ∀t ∈ (0,∞),

where ϕ, h0, h1 are functions from Rd to Rd, ∂tw is space-time white noise, Di = Ai∂u + Bi

are linear first-order differential operators, and α, β ∈ Rd are constants. The term g is only

non-zero for the filtering/smoothing problem and is then an element of E∗. Incorporating the

jump induced by the Dirac masses into the boundary conditions gives

D0x(t, 0) = α−A0(BB∗)h0(x(t, 0)),

D1x(t, 1) = β +A1(BB∗)h1(x(t, 1)) ∀t ∈ (0,∞).

With these boundary conditions, the delta functions are removed from the SPDE above.

We call a process x : [0,∞) × [0, 1] → Rd a mild solution of this SPDE, if x − m is a

mild solution of the H-valued SDE (2.1) where m is a solution of the boundary value problem

−Lm = g with D0m(0) = α and D1m(1) = β and L is the self-adjoint operator L with

boundary conditions D0ω(0) = 0 and D1ω(1) = 0.

Remark 5.6 When using the preconditioned equation (2.14), we will consider evolution equa-

tions of the following form:

∂tx(t, u) = −x(t, u) + y(t, u) +
√

2 ∂tw̃(t, u) ∀(t, u) ∈ (0,∞)× [0, 1],

−L0y(t, u) = L1x(t, u) + g(u) + ϕ(x(t, u))

+h0(x(t, 0))δ(u) + h1(x(t, 1))δ(1− u) ∀(t, u) ∈ (0,∞)× [0, 1],
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D0y(t, 0) = α, D1y(t, 1) = β ∀t ∈ (0,∞)

where L = L0 + L1, L0 is a second order differential operator, L1 is a differential operator of

lower order, G is the inverse of −L0 subject to the same homogeneous boundary conditions as

L, and w̃ is a G-Wiener process. Incorporating the induced jump into the boundary conditions

as above gives

D0y(t, 0) = α−A0(BB∗)h0(x(t, 0)),

D1y(t, 1) = β +A1(BB∗)h1(x(t, 1)) ∀t ∈ (0,∞).

With these boundary conditions, the Dirac mass is removed from the evolution equation above.

We call a process x : [0,∞) × [0, 1] → Rd a strong solution of this SPDE, if x − m

is a strong solution of the H-valued SDE (2.14) where m is a solution of the boundary value

problem −L0m = g with D0m(0) = α and D1m(1) = β, and L is the self-adjoint operator

L = L0 + L1 with boundary conditions D0ω(0) = 0 and D1ω(1) = 0.

6 Free Path Sampling

In this section we will follow the programme outlined in section 5 in order to construct SPDEs

whose stationary distribution is the distribution of the solution X of the SDE (5.1). The main

results are Theorems 6.1 and Theorem 6.3. We re-emphasise that it is straightforward to generate

independent samples from the desired distribution in this unconditioned case, and there would

be no reason to use the SPDEs in practise for this problem. However the analysis highlights

a number of issues which arise in the two following sections, in a straightforward way; we

therefore include it here.

We write C−([0, 1],Rd) for the set of all continuous functions from [0, 1] to Rd with start

in x−.

Theorem 6.1 Let A ∈ Rd×d be a matrix, let B ∈ Rd×d be invertible, let f = −BB∗∇V ,

assume that conditions (M) and (Q) are satisfied, and let x− ∈ Rd. Consider the Rd-valued

SPDE

∂tx = (∂u +A∗)(BB∗)−1(∂u −A)x−∇Φ(x)



FREE PATH SAMPLING 42

−(Df)∗(x)(BB∗)−1Ax−A∗(BB∗)−1f (x) +
√

2 ∂tw (6.1a)

x(t, 0) = x−, ∂ux(t, 1) = Ax(t, 1) + f (x(t, 1)), (6.1b)

x(0, u) = x0(u), (6.1c)

where ∂tw is space-time white noise and Φ is given by (5.3).

a) This SPDE has a unique, mild solution for every x0 ∈ C−([0, 1],Rd) and its stationary

distribution coincides with the distribution of the solution of SDE (5.1).

b) For every bounded, measurable functionϕ : C−([0, 1],Rd) → R and every x0 ∈ C−([0, 1],Rd)

we have

lim
T→∞

1

T

Z T

0

ϕ(x(t, · )) dt = E(ϕ(X)) almost surely,

where X is the solution of (5.1).

Proof. Let X be a solution of (5.1) and let Z be the solution of the linear SDE (5.2). From

Lemma 5.2 we know that the distribution of X has a density ϕ with respect to the distribution

of Z which is given by

ϕ(ω) = c · exp
“
−V (ω(1)) +

Z 1

0

〈∇V (ω(u)), Aω(u)〉 du−
Z 1

0

Φ(ω(u)) du
”
, (6.2)

for all ω ∈ C([0, 1],Rd) and some normalisation constant c. Let m(u) = E(Z(u)) for all u ∈

[0, 1]. Then the density ψ of the distribution µ = L(X −m) w.r.t. the centred distribution ν =

L(Z −m) is given by ψ(ω −m) = ϕ(ω) for all ω ∈ C([0, 1],Rd).

Consider the Hilbert spaceH = L2([0, 1],Rd) and the Banach spaceE = {ω ∈ C([0, 1],Rd) |

ω(0) = 0} ⊆ H equipped with the supremum norm. Let L be the self-adjoint version of

(∂u + A∗)(BB∗)−1(∂u − A) with boundary conditions ω(0) = 0, ω′(1) = Aω(1) on H. From

[HSVW05, Theorem 3.3] we know that the stationary distribution of the H-valued SDE (3.1)

coincides with ν. By taking expectations on both sides of [HSVW05, equation (3.10)] in the

stationary state we find that m solves the boundary value problem

(∂u +A∗)(BB∗)−1(∂u −A)m(u) = 0 ∀u ∈ (0, 1)

m(0) = x−, m′(1) = Am(1).

DefineU : E → R byU (ω) = log(ψ(ω)) for allω ∈ E. Then we have dµ = exp(U (X)) dν

and the Fréchet derivative F = U ′ is given by

(F (ω −m))(u) = −∇V (ω(1))δ(1− u) (6.3)
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+D2V (ω(u))Aω(u) +A∗∇V (ω(u))−∇Φ(ω(u)),

for all ω ∈ E+m, where δ1 ∈ E∗ is a Dirac mass at u = 1 andD2V denotes the Hessian of V .

We check that the conditions of Theorem 3.4 are satisfied: from [HSVW05, Theorem 3.3]

we know thatN (0,−L−1) is the distribution of Z−m. The only non-trivial point to be verified

in Assumption (A1) is the fact that L generates a contraction semigroup on E. This however

follows immediately form the maximum principle. It follows from standard Sobolev embeddings

that Hα ⊂ E densely for every α > 1/4 and [BHP05, Lemma A.1] implies that N (0,−L−2α)

is concentrated on E in this case, so that Assumption (A2) also holds. Assumption (A3) is an

immediate consequence of condition (M).

In order to check Assumption (A4), define for n ≥ 1 the function δn(u) = nχ[0, 1
n

],

where χA denotes the characteristic function of a set A. With this definition at hand, we de-

fine Fn : E → E by

(Fn(ω −m))(u) = −∇V (ω(u))δn(1− u)

+D2V (ω(u))Aω(u) +A∗∇V (ω(u))−∇Φ(ω(u))

=: (F 0
n(ω))(u) + F 1(ω(u)).

Since Hα is contained in some space of Hölder continuous functions (by Sobolev embedding),

one has limn→∞ ‖Fn(ω)− F (ω)‖−α = 0 for every ω ∈ E. The locally uniform bounds on the

Fn as functions from E to H−α follow immediately from condition (M), so that it remains to

check the dissipativity bound (2.7).

We first use the representation (2.8) of the subdifferential in E to check the condition

〈ω∗, F 0
n(ω + y)〉 ≤ 0 provided that ‖ω‖E is greater than some polynomially growing function

of ‖y‖E . It follows from condition (M) and Hölder’s inequality that there exists an increasing

function G : R → R+ growing polynomially with y such that

−
Z 1

0

〈ω(u),∇V (ω + y)〉δn(1− u) |ω∗|(du)

≤ −
Z 1

0

(M (ω(u), . . . , ω(u))−G(|y(u)|))δn(1− u) |ω∗|(du)

≤ −
Z 1

0

(c|ω(u)|2p −G(‖y‖E))δn(1− u) |ω∗|(du)

= −(c‖ω‖2p
E −G(‖y‖))

Z 1

0

δn(1− u) |ω∗|(du),
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which is negative for ‖ω‖E sufficiently large. In order to check the corresponding condition for

F 1, we treat the cases p = 1 and p > 1 separately, where p is the exponent from condition (M).

In the case p = 1, we can write V (x) = 1
2
〈x,Qx〉+ Ṽ (x) for some positive definite matrix

Q. We then have

F 1(x) = QAx+A∗Qx−QBB∗Qx+ F̄ 1(x),

where F̄ 1 has sublinear growth at infinity. Condition (Q) then implies that there exists a constant

γ > 0 such that

〈x, F 1(x)〉 ≤ −γ|x|2 + |x||F̄ 1(x)|,

so that (2.7) follows from Lemma 5.4.

In the case p > 1, it follows from condition (M) that

〈x, F 1(x)〉 = −
X

i

M (x, . . . , x,Bei)2 + F̄ 1(x),

where F̄ 1 behaves like o(|x|4p−2) at infinity. The non-degeneracy of M thus implies that there

exist constants γ > 0 and C such that

〈x, F 1(x)〉 = −γ|x|2 + C,

so that (2.7) follows again from Lemma 5.4.

We finally check that U is bounded from above. In the case p > 1, this follows easily from

condition (M). In any case, V is bounded from below, so that in the case p = 1, we have

U (ω +m) ≤ C +

Z 1

0

(〈Mω(u), Aω(u)〉 − |B∗Mω(u)|2) du+

Z 1

0

G̃(ω(u)) du,

for some functionG behaving like o(|x|2) at infinity. It thus follows from condition (Q) that U is

indeed bounded from above. This concludes the verification of the assumptions of Theorem 3.4.

We now check that the assumptions of Corollary 4.5 hold. The only fact that remains to be

checked is that (4.8) holds in our case. This can be verified easily since the nonlinearity is of the

form

(F (ω))(u) = G1(ω(u)) +G2(ω(1))δ(1− u),

so that it suffices to multiply the functions Gi by smooth cutoff functions in order to get the

required approximations to F .

From Theorem 2.6 we get that SDE (2.1) has a unique, mild solution for every initial con-

dition x0 ∈ E. Corollary 4.5 shows that the unique, ergodic invariant measure of SDE (2.1)
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is µ. Converting from a Hilbert space valued SDE to an SPDE, as outlined in Remark 5.5, we

find equation (8.3). This completes the proof of statement a). Statement b) follows directly from

Theorem 4.10.

Remark 6.2 If (BB∗)−1A is symmetric, the matrix A can be incorporated into the potential V

by choosing A = 0 and replacing V (x) with V (x)− 1
2
〈x, (BB∗)−1Ax〉. In this case the SPDE

(6.1) simplifies to the more manageable expression

∂tx(t, u) = (BB∗)−1∂2
ux(t, u)−∇Φ(x(t, u)) +

√
2 ∂tw(t, u)

∀(t, u) ∈ (0,∞)× [0, 1],

x(t, 0) = x−, ∂ux(t, 1) = f (x(t, 1)) ∀t ∈ (0,∞),

x(0, u) = x0(u) ∀u ∈ [0, 1].

Similar simplifications are possible for the SPDEs considered in the remainder of this section,

and in the next.

Using the preconditioning technique described above we can construct modified versions

of the SPDE (6.1) which still have the same stationary distribution. In the preconditioned

SDE (2.14) we take G = −L−1 where L is the self-adjoint version of (∂u +A∗)(BB∗)−1(∂u−

A) with boundary conditions ω(0) = 0, ω′(1) = Aω(1) on L2.

Theorem 6.3 Let A ∈ Rd×d be a matrix, let B ∈ Rd×d be invertible, f = −BB∗∇V , assume

that V satisfies conditions (M) and (Q), and let x−∈ Rd. Denote by L the differential operator

(∂u +A∗)(BB∗)−1(∂u −A) and consider the Rd-valued SPDE

∂tx(t, u) = −x(t, u) + y(t, u) +
√

2 ∂tw̃(t, u), x(0, u) = x0(u), (6.4a)

where w̃ is a G-Wiener process, Φ is given by (5.3), and y(t, · ) is the solution of the elliptic

problem

−Ly(t, u) = ∇Φ(x(t, u)) +A∗(BB∗)−1f (x(t, u))

+ (Df)∗(x(t, u))(BB∗)−1Ax(t, u)

y(t, 0) = x−, ∂uy(t, 1) = Ay(t, 1) + f (x(t, 1)). (6.5)
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a) This SPDE has a unique, strong solution for every x0 ∈ C−([0, 1],Rd) and its stationary

distribution coincides with the distribution of the solution of SDE (5.1).

b) For every bounded function ϕ : C−([0, 1],Rd) → R with bounded Fréchet derivative and

every x0 ∈ C−([0, 1],Rd) we have

lim
T→∞

1

T

Z T

0

ϕ(x(t, · )) dt = E(ϕ(X)) in probability,

where X is the solution of (5.1).

Proof. Choose H, E, L, m, µ and U as in the proof of Theorem 6.1. From [HSVW05, Theo-

rem 3.3] we know that G is the covariance operator of the law of the solution of (5.2) and thus

is positive definite, self-adjoint, and trace class. We already checked that (A1)–(A3) hold in the

proof of Theorem 6.1. Furthermore (A6)–(A7) are trivially satisfied for our choice of G, so that

it remains to check (A5) in order to apply Theorem 2.10. Note that the nonlinearity F is of the

form

(F (x))(u) = F1(x(u)) + F2(x(1))δ(1− u),

for some functions Fi : Rn → Rn. It follows from condition (M) that there exist constants C

and N such that both of these functions satisfy

〈x, Fi(x+ y)〉 ≤ C(1 + |y|)N ,

for every x and y in Rn. The validity of (A5) follows at once.

Applying Theorem 2.10 we obtain that SDE (2.14) has a unique, strong solution for every

initial condition x0 ∈ E. Corollary 4.9 shows that the unique, ergodic invariant measure of

SDE (2.1) is µ. Converting from a Hilbert space valued SDE to an SPDE, as outlined in Re-

mark 5.6, we find equation (6.1). This completes the proof of statement a). Statement b) follows

directly from Theorem 4.11.

7 Bridge Path Sampling

In this section we construct SPDEs which sample, in their stationary state, bridges from the

SDE (5.1). That is, the stationary distribution of the SPDEs coincide with the distribution of

solutions of the SDE (5.1), conditioned onX(1) = x+. The main results appear in Theorems 7.1

and 7.2.
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Note that, for unity with the other results in this paper, we construct an E-valued SPDE

theory. However, this functional framework is not actually needed for this problem, because the

boundary conditions are linear; it is indeed possible in this case to use a Hilbert space theory. In

that functional setting results analogous to those in this section are mostly contained in [Zab88]

and [Cer99]. We also refer to the monographs [DPZ92, DPZ96] for related results. Note finally

that the SPDE (7.1) was also derived (in the one-dimensional case) in [RVE05].

We write C+
−([0, 1],Rd) for the set of all continuous functions from [0, 1] to Rd which run

from x− to x+.

Theorem 7.1 Let A ∈ Rd×d be a matrix, let B ∈ Rd×d be invertible, f = −BB∗∇V , assume

that V satisfies conditions (M) and (Q), and let x−, x+ ∈ Rd. Consider the Rd-valued SPDE

∂tx = (∂u +A∗)(BB∗)−1(∂u −A)x−∇Φ(x)

−(Df)∗(x)(BB∗)−1Ax−A∗(BB∗)−1f (x) +
√

2 ∂tw, (7.1a)

x(t, 0) = x−, x(t, 1) = x+, (7.1b)

x(0, u) = x0(u), (7.1c)

where ∂tw is space-time white noise and Φ is given by (5.3).

a) This SPDE has a unique, mild solution for every x0 ∈ C+
−([0, 1],Rd) and its stationary

distribution coincides with the distribution of the solution of SDE (5.1), conditioned on X(1) =

x+.

b) For every bounded, measurable functionϕ : C+
−([0, 1],Rd) → R and every x0 ∈ C+

−([0, 1],Rd)

we have

lim
T→∞

1

T

Z T

0

ϕ(x(t, · )) dt = E(ϕ(X) | X(1) = x+) almost surely,

where X is the solution of (5.1).

Proof. Let X and Z be the solutions of the SDEs (5.1) and (5.2) respectively. From Lemma 5.2

we know that the density of the distribution X with respect to the distribution of Z is given

by (6.2). Let L(Z | Z(1) = x+) denote the conditional distribution of Z and let m : [0, 1] →

Rd be the mean of this distribution. Then, using Lemma 5.3 and substitution, the density of
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µ = L(X | X(1) = x+) −m w.r.t. the centred distribution ν = L(Z | Z(1) = x+) −m is

given by

ψ(ω −m) = c · exp
“Z 1

0

〈∇V (ω(u)), Aω(u)〉 du−
Z 1

0

Φ(ω(u)) du
”

for all ω ∈ C+
−([0, 1],Rd) and some normalisation constant c.

Consider the Hilbert space H = L2([0, 1],Rd) and the embedded Banach space E = {ω ∈

C([0, 1],Rd) | ω(0) = ω(1) = 0} equipped with the supremum norm. Define the operator L

on H to be the self-adjoint version of (∂u + A∗)(BB∗)−1(∂u − A) with boundary conditions

ω(0) = ω(1) = 0. From [HSVW05, Theorem 3.6] we know that the stationary distribution of

the H-valued SDE (3.1) coincides with ν. By taking expectations on both sides of [HSVW05,

equation (3.11)] in the stationary state we find that m solves the boundary value problem

(∂u +A∗)(BB∗)−1(∂u −A)m(u) = 0 ∀u ∈ (0, 1)

m(0) = x−, m(1) = x+.

Define U : E → R by U (ω) = log(ψ(ω)) for all ω ∈ E. Then we have dµ = exp(U (ω)) dν

and the Fréchet derivative F = U ′ is given by

F (ω −m) = D2V (ω(u))Aω(u) +A∗∇V (ω(u))−∇Φ(ω(u)). (7.2)

for all ω −m ∈ E.

Since (7.2) is the same as (6.3) without the terms involving delta functions, we can check that

(A1)–(A4) hold in exactly the same way as in the proof of Theorem 6.1. From Theorem 2.6 we

get that SDE (2.1) has a unique, mild solution for every initial condition x0 ∈ E. Corollary 4.5

shows that the unique, ergodic invariant measure of SDE (2.1) is µ. Converting from a Hilbert

space valued SDE to an SPDE, as outlined in remark 5.5, we find equation (8.3). This completes

the proof of statement a). Statement b) follows directly from Theorem 4.10.

Again we study the corresponding result which is obtained from the preconditioned SDE (2.14).

Since it is in general easier to invert the Laplacian with Dirichlet boundary conditions rather than

L, we choose G = −L−1
0 where L0 is the self-adjoint version of (BB∗)−1∂2

u with boundary

conditions ω(0) = ω(1) = 0 on L2. This procedure leads to the following result.
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Theorem 7.2 Let A ∈ Rd×d be a matrix, let B ∈ Rd×d be invertible, f = −BB∗∇V , assume

that V satisfies conditions (M) and (Q), and let x−, x+ ∈ Rd. Consider the Rd-valued SPDE

∂tx(t, u) = −x(t, u) + y(t, u) +
√

2 ∂tw̃(t, u), x(0, u) = x0(u), (7.3a)

where w̃ is a G-Wiener process and y(t, · ) is the solution of

(BB∗)−1∂2
uy = (BB∗)−1A∂ux−A∗(BB∗)−1∂ux

+A∗(BB∗)−1Ax+∇Φ(x)

+ (Df)∗(x)(BB∗)−1Ax+A∗(BB∗)−1f (x),

y(t, 0) = x−, y(t, 1) = x+, (7.4)

with Φ given by (5.3).

a) This SPDE has a unique, strong solution for every x0 ∈ C+
−([0, 1],Rd) and its stationary

distribution coincides with the conditional distribution of the solution of SDE (5.1), conditioned

on X(1) = x+.

b) For every bounded function ϕ : C+
−([0, 1],Rd) → R with bounded Fréchet derivative and

every x0 ∈ C+
−([0, 1],Rd) we have

lim
T→∞

1

T

Z T

0

ϕ(x(t, · )) dt = E(ϕ(X) | X(1) = x+) in probability,

where X is the solution of (5.1).

Proof. The proof works in almost the same way as the proof of Theorem 6.3. The primary

difference is that, in the present case, the operator G is not the inverse of −L, but only of its

leading order part.

8 Nonlinear Filter/Smoother

Consider the Rd × Rm-valued system of stochastic differential equations

dX = f (X) du+B11 dW
x, X(0) ∼ ζ

dY = A21X du+B22 dW
y, Y (0) = 0

(8.1)

where B11 ∈ Rd×d, A21 ∈ Rm×d and B22 ∈ Rm×m are matrices, (B11B
∗
11)−1f is a gradient,

andW x andW y are independent standard Brownian motions in Rd resp. Rm. We will construct

an SPDE which has the conditional distribution of X given Y as its stationary distribution. ζ is
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the density of the initial distribution for X in (8.1). The main results are stated in Theorems 8.2

and 8.4.

Remark 8.1 It is straightforward to extend the contents of this section to more general systems

of the form

dX =
“
A11X +B11B

∗
11∇V1(X)

”
du+B11 dW

x,

dY =
“
A21X +A22Y +B22B

∗
22∇V2(Y )

”
du+B22 dW

y

instead of equation (8.1). (We include the A11X-term in the two previous sections.) We do not

do so here because it would clutter the presentation.

Theorem 8.2 Let A21 ∈ Rm×d, B11 ∈ Rd×d and B22 ∈ Rm×m and assume that B11 and

B22 are invertible. Let f = −B11B
∗
11∇V and assume that V satisfies conditions (M) and (Q).

Let ζ be a C2 probability density such that α = eV ζ satisfies

max{logα(x), 1
2
〈∇ logα(x), x〉} ≤ −ε|x|2, (8.2)

whenever |x| ≥ c for some constants ε, c > 0. Consider the Rd-valued SPDE

∂tx(t, u) = (B11B
∗
11)−1∂2

ux(t, u)−∇Φ(x(t, u))

+A∗21(B22B
∗
22)−1(

dY

du
(u)−A21x(t, u)) +

√
2 ∂tw(t, u)

(8.3a)

for all (t, u) ∈ (0,∞)× [0, 1] with boundary conditions

∂ux(t, 0) = −B11B
∗
11∇ logα(x(t, 0)), ∂ux(t, 1) = f(x(t, 1)) (8.3b)

for all t ∈ (0,∞) and initial condition

x(0, u) = x0(u) (8.3c)

for all u ∈ [0, 1], where ∂tw is space-time white noise and Φ is given by (5.3).

a) This SPDE has a unique, mild solution for every x0 ∈ C([0, 1],Rd) and its stationary dis-

tribution coincides with the conditional distribution µX|Y ofX given Y whereX,Y solve (8.1).

b) For every bounded, measurable functionϕ : C([0, 1],Rd) → R and every x0 ∈ C([0, 1],Rd)

we have

lim
T→∞

1

T

Z T

0

ϕ(x(t, · )) dt = E(ϕ(X) | Y ) almost surely,

where X,Y solve (8.1).
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Remark 8.3 The condition (8.2) on α seems to be quite artificial. On the other hand, if no a

priori information is given on the distribution of X(0), it is natural to assume that X(0) is given

by the invariant measure, in which case logα = −V , so that the assumptions on α are satisfied.

In this case, the boundary conditions (8.3b) reduce to the more symmetric expression

∂ux(t, 0) = −f(x(t, 0)), ∂ux(t, 1) = f(x(t, 1)).

Proof. Define V̄ : Rd × Rm → R by V̄ (x, y) = V (x). Then we can write the system (X,Y )

from (8.1) as an SDE of the form

d

0B@X
Y

1CA = A

0B@X
Y

1CA du−BB∗∇V̄ (X,Y ) du+B d

0B@W x

W y

1CA (8.4)

with

A =

0B@ 0 0

A21 0

1CA , B =

0B@B11 0

0 B22

1CA .

Let (X̄, Ȳ ) be the solution of the linear, Rd × Rm-valued SDE

d

0B@X̄
Ȳ

1CA = A

0B@X̄
Ȳ

1CA dt+B d

0B@W x

W y

1CA (8.5)

with initial conditions

X̄(0) ∼ N (0, ε−1), Ȳ (0) = 0.

We can use Lemma 5.2 to get the density of the distribution µXY of (X,Y ) with respect to

the distribution µX̄Ȳ of (X̄, Ȳ ). Since the nonlinearity (f (X), 0) is orthogonal to the range ofB

in Rd × Rm, the resulting density is

ϕ(ω, η) = exp
“
V (ω(0))− V (ω(1))−

Z 1

0

Φ(ω(u)) du
”
θ(ω(0))

for all (ω, η) ∈ C([0, 1],Rd×Rm). Here θ( · ) is the density of the distribution ofX(0), relative

to the Gaussian measure N (0, ε−1). This density is proportional to exp(−V (x) + logα(x) +

1
2
ε|x|2).

From [HSVW05, Lemma 4.4] we know that the conditional distribution µX̄|Ȳ of X̄ given Ȳ

exists and Lemma 5.3 shows that µX|Y has, since ϕ does not depend on Y , density ϕ with

respect to µX̄|Ȳ . Let m be the mean of µX̄|Ȳ . Then the density ψ of µ = µX|Y − m w.r.t.

ν = µX̄|Ȳ −m is given by

ψ(ω −m) ∝ exp
“
logα(ω(0)) +

ε

2
|ω(0)|2 − V (ω(1))−

Z 1

0

Φ(ω(u)) du
”



NONLINEAR FILTER/SMOOTHER 52

for all ω ∈ C([0, 1],Rd).

Consider the Hilbert space H = L2([0, 1],Rd) and the embedded Banach space E =

C([0, 1],Rd) ⊆ H equipped with the supremum norm. Define the formal second order dif-

ferential operator

L = (B11B
∗
11)−1∂2

ux−A∗21(B22B
∗
22)−1A21x.

Define the operator L to be the self-adjoint version of L onH with boundary conditions ω′(0) =

εB11B
∗
11ω(0) and ω′(1) = 0. From [HSVW05, Theorem 4.1] we know that the station-

ary distribution of the H-valued SDE (3.1) coincides with ν. By taking expectations on both

sides of [HSVW05, equation (4.2)] in the stationary state we find that m solves the boundary

value problem −Lm(u) = A∗21(B22B
∗
22)−1 dY

du
(u) for all u ∈ (0, 1) with boundary conditions

m′(0) = εB11B
∗
11m(0) and m′(1) = 0.

DefineU : E → R byU (ω) = log(ψ(ω)) for allω ∈ E. Then we have dµ = exp(U (ω)) dν.

The Fréchet derivative F = U ′ is given by

F (ω −m) = logα(ω(0))δ0 + εω(0)δ0 −∇V (ω(1))δ1 −∇Φ(ω(u))

for all ω ∈ E, where δ0, δ1 ∈ E∗ are delta-distributions located at 0 resp. 1.

At this point, we are back in a situation that is very close to the one of Theorem 6.1 and we

can check that (A1)–(A4) are satisfied. Note that (8.2) ensures that U is bounded from above and

that the term logα(X(0))δ0 appearing in F satisfies (2.7). The various statements now follow

from Theorem 2.6 and Corollary 4.5 as in Theorem 6.1.

In the preconditioned version of this theorem we take G = −L−1
0 , where L0 is the self-

adjoint extension of (B11B
∗
11)−1∂2

u with boundary conditionsω′(0) = 0 andω′(1) = εB11B
∗
11ω(1)

for an ε chosen so that (8.2) holds. This yields the following result in which it is important to

note that w̃ depends upon ε.

Theorem 8.4 Assume that the conditions of Theorem 8.2 hold and consider the Rd-valued evo-

lution equation

∂tx(t, u) = −x(t, u) + y(t, u) +
√

2 ∂tw̃(t, u), x(0, u) = x0(u),

where w̃ is a G-Wiener process and y(t, · ) is the solution of the problem

(B11B
∗
11)−1∂2

uy = A∗21(B22B
∗
22)−1

“
A21x−

dY

du

”
+∇Φ(x),
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with boundary conditions

∂uy(t, 0) = εB11B
∗
11(y(t, 0)− x(t, 0))−B11B

∗
11∇ logα(x(t, 0)),

∂uy(t, 1) = f(x(t, 1)).

As usual, Φ is given by (5.3).

a) This SPDE has a unique, strong solution for every x0 ∈ C([0, 1],Rd) and its station-

ary distribution coincides with the conditional distribution µX|Y of X given Y where X,Y

solve (8.1).

b) For every bounded function ϕ : C([0, 1],Rd) → R with bounded Fréchet derivative and

every x0 ∈ C([0, 1],Rd) we have

lim
T→∞

1

T

Z T

0

ϕ(x(t, · )) dt = E(ϕ(X) | Y ) in probability,

where X,Y solve (8.1).

Proof. The proof is very similar to that of Theorem 6.3, so that we omit it.

9 Conclusions

In this text we derived a method to construct nonlinear SPDEs which have a prescribed measure

as their stationary distribution. The fundamental relation between the drift of the SPDE and the

density of the stationary distribution is in analogy to the finite dimensional case: if we augment

the linear SPDE by adding an extra drift term of the form F = U ′, the stationary distribution

of the new SPDE has density exp(U ) with respect to the stationary distribution of the linear

equation.

Since the resulting SPDEs have unique invariant measures and are ergodic, they can be

used as the basis for infinite dimensional MCMC methods. The applications in sections 6, 7

and 8 illustrate this approach to sampling, by constructing SPDEs which, in their stationary

states, sample from the distributions of finite dimensional SDEs, conditioned on various types

of observations. However, our analysis is limited to problems for which the drift is linear plus a

gradient. Furthermore, in the case of signal processing, the analysis is limited to the case where

the dependency of the observation on the signal is linear.
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We have clear conjectures about how to generate the desired SPDEs in general, which we

now outline. We start by considering the first two conditioning problems 1. and 2. Since we

consider the general non-gradient case, the linear term can be absorbed into the nonlinearity and

we consider the SDE

dX = f (X) du+B dW x, X(0) = x−. (9.1)

In the physics literature it is common to think of the Gaussian measure induced by this equation

when f = 0 as having density proportional to

qlin(Z) = exp
“
−

Z 1

0

1

2

˛̨̨
dZ

du

˛̨̨2
B
du

”
.

If we denote by δ the variational derivative of path-space functionals such as this, and consider

the SPDE

∂z

∂t
= δ ln qlin(z) +

√
2
∂W

∂t

(the last term being space-time white noise) then this will sample from Wiener measure or Brow-

nian bridge measure, depending upon which boundary conditions are applied. This is an infinite

dimensional version of the Langevin equation commonly used in finite dimensional sampling.

General linear SPDEs derived similarly are proven to have the desired sampling properties in

[HSVW05].

One can use the formal density q given above, in combination with Lemma 5.2, to derive a

formal density on path space for (9.1), proportional to

qnon(X) = exp
“
−

Z 1

0

1

2

˛̨̨
dX

du
− f (X)

˛̨̨2
B

+
1

2
div f (X) du

”
.

This density also appears in the physics literature and is known as the Onsager-Machlup func-

tional [Gra77]. The SPDEs which we derived in sections 6 and 7 may be found by considering

SPDEs of the form

∂x

∂t
= δ ln qnon(x) +

√
2
∂W

∂t

(the last term again being space-time white noise). Again this may be seen as a Langevin equa-

tion. Calculating the variational derivative we see that this SPDE has the form

∂x

∂t
= (BB∗)−1 ∂

2x

∂u2
−Θ(x)

∂x

∂u
−∇xΦ(x) +

√
2
∂W

∂t
(9.2)

where

Θ(x) = (BB∗)−1Df (x)−Df (x)∗(BB∗)−1.
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For bridge path sampling the boundary conditions are those dictated by the bridging property.

For free path sampling the variational derivative includes a contribution from varying the right-

hand end point, which is free, giving rise to a delta function; this leads to the nonlinear boundary

condition.

When f has a gradient structure the operator Θ(x) ≡ 0 and the SPDE is analysed in this

paper (in the case A = 0). When Θ(x) 6= 0 it will, in general, be necessary to define a new

solution concept for the SPDE, in order to make sense of the product of Θ(x) with the derivative

of x; in essence we must define a spatial stochastic integral, when the heat semigroup is applied

to this product term. The Stratonovich formulation of the density qnon suggests that some form

of Stratonovich integral is required. The case where the non-gradient part of the vector field is

linear is considered in this paper, and the provably correct SPDE in that case coincides with the

conjectured SPDE above.

Turning now to the case of signal processing, we generalise the observation equation (1.2)

to

dY = g(X,Y ) dt+ B̃dW y, Y (0) = 0.

We can derive the appropriate SPDE for sampling in this case by utilising the Onsager-Machlup

functional above, and applying Bayes rule. Define

qy(X,Y ) = exp
“
−

Z 1

0

1

2

˛̨̨
dY

du
− g(X,Y )

˛̨̨2
B̃

”
.

The Onsager-Machlup density for sampling (X,Y ) jointly is

q(X,Y ) := qnon(X)qy(X,Y ).

By Bayes rule the conditioned density for X|Y will be proportional to q(X,Y ), with propor-

tionality constant independent of X . Thus the SPDE for sampling in this case should be

∂x

∂t
= δ ln q(x, Y ) +

√
2
∂W

∂t

(the last term again being space-time white noise) and Y being the given observation. In the case

where g(X,Y ) depends only on X , and is linear, and when f (X) has the form considered in

this paper, then this SPDE is exactly that derived in this paper. Outside this regime we are again

confronted with the necessity of defining a new solution concept for the SPDE, and in particular

deriving a spatial stochastic integration theory. A related SPDE can also be derived when the
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observations are discrete in time. In this case delta functions are introduced into the SPDE at

the observation times; the theory introduced in this paper is able to handle this, since a similar

issue arises for the nonlinear boundary conditions considered here. Langevin SPDEs which

solve the signal processing problem are discussed in [?]. In that paper numerical experiments

are presented which indicate that the conjectured SPDEs are indeed correct.

Finally, let us remark that we are currently unable to treat the case of multiplicative noise. We

do not believe that this is a fundamental limitation of the method, but interpreting the resulting

SPDEs will require much more careful analysis.

In addition to the extension of the Langevin equation to non-gradient problems, and more

general observation equation, there are many other interesting mathematical questions remain-

ing. These include the study of second order (in time t) Langevin equations, the development of

infinite dimensional Hybrid Monte Carlo methods, the study of conditional sampling for hypo-

elliptic diffusions and the derivation of sampling processes for non-additive noise.
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