Graded rings and varieties in
 weighted projective space

Miles Reid

Jan 2002

Abstract

This chapter is a first introduction to weighted projective spaces (wps) $\mathbb{P}=\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ and the Proj correspondence $$
\begin{array}{ccc} \text { projective variety } & \longleftrightarrow & \text { graded ring } \\ X \subset \mathbb{P} \tag{1} \end{array} \longleftrightarrow \quad R=k\left[x_{0}, \ldots, x_{n}\right] / I
$$

The correspondence (1) between geometry and algebra is a minor but very fruitful generalisation of the usual idea of varieties in straight projective space $\mathbb{P}^{n}=\mathbb{P}(1, \ldots, 1)$. The simple device of working with varieties contained in the ready-made ambient spaces $\mathbb{P}=\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ allows us in many cases to by-pass the definition of abstract variety (or more general schemes) at the cost of a bit of messing around with weighted homogeneous polynomials, so that projective varieties in wps are technically not really much harder than affine varieties. Practically every item in this chapter relates in a transparent way to something in the treatment of subvarieties of straight projective space; compare [UAG], Chapter 5 and Hartshorne [H], Chapter I. Nontrivial weights $a_{i}>1$ leads naturally to cyclic quotient singularities, \mathbb{Q}-divisors and cyclic orbifold behaviour.

Weighted projective spaces have appeared implicitly in algebraic geometry since ancient times; the most basic example is a hyperelliptic curve $y^{2}=f_{2 g+2}(x)$ viewed as a double cover of \mathbb{P}^{1}, that is, a weighted hypersurface $C_{2 g+2} \subset \mathbb{P}(1,1, g+1)$. The general definition was codified in Grothendieck's notion of Proj R ([EGA2], see also [H], Chapter II, Section 7), and is a basic ingredient of modern work on algebraic surfaces and 3 -folds.

1 Weighted projective space $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$

The definition is similar to straight projective space: wps is the quotient

$$
\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)=\left(\mathbb{A}^{n+1} \backslash 0\right) / \mathbb{G}_{m}
$$

of \mathbb{A}^{n+1} under the equivalence relation

$$
\begin{equation*}
\left(x_{0}, \ldots, x_{n}\right) \sim\left(\lambda^{a_{0}} x_{0}, \ldots, \lambda^{a_{n}} x_{n}\right) \quad \text { for } \lambda \in \mathbb{G}_{m} \tag{2}
\end{equation*}
$$

(Here \mathbb{G}_{m} is the multiplicative algebraic group, that is, the variety whose k-points are the multiplicative group k^{\times}.) We can usually assume that the a_{i} are mostly coprime (see 3.1 below); a typical condition is that no n of the a_{i} have a common factor.

Example 1.1 $\mathbb{P}(1,1, a)$ is the cone over the rational normal curve of degree a in \mathbb{P}^{a}. We have already met this surface in [Ch] 2.9 as the image of the surface scroll $\mathbb{F}(a, 0)$, under which the negative section is contracted. Write x_{1}, x_{2}, y for coordinates on \mathbb{A}^{3}. The quotient of $\mathbb{A}^{3} \backslash 0$ by \mathbb{G}_{m} is realised by the morphism $\left(\mathbb{A}^{3} \backslash 0\right) \rightarrow \mathbb{P}^{a+1}$ defined by

$$
\left(x_{1}, x_{2}, y\right) \mapsto\left(x_{1}^{a}: x_{1}^{a-1} x_{2}: \cdots: x_{2}^{a}: y\right)
$$

The cone point is $(0,0,1)$, the equivalence class of the y-axis.
At a point of \mathbb{A}^{3} with $x_{1} \neq 0$, setting $x_{1}=1$ defines a slice of the action of \mathbb{G}_{m} (compare [UAG], Figure 1.4 - here slice means a local submanifold that provides a unique choice of representative in each equivalence class), so that the quotient $\left(\mathbb{A}^{3} \backslash\left(x_{1}=0\right)\right) / \mathbb{G}_{m}$ is just \mathbb{A}^{2} with coordinates $\frac{x_{2}}{x_{1}}, \frac{y}{x_{1}^{a}}$. Similarly for $x_{2} \neq 0$. However, near the y-axis, the group action does not have a slice: indeed, it is given by

$$
\left(x_{1}, x_{2}, y\right) \mapsto\left(\lambda x_{1}, \lambda x_{2}, \lambda^{a} y\right)
$$

so that a point of the y-axis is fixed by roots of unity $\mu_{a} \subset \mathbb{G}_{m}$ (a cyclic group of order a). Setting $y=1$ cuts the y-axis in one point, but cuts neighbouring orbits in a points $\left(\varepsilon x_{1}, \varepsilon x_{2}, y\right)$ for $\varepsilon \in \mu_{a}$. Thus as coordinates on the quotient $\left(\mathbb{A}^{3} \backslash(y=0)\right) / \mathbb{G}_{m}$, I must take

$$
\frac{x_{1}^{a}}{y}, \frac{x_{1}^{a-1} x_{2}}{y}, \ldots, \frac{x_{2}^{a}}{y}
$$

This is a model for the standard cyclic quotient behaviour in 2.2.
Example 1.2 Consider the equation $y^{2}=f_{2 a}\left(x_{1}, x_{2}\right)$, where f is a homogeneous polynomial having $2 a$ distinct roots. This defines the hypersurface $C_{2 a} \subset \mathbb{P}(1,1, a)$ which is the general hyperelliptic curve of genus $g=a-1$. Because of the monomial y^{2}, the hypersurface does not pass through the cone point $(0,0,1)$. The curve C is the union of two affine pieces given by
$x_{1}=1$ and $x_{2}=1$, glued together in the obvious way, so that $C \rightarrow \mathbb{P}^{1}$ is the double cover with $2 a$ branch points $f=0$. Note that it is not a wise move to take the projective closure of $y^{2}=f_{2 a}(x)$ in straight \mathbb{P}^{2} - it leads to a complicated singularity at infinity, and general confusion.

One can view the equation $y^{2}=f_{2 a}\left(x_{1}, x_{2}\right)$ as a general quadric section of $\overline{\mathbb{F}}=\mathbb{P}(1,1, a) \subset \mathbb{P}^{a}$, or a general curve $C \in|2 a A+2 B|$ in \mathbb{F}_{a} in the set-up of [Ch], 2.9. One calculates the canonical class $K_{C}=(a-2) A$ and the genus $g=a-1$ in any number of ways (compare Example 4.5).

2 Graded rings and $\operatorname{Proj} R$

Definition 2.1 A graded $\operatorname{ring} R=\bigoplus_{n \geq 0} R_{n}$ is a ring R whose multiplication $R \times R \rightarrow R$ respects the grading, taking $R_{n} \times R_{m} \rightarrow R_{n+m}$. It is sometimes useful to work with a grading taking values in more general semigroups, but here I restrict attention to gradings by $n \in \mathbb{Z}$ with $n \geq 0$. In view of the intended applications to varieties over a field k, I impose the following additional conditions:
(i) $R_{0}=k$ is the ground field;
(ii) R is finitely generated as a ring over k;
(iii) R is an integral domain.

More general cases may be interesting for several different purposes.
Since every element of R is a sum of homogeneous pieces, it follows from (ii) that the generators of R can be chosen to be finitely many homogeneous elements x_{i} of degree $a_{i}>0$. The key example is the polynomial ring $k\left[x_{0}, \ldots, x_{n}\right]$ where $\mathrm{wt} x_{i}=a_{i}$. Every polynomial is a sum of monomials $x^{\mathbf{m}}=\prod x_{i}^{m_{i}}$, having weight $\sum m_{i} a_{i}$. A polynomial f is homogeneous (also weighted homogeneous or quasihomogeneous) of weight d if every monomial in f has weight d. An ideal in a graded ring $I \subset R$ is graded or weighted homogeneous if I is the sum of its homogeneous components, $I=\bigoplus_{n \geq 0} I_{n}$ with $I_{n}=I \cap R_{n}$. It is equivalent to say that I is generated by (finitely many) homogeneous elements. Thus in general, the rings R considered have the form $R=k\left[x_{0}, \ldots, x_{n}\right] / I$, where $\operatorname{deg} x_{i}=a_{i}$ and I is a homogeneous prime ideal.

2.1 Construction of Proj R

A ring $R=k\left[x_{0}, \ldots, x_{n}\right] / I$ corresponds to an irreducible affine variety $\mathcal{C} X=\operatorname{Spec} R=V_{a}(I) \subset \mathbb{A}^{n+1} ;$ the subscript a stands for affine or inhomo-
geneous. $\mathcal{C} X$ is the (weighted homogeneous) affine cone over the projective variety $V_{h}(I)=X$ defined below. A polynomial $f\left(x_{0}, \ldots, x_{n}\right)$ is weighted homogeneous of degree d if and only if

$$
f\left(\lambda^{a_{0}} x_{0}, \lambda^{a_{1}} x_{1}, \ldots, \lambda^{a_{n}} x_{n}\right)=\lambda^{d} f\left(x_{0}, \ldots, x_{n}\right) \quad \text { for all } \lambda \in \mathbb{G}_{m}
$$

so that the condition $f(P)=0$ is well defined on equivalence classes of \sim in (2). One can thus define the projective variety or homogeneous spectrum $X=\operatorname{Proj} R=V_{h}(I) \subset \mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ as the quotient $\left(V_{a}(I) \backslash 0\right) / \mathbb{G}_{m}$.

I want to construct the quotient X as an algebraic variety. So what are the functions on X ? In the elementary spirit of [UAG], Chapter 5, one can approach this via the rational function field consisting of ratios of homogeneous elements of the same degree d

$$
k(X)=\left\{\left.\frac{g}{h} \right\rvert\, g, h \in R_{d}\right\} / \sim \quad \text { where } \quad \frac{g}{h} \sim \frac{g^{\prime}}{h^{\prime}} \Longleftrightarrow g h^{\prime}-h g^{\prime} \in I
$$

and define a rational function $f \in k(X)$ to be regular at $P \in X$ if there exists an expression $f=g / h$ with $h(P) \neq 0$.

As an alternative, for any $d>0$ and any homogeneous element $f \in R_{d}$, define the principal open set $X_{f} \subset X$ by $X_{f}:=\{P \in X \mid f(P) \neq 0\}$. Then X_{f} is an affine variety having coordinate ring

$$
\begin{equation*}
k\left[X_{f}\right]=\left(R\left[\frac{1}{f}\right]\right)^{0}=\left\{\left.\frac{g_{m d}}{f^{m}} \right\rvert\, g \in R_{m d}\right\} \tag{3}
\end{equation*}
$$

The subscript ${ }^{0}$ means homogeneous of degree 0 , that is, \mathbb{G}_{m}-invariant.
In other words, what is going on here is a systematic construction of the quotient $(\mathcal{C} X \backslash 0) / \mathbb{G}_{m}$: the open sets $(f \neq 0) \subset \mathcal{C} X$ for $f \in R_{d}$ provide arbitrarily small \mathbb{G}_{m}-invariant affine open sets covering $\mathcal{C} X \backslash 0$. For every such open set, take the set theoretic quotient, and make it an affine quotient variety by taking the ring (3) of all \mathbb{G}_{m}-invariant fractions as its coordinate ring.

2.2 Local affine coordinates

Since every point of $\mathcal{C} X \backslash 0$ has at least one $x_{i} \neq 0$, the quotient X is more modestly covered by the standard affine pieces $X^{(i)}=\left(x_{i} \neq 0\right)$. I treat first the construction of $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ for simplicity, so take $R=k\left[x_{0}, \ldots, x_{n}\right]$. Then the affine ring (3) is conveniently described as a ring of invariants for the cyclic group \mathbb{Z} / a_{i} acting on a polynomial ring.

The basic idea, just as in the homogeneous-inhomogeneous trick for straight projective space, is that I want to set $x_{i}=1$ on the affine piece $x_{i} \neq 0$. However, before doing that, I first adjoin the a_{i} th root of x_{i}, setting $x_{i}=\xi_{i}^{a_{i}}$, so that $\mathrm{wt} \xi_{i}=1$; the point of doing this is to be able replace each x_{j} by a homogeneous ratio of degree 0 . For clarity, suppose $i=0$. Since $\xi_{0}=\sqrt[a]{x_{0}}$ has weight 1 , each x_{i} now occurs in a homogeneous ratio of degree 0 with only ξ_{0} in the denominator, namely $x_{i} / \xi_{0}^{a_{i}}$. Thus setting $\xi_{0}=1$ amounts to replacing each x_{j} by this ratio. After adjoining ξ_{0}, the ring (3) of homogeneous rational forms of degree 0 is the polynomial ring

$$
\begin{equation*}
k\left[x_{1}^{(0)}, \ldots, x_{n}^{(0)}\right], \quad \text { where } \quad x_{i}^{(0)}=\frac{x_{i}}{\xi_{0}^{a_{i}}} \quad \text { for } i=1, \ldots, n . \tag{4}
\end{equation*}
$$

To get what I want, I still need to get rid of the irrational quantity ξ_{0}. For this, note that adjoining $\xi_{0}=\sqrt[a]{0} \sqrt{x_{0}}$ is a cyclic Galois extension of rings, with Galois group $\xi_{0} \mapsto \varepsilon \xi_{0}$, where $\varepsilon \in \mu_{a_{0}}$; here $\mu_{a_{0}} \subset \mathbb{G}_{m}$ is the group of a_{0} th roots of 1 , which is a cyclic group of order a_{0} (assuming characteristic coprime to a_{0}). We can eliminate the irrationality ξ_{0} by passing to the ring of invariants of μ / a_{0} acting by $x_{i}^{(0)} \mapsto \varepsilon^{-a_{i}} x_{i}^{(0)}$. The conclusion is that the affine piece $x_{0} \neq 0$ of $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ is the quotient of \mathbb{A}^{n} by the action $x_{i}^{(0)} \mapsto \varepsilon^{-a_{i}} x_{i}^{(0)}$, that is, the quotient $\frac{1}{a_{0}}\left(a_{1}, \ldots, a_{n}\right)$.

Remark 2.2 The discussion here was at the algebraic level, concerned with difficulty of writing down all the homogeneous ratios involving a variable x_{0} of degree $a_{0}>0$. The point, however, is exactly the same as the geometric difficulty of 1.1 of not being able to find a slice of the group action (at a point of the x_{0}-axis whose stabiliser group jumps up compared to its neighbours). Introducing $\sqrt[a]{a} \sqrt{x_{0}}$ also provides a finite cyclic covering space on which the \mathbb{G}_{m} action extends to an action having a slice.

3 Truncated rings $R^{[d]}$ and Veronese embedding

The d th truncated ring is the subring $R^{[d]} \subset R$ defined by

$$
\left(R^{[d]}\right)=\bigoplus_{d \mid n} R_{n}=\bigoplus_{i \geq 0} R_{d i} .
$$

In other words, we take only the homogeneous pieces of R of degree divisible by d. Although we've passed to a smaller ring, $\operatorname{Proj} R$ does not change up to isomorphism, because any homogeneous ratio in R can be expressed as a homogeneous ratio in $R^{[d]}$.

There are two different conventions in use about degrees in $R^{[d]}$: we can view the elements of $R_{d i}$ as having the same degree $d i$ in the truncated ring as they had in R, or we can divide degrees through by d. It is common for either convention to be in force in papers, sometimes both within the same argument.

Example 3.1 $R=k\left[x_{0}, x_{1}\right]$ has $\operatorname{Proj} R=\mathbb{P}^{1}$ (with coordinates x_{0}, x_{1}). The truncated ring $R^{[2]}=k\left[x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}\right]$ is the homogeneous coordinate ring of the plane conic $C:=\left(u_{0} u_{2}=u_{1}^{2}\right) \subset \mathbb{P}^{2}$. This is a very familiar argument: at every point of C either $u_{0} \neq 0$, and then the local parameter is $x_{1} / x_{0}=u_{1} / u_{0}$, or $u_{2} \neq 0$, and then $x_{0} / x_{1}=u_{1} / u_{2}$ is a local parameter.

The same applies to all the Veronese embeddings

$$
v_{d} \subset \mathbb{P}^{n} \hookrightarrow \mathbb{P}^{N} \quad \text { where } N+1=\binom{n+d}{n}
$$

most famously, the surface $v_{2}: \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$ embedded by

$$
\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0}^{2}, x_{0} x_{1}, \ldots, x_{2}^{2}\right)
$$

Example 3.2 In Example 1.1, we embedded $\mathbb{P}(1,1, a) \hookrightarrow \mathbb{P}^{a+1}$ by taking

$$
\left(x_{1}, x_{2}, y\right) \mapsto\left(x_{1}^{a}, x_{1}^{a-1} x_{2}, \ldots, x_{2}^{a}, y\right)
$$

Both $\mathbb{P}(1,1, a)$ and its image $\overline{\mathbb{F}} \subset \mathbb{P}^{a+1}$ have advantages: $\mathbb{P}(1,1, a)$ corresponds to the polynomial ring $k\left[x_{1}, x_{1}, y\right]$, with only 3 generators, albeit of different weights, and no relations between the generators. The image $\overline{\mathbb{F}}$ is a straight projective space, with $a+1$ homogeneous coordinates (of the same degree 1 or a as you like), and an obvious set of defining relations. $\overline{\mathbb{F}}$ is a cone with a ruling $|L|$ by generating lines, and a rational projection to the base of the cone $\cong \mathbb{P}^{1}$. You can recover the structure of $\mathbb{P}(1,1, a)$ by taking the linear system or generating lines, and noting that the hyperplane section of $\overline{\mathbb{F}} \subset \mathbb{P}^{a+1}$ is linearly equivalent to $a L$.

Proposition 3.3 (Veronese embedding) For a graded ring as in Definition 2.1,

$$
\operatorname{Proj} R^{[d]} \cong \operatorname{Proj} R \quad \text { for any } d>0
$$

Proof Any homogeneous element $f \in R_{m}$ has a power $f^{d} \in R^{[d]}$, and the ring of fractions $R^{[d]}\left[1 / f^{d}\right]$ is isomorphic to $R[1 / f]$; this is obvious because

$$
\frac{g_{m i}}{f^{i}}=\frac{f^{d j-i} g_{m i}}{f^{d j}}
$$

(where $d j \geq i$). In other words, any homogeneous ratio of elements of R can be written as a homogeneous ratio of elements of the truncated ring $R^{[d]}$. On the other hand, Proj R and Proj $R^{[d]}$ are both constructed just from these rings of fractions by taking elements of degree 0 then Spec. QED

3.1 Applications

Proposition 3.3 has two applications: to reduce to the "straight" case when R generated in degree 1, and to reduce to the "well formed" case when there is no orbifold behaviour in codimension 1 .

Proposition 3.4 For a graded ring as in Definition 2.1, there exists a truncation $R^{[d]}$ which is generated by its elements of the smallest degree; in this case, one would normally divide degrees by d, and say that $R^{[d]}$ is generated by elements of deg 1 (except in cases where some confusion may arise).

The point is purely combinatorial: given wt $x_{i}=a_{i}$, there exists some d so that every monomial of degree $m d$ can be written as a product of elements of degree d. The idea of the proof is to set $X_{i}=x_{i}^{N / a_{i}}$, where $N=\operatorname{lcm}\left(a_{i}\right)$, and argue on R as a module over the graded ring $k\left[X_{1}, \ldots, X_{n}\right]$, proving various finiteness assertions for it. I omit the proof in this draft (see [EGA2], Lemma 2.1.6).

Definition 3.5 (well formed wps) A wps $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ is well formed if no $n-1$ of $a_{0}, a_{1}, \ldots, a_{n}$ have a common factor.

Proposition 3.6 Consider the weighted polynomial ring $R=k\left[x_{0}, \ldots, x_{n}\right]$, where a_{0}, \ldots, a_{n} are positive integers with wt $x_{i}=a_{i}$. Then
(I) If d is a common factor of all a_{i} then $R^{[d]}=R$; thus $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)=$ $\mathbb{P}\left(a_{0} / d, \ldots, a_{n} / d\right)$.
(II) Suppose that a_{0}, \ldots, a_{n} have no common factor, and that d is a common factor of all a_{i} for $i \neq j$ (and therefore coprime to a_{j}). Then the d th truncation of R is the polynomial ring

$$
R^{[d]}=k\left[x_{0}, \ldots, x_{j-1}, x_{j}^{d}, x_{j+1}, \ldots, x_{n}\right] .
$$

Thus, in this case

$$
\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)=\mathbb{P}\left(\frac{a_{0}}{d}, \ldots, \frac{a_{j-1}}{d}, a_{j}, \frac{a_{j+1}}{d}, \ldots, \frac{a_{n}}{d}\right) .
$$

In particular, by passing to a truncation $R^{[d]}$ of R which is a polynomial ring generated by pure powers of x_{i}, we can always write any wps as well formed.

Proof If $d \mid a_{i}$ for every i then the degree of every monomial is divisible by d, so that (I) is obvious. In this case, truncation does not change anything.

If $d \mid a_{i}$ for every $i \neq j$ then $x_{i} \in R^{[d]}$ for every $i \neq j$, but the only way that x_{j} can occur in a monomial of degree divisible by d is as a d th power. Thus $R^{[d]}$ is as in (II). Replacing

$$
R=k\left[x_{0}, \ldots, x_{j}, \ldots, x_{n}\right] \quad \text { by } \quad R^{[d]}=k\left[x_{0}, \ldots, x_{j}^{d}, \ldots, x_{n}\right]
$$

changes the ring R, but does not change $\operatorname{Proj} R$. The point is that since $d \mid a_{i}$ for $i \neq j$ and is coprime to a_{j}, the only way that x_{j} can appear in a homogeneous ratio with other x_{i} is as an expression in x_{j}^{d}. QED

Well formed is equivalent to the condition that the quotient morphism $\mathbb{A}^{n+1} \rightarrow \mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ does not have orbifold behaviour along any coordinate hyperplane $H:\left(x_{i}=0\right)$.

Example 3.7 Consider the weighted projective plane $\mathbb{P}(b c, a c, a b)$ with coordinates x, y, z, where a, b, c are coprime integers; then $\mathbb{P}(b c, a c, a b) \rightarrow \mathbb{P}^{2}$ defined by $(x, y, z) \mapsto\left(x^{a}, y^{b}, z^{c}\right)$ is an isomorphism. In other words, although the rings $k\left[x^{a}, y^{b}, z^{c}\right] \subset k[x, y, z]$ are of course not equal, because of the way the weights are arranged, the two rings provide exactly the same opportunities for forming weighted homogeneous ratios.

Now consider the quotient ring $R=k[x, y, z] /\left(x^{a}+y^{b}+z^{c}\right)$; then $\operatorname{Spec} R$ is the singularity $X:\left(x^{a}+y^{b}+z^{c}=0\right) \subset \mathbb{A}^{3}$. However, $\operatorname{Proj} R \cong \operatorname{Proj} R^{[a b c]}$ is the line $\mathbb{P}^{1} \subset \mathbb{P}^{2}$. In this case the \mathbb{G}_{m} action on \mathbb{A}^{3} has the nontrivial stabiliser subgroups μ_{a} at every point of the coordinate line $x=0$, etc., and the quotient morphism $(X \backslash 0) \rightarrow \mathbb{P}^{1} \subset \mathbb{P}^{2}$ has orbifold points of order a at the intersection of \mathbb{P}^{1} with the coordinate lines $x=0$, etc.

A famous case is the E_{8} singularity $X:\left(x^{2}+y^{3}+z^{5}=0\right)$, which is naturally weighted homogeneous with weights $15,10,6$. The \mathbb{G}_{m} quotient morphism $X \rightarrow \mathbb{P}^{1}$ defined by the ratio $x^{2}: y^{3}: z^{5}$ has stabiliser of order 2 , 3 and 5. The weighted blowup $Y \rightarrow X$ (the graph of the quotient morphism $X \rightarrow \mathbb{P}^{1}$) is a surface having cyclic quotient singularities of order $2,3,5$ at the 3 points, giving rise to the Dynkin diagram of E_{8}.

Remark 3.8 In fact in this case, we can recover the ring R from its Proj together with its orbifold structure (this probably doesn't make sense at
present, but will be explained in a later chapter): let $C=\mathbb{P}^{1} \subset \mathbb{P}^{2}$, marked with three points P_{x}, P_{y}, P_{z} of order $2,3,5$. The orbifold canonical class

$$
K_{C}+\frac{1}{2} P_{x}+\frac{2}{3} P_{y}+\frac{4}{5} P_{z}
$$

has degree $\frac{1}{30}$, and one can check $R\left(C, K_{C}+\frac{1}{2} P_{x}+\frac{2}{3} P_{y}+\frac{4}{5} P_{z}\right)$ has generators x, y, z in degree $15,10,6$.

4 Hilbert series and applications

Definition 4.1 (Hilbert function and Hilbert series) Given a graded ring R, the Hilbert function is the numerical function

$$
\mathbb{Z} \rightarrow \mathbb{Z} \quad \text { given by } \quad d \mapsto P_{d}(R), \quad \text { where } P_{d}(R)=\operatorname{dim}_{k} R_{d} .
$$

The Hilbert series of R is the formal power series $P_{R}(t)=\sum_{d \geq 0} P_{d} t^{d}$.
It usually happens that P_{R} is a rational function with denominator $\prod_{i=0}^{n}\left(1-t^{a_{i}}\right)$ where R has generators of degree a_{i}.

Example 4.2 The straight polynomial ring $k\left[x_{0}, \ldots, x_{n}\right]$ has Hilbert function $P_{d}=\binom{n+d}{n}$. The Hilbert series is

$$
P(t)=\sum_{d \geq 0}\binom{n+d}{n} t^{d}=\frac{1}{(1-t)^{n+1}}
$$

The power series expansion is well known, but it can be calculated as follows (say, when $n=2$):

$$
P(t)=\sum P_{d} t^{d}=1+3 t+6 t^{2}+10 t^{3}+\cdots+\binom{d+2}{2} t^{n}+\cdots
$$

So by long multiplication

$$
\begin{array}{r}
(1-t) P(t)=\sum P_{d} t^{d}=1+3 t+6 t^{2}+10 t^{3}+\cdots+\binom{d+2}{2} t^{d}+\cdots \\
\quad-t-3 t^{2}-6 t^{3}-\cdots-\binom{d+1}{2} t^{d}-\cdots \\
=1+2 t+3 t^{2}+4 t^{3}+\cdots+(d+1) t^{d}+\cdots
\end{array}
$$

Repeating another couple of times gives $(1-t)^{3} P(t)=1$ as required.

Proposition 4.3 The weighted polynomial ring $k\left[x_{0}, \ldots, x_{n}\right]$ with weights a_{0}, \ldots, a_{n} has Hilbert series

$$
P(t)=\frac{1}{\prod_{i=0}^{n}\left(1-t_{i}^{a_{i}}\right)}
$$

Proof For a single variable,

$$
\frac{1}{\left(1-x_{i}\right)}=1+x_{i}+x_{i}^{2}+\cdots
$$

The rhs is just a list of every monomial in $k\left[x_{i}\right]$ counted once each. Taking the product of these expressions over each i gives

$$
\frac{1}{\prod\left(1-x_{i}\right)}=\prod \frac{1}{\left(1-x_{i}\right)}=\sum x^{\mathbf{m}}
$$

where the sum on the rhs consists of every monomial $x^{\mathbf{m}}=x_{0}^{m_{0}} x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$ in $k\left[x_{0}, \ldots, x_{n}\right]$ counted once each. If we substitute $x_{i}=t^{a_{i}}$ in this formal expression, each monomial $x^{\mathbf{m}}$ contributes one summand $t^{\mathrm{wt}} x^{\mathbf{m}}$ to the rhs. QED

The proposition says that the number P_{k} of monomomials of weight k in $k\left[x_{0}, \ldots, x_{n}\right]$ equals the coefficient of t^{k} in the stated power series $P(t)$. Calculating the terms of the power series is exactly the same problem as calculating the set of monomials of weight k, so this is a convenient way of holding the information of the numerical function P_{k}, but does not itself make the calculation any easier.

Example 4.4 The hypersurface ring $R=k\left[x_{0}, \ldots, x_{n}\right] /\left(f_{d}\right)$ has Hilbert series

$$
P(t)=\left(1-t^{d}\right) / \prod\left(1-t^{a_{i}}\right)
$$

and a weighted c.i. of degree d_{1}, \ldots, d_{k} gives

$$
P(t)=\prod_{j=1}^{k}\left(1-t^{d_{j}}\right) / \prod_{i=0}^{n}\left(1-t^{a_{i}}\right)
$$

Example 4.5 Let C be a hyperelliptic curve of genus g with the linear system $|A|=g_{2}^{1}$. By Clifford's theorem, this is the most special of all special
linear systems, and the dimension of $H^{0}(C, k A)$ is completely determined by RR^{1} :

$$
h^{0}(C, k A)= \begin{cases}k+1 & \text { for } k \leq g \\ 1-g+2 k & \text { for } k \geq g\end{cases}
$$

Thus the graded ring $R=\bigoplus H^{0}(C, k A)$ has Hilbert series

$$
P(t)=1+2 t+3 t^{2}+\cdots+g t^{g-1}+(g+1) t^{g}+(g+3) t^{g+1}+\cdots
$$

Doing long multiplication by $1-t$ a couple of time as in Example 4.2 gives

$$
\begin{aligned}
(1-t) P(t) & =1+t+t^{2}+\cdots+t^{g}+2 t^{g+1}+\cdots \\
(1-t)^{2} P(t) & =1+t^{g+1}
\end{aligned}
$$

Thus

$$
P(t)=\frac{1+t^{g+1}}{(1-t)^{2}}=\frac{1-t^{2 g+2}}{(1-t)^{2}\left(1-t^{g+1}\right)}
$$

This is the Hilbert series of the weighted hypersurface $C_{2 a} \subset \mathbb{P}(1,1, a)$ where $a=g+1$.

5 More important examples

5.1 $\mathbb{P}(1,2,3)$

This can be treated in several ways: write $k[x, y, z]$ for the polynomial ring with wt $x=1$, wt $y=2$, wt $z=3$, so $\mathbb{P}(1,2,3)=\operatorname{Proj} k[x, y, z]$.

1. The general definition of $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ as a \mathbb{G}_{m} quotient and the local coordinate trick 2.2 shows that $\mathbb{P}(1,2,3)$ is covered by 3 affine pieces

$$
\begin{array}{ccc}
\mathbb{A}^{2} & \text { with coordinates } & y / x^{2}, z / x^{3} \\
\frac{1}{2}(1,1) & " & x / \eta, z / \eta^{3} \\
\frac{1}{3}(1,2) & " & x / \zeta, y / \zeta^{2}
\end{array}
$$

${ }^{1}$ For a divisor D on a nonsingular curve C of genus g, RR says

$$
h^{0}(C, D)-h^{0}\left(C, K_{C}-D\right)=1-g+\operatorname{deg} D
$$

Here $H^{0}(C, D)=\mathcal{L}(D)=\{f \in k(C) \mid \operatorname{div} f+D \geq 0\}$ is the Riemann-Roch space of D, with $h^{0}(C, D)=\operatorname{dim} H^{0}(C, D)$ and K_{C} is the canonical divisor. D is a special divisor if both $h^{0}(C, D) \neq 0$ and $h^{0}\left(C, K_{C}-D\right) \neq 0$. Clifford's theorem says that a special divisor D satisfies

$$
\operatorname{deg} D \geq 2\left(h^{0}(C, D)-1\right)
$$

and equality holds (apart from the elementary cases $D=0$ or $D=K_{C}$) if and only if C is hyperelliptic and $D=k A$ where $A=g_{2}^{1}$.
2. Consider the action of the symmetric group S_{3} on ordinary \mathbb{P}^{2} by permuting the coordinates x_{1}, x_{2}, x_{3}. The quotient morphism is given by $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2} / S_{3}=\operatorname{Proj} k[x, y, z]$ where

$$
(x, y, z)=\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}, x_{1} x_{2} x_{3}\right)
$$

are the elementary symmetric functions.
3. The order 6 truncation $R^{[6]}$ of $k[x, y, z]$ corresponds to a Veronese embedding of $\mathbb{P}(1,2,3)$ embeds it as a (singular) del Pezzo surface of degree $6 S_{6} \subset \mathbb{P}^{6}$. Write out the 7 monomials of degree 6 as the Newton polygon

$$
\begin{array}{cccc}
x^{6} & x^{4} y & x^{2} y^{2} & y^{3} \\
x^{3} z & x y z & & \tag{5}\\
z^{2} & & &
\end{array}
$$

It is not hard to write out the 9 quadratic relations between these monomials; they define the image $S_{6} \subset \mathbb{P}^{6}$.
4. Toric variety corresponding to the cone dual to (5).

5.2 Weiestrass model of an elliptic curve

If E is an elliptic curve, and $P \in E$ a marked point (that can serve as the origin of the group law), the graded ring $R(E, P)=\bigoplus_{k>0} H^{0}(E, k P)$ is of the form $k[x, y, z] / f_{6}$, and defines an embedding $E \subset \mathbb{P}(1,2,3)$. It is a hyperplane section of the variety in (3) above.

5.3 Double covers

$X_{2 a} \subset \mathbb{P}(1, \ldots, 1, a)$ defined by $y^{2}=f_{2 a}\left(x_{0}, \ldots, x_{n}\right)$ is a double cover of \mathbb{P}^{n} branched in the hypersurface $\left(f_{2 a}=0\right)$ of degree $2 a$.

The hypersurface $X_{2 b} \subset \mathbb{P}(1,1,2, b)$ is a double cover of the ordinary quadric cone $\mathbb{P}(1,1,2)=Q \subset \mathbb{P}^{3}$ ramified in the vertex and in the intersection of Q with a hypersurface of degree $2 b$.

6 The hyperplane section theorem

Let R be a graded ring, and $x_{0} \in R$ a graded element of degree a_{0}. Suppose that x_{0} is a regular element of R, that is, a non-zerodivisor. Then multiplication by x_{0} is an inclusion $R \hookrightarrow R$ with image the principal ideal $\left(x_{0}\right)$, and

I arrive at the exact sequence

$$
0 \rightarrow\left(x_{0}\right) \rightarrow R \rightarrow \bar{R} \rightarrow 0,
$$

where $\bar{R}=R /\left(x_{0}\right)$. Geometrically, if $\operatorname{Proj} \bar{R}$ is the hyperplane section of Proj R given by $x_{0}=0$.

The hyperplane section principle says that under these assumptions, we can deduce a lot of the structure of R from \bar{R} and vice-versa.

Theorem 6.1 (hyperplane section principle) 1. Let $\bar{x}_{1}, \ldots, \bar{x}_{k}$ be homogeneous element that generate \bar{R}, and $x_{1}, \ldots, x_{k} \in R$ any homogeneous elements that map to $\bar{x}_{1}, \ldots, \bar{x}_{k} \in \bar{R}$. Then R is generated by $x_{0}, x_{1}, \ldots, x_{k}$.
2. Under the assumption of (1), let $\bar{f}_{1}, \ldots, \bar{f}_{n}$ be homogeneous generators of the ideal of relations holding between $\bar{x}_{1}, \ldots, \bar{x}_{k}$. Then there exist homogeneous relations f_{1}, \ldots, f_{n} holding between $x_{0}, x_{1}, \ldots, x_{n}$ in R such that the f_{i} reduces to \bar{f}_{i} modulo x_{0} and f_{1}, \ldots, f_{n} generate the relation between $x_{0}, x_{1}, \ldots, x_{n}$.
3. Similar for the syzygies.

Proof I just give a sketch. For (1), I can choose $x_{i} \mapsto \bar{x}_{i}$ by the assumption that $R \rightarrow \bar{R}$ is graded and surjective. Given any $y \in R$, suppose that it maps to $\bar{y} \in \bar{R}$. Then $\bar{y}=g\left(\bar{x}_{1}, \ldots, \bar{x}_{k}\right)$ for some homogeneous polynomial g. Taking the same g gives

$$
y-g\left(x_{1}, \ldots, x_{k}\right) \in \operatorname{ker}\{R \rightarrow \bar{R}\}=\left(x_{0}\right)
$$

so that $y-g\left(x_{1}, \ldots, x_{k}\right)=x_{0} y^{\prime}$, where y^{\prime} has smaller degree than y. Thus by induction, I can assume that y^{\prime} is in the subring generated by x_{0}, \ldots, x_{k}, and I conclude by induction.
(2) and (3) are similar, and are omitted in this draft.

7 Preview of material of later chapters

The Hilbert syzygies theorem. Cohomology and the Cohen-Macaulay condition. Canonical class, the Gorenstein condition assuming well-formed. Orbifold canonical class and the Gorenstein condition more generally. Unprojection.

References

[EGA2] Alexandre Grothendieck, Eléments de géométrie algébrique. II, IHES Publ. Math. 8 (1961)
[Fl] A. R. Iano-Fletcher: Working with weighted complete intersections, in Explicit birational geometry of 3 -folds, A. Corti and M. Reid (editors), CUP 2000
[H] R. Hartshorne, Algebraic geometry, Springer
[UAG] M. Reid, Undergraduate algebraic geometry, CUP
[UCA] M. Reid, Undergraduate commutative algebra, CUP
[Ch] M. Reid, Chapters on algebraic surfaces, in Complex algebraic varieties, J. Kollár (Ed.), IAS/Park City lecture notes series (1993 volume), AMS, Providence R.I.
[R] Oswald Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211-248

