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Abstract
This chapter is a first introduction to weighted projective spaces

(wps) P = P(a0, . . . , an) and the Proj correspondence

projective variety
X ⊂ P ←→ graded ring

R = k[x0, . . . , xn]/I (1)

The correspondence (1) between geometry and algebra is a minor
but very fruitful generalisation of the usual idea of varieties in straight
projective space Pn = P(1, . . . , 1). The simple device of working with
varieties contained in the ready-made ambient spaces P = P(a0, . . . , an)
allows us in many cases to by-pass the definition of abstract variety
(or more general schemes) at the cost of a bit of messing around with
weighted homogeneous polynomials, so that projective varieties in wps
are technically not really much harder than affine varieties. Practically
every item in this chapter relates in a transparent way to something
in the treatment of subvarieties of straight projective space; compare
[UAG], Chapter 5 and Hartshorne [H], Chapter I. Nontrivial weights
ai > 1 leads naturally to cyclic quotient singularities, Q-divisors and
cyclic orbifold behaviour.

Weighted projective spaces have appeared implicitly in algebraic
geometry since ancient times; the most basic example is a hyperelliptic
curve y2 = f2g+2(x) viewed as a double cover of P1, that is, a weighted
hypersurface C2g+2 ⊂ P(1, 1, g+1). The general definition was codified
in Grothendieck’s notion of ProjR ([EGA2], see also [H], Chapter II,
Section 7), and is a basic ingredient of modern work on algebraic sur-
faces and 3-folds.

1 Weighted projective space P(a0, . . . , an)

The definition is similar to straight projective space: wps is the quotient

P(a0, . . . , an) = (An+1 \ 0)/Gm
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of An+1 under the equivalence relation

(x0, . . . , xn) ∼ (λa0x0, . . . , λ
anxn) for λ ∈ Gm. (2)

(Here Gm is the multiplicative algebraic group, that is, the variety whose
k-points are the multiplicative group k×.) We can usually assume that the
ai are mostly coprime (see 3.1 below); a typical condition is that no n of the
ai have a common factor.

Example 1.1 P(1, 1, a) is the cone over the rational normal curve of degree
a in Pa. We have already met this surface in [Ch], 2.9 as the image of the
surface scroll F(a, 0), under which the negative section is contracted. Write
x1, x2, y for coordinates on A3. The quotient of A3 \ 0 by Gm is realised by
the morphism (A3 \ 0)→ P

a+1 defined by

(x1, x2, y) 7→ (xa1 : xa−1
1 x2 : · · · : xa2 : y).

The cone point is (0, 0, 1), the equivalence class of the y-axis.
At a point of A3 with x1 6= 0, setting x1 = 1 defines a slice of the action

of Gm (compare [UAG], Figure 1.4 – here slice means a local submanifold
that provides a unique choice of representative in each equivalence class),
so that the quotient (A3 \ (x1 = 0))/Gm is just A2 with coordinates x2

x1
, yxa1

.
Similarly for x2 6= 0. However, near the y-axis, the group action does not
have a slice: indeed, it is given by

(x1, x2, y) 7→ (λx1, λx2, λ
ay),

so that a point of the y-axis is fixed by roots of unity µa ⊂ Gm (a cyclic
group of order a). Setting y = 1 cuts the y-axis in one point, but cuts
neighbouring orbits in a points (εx1, εx2, y) for ε ∈ µa. Thus as coordinates
on the quotient (A3 \ (y = 0))/Gm, I must take

xa1
y
,
xa−1

1 x2

y
, . . . ,

xa2
y
.

This is a model for the standard cyclic quotient behaviour in 2.2.

Example 1.2 Consider the equation y2 = f2a(x1, x2), where f is a homo-
geneous polynomial having 2a distinct roots. This defines the hypersurface
C2a ⊂ P(1, 1, a) which is the general hyperelliptic curve of genus g = a− 1.
Because of the monomial y2, the hypersurface does not pass through the
cone point (0, 0, 1). The curve C is the union of two affine pieces given by
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x1 = 1 and x2 = 1, glued together in the obvious way, so that C → P
1 is

the double cover with 2a branch points f = 0. Note that it is not a wise
move to take the projective closure of y2 = f2a(x) in straight P2 – it leads
to a complicated singularity at infinity, and general confusion.

One can view the equation y2 = f2a(x1, x2) as a general quadric section
of F = P(1, 1, a) ⊂ Pa, or a general curve C ∈ |2aA+ 2B| in Fa in the set-up
of [Ch], 2.9. One calculates the canonical class KC = (a−2)A and the genus
g = a− 1 in any number of ways (compare Example 4.5).

2 Graded rings and ProjR

Definition 2.1 A graded ring R =
⊕

n≥0Rn is a ring R whose multi-
plication R × R → R respects the grading, taking Rn × Rm → Rn+m.
It is sometimes useful to work with a grading taking values in more general
semigroups, but here I restrict attention to gradings by n ∈ Z with n ≥ 0.
In view of the intended applications to varieties over a field k, I impose the
following additional conditions:

(i) R0 = k is the ground field;

(ii) R is finitely generated as a ring over k;

(iii) R is an integral domain.

More general cases may be interesting for several different purposes.
Since every element of R is a sum of homogeneous pieces, it follows from

(ii) that the generators of R can be chosen to be finitely many homogeneous
elements xi of degree ai > 0. The key example is the polynomial ring
k[x0, . . . , xn] where wtxi = ai. Every polynomial is a sum of monomials
xm =

∏
xmii , having weight

∑
miai. A polynomial f is homogeneous (also

weighted homogeneous or quasihomogeneous) of weight d if every monomial
in f has weight d. An ideal in a graded ring I ⊂ R is graded or weighted
homogeneous if I is the sum of its homogeneous components, I =

⊕
n≥0 In

with In = I ∩ Rn. It is equivalent to say that I is generated by (finitely
many) homogeneous elements. Thus in general, the rings R considered have
the form R = k[x0, . . . , xn]/I, where deg xi = ai and I is a homogeneous
prime ideal.

2.1 Construction of ProjR

A ring R = k[x0, . . . , xn]/I corresponds to an irreducible affine variety
CX = SpecR = Va(I) ⊂ An+1; the subscript a stands for affine or inhomo-
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geneous. CX is the (weighted homogeneous) affine cone over the projective
variety Vh(I) = X defined below. A polynomial f(x0, . . . , xn) is weighted
homogeneous of degree d if and only if

f(λa0x0, λ
a1x1, . . . , λ

anxn) = λdf(x0, . . . , xn) for all λ ∈ Gm,

so that the condition f(P ) = 0 is well defined on equivalence classes of ∼
in (2). One can thus define the projective variety or homogeneous spectrum
X = ProjR = Vh(I) ⊂ P(a0, . . . , an) as the quotient (Va(I) \ 0)/Gm.

I want to construct the quotient X as an algebraic variety. So what
are the functions on X? In the elementary spirit of [UAG], Chapter 5,
one can approach this via the rational function field consisting of ratios of
homogeneous elements of the same degree d

k(X) =
{g
h

∣∣∣ g, h ∈ Rd}/∼ where
g

h
∼ g′

h′
⇐⇒ gh′ − hg′ ∈ I,

and define a rational function f ∈ k(X) to be regular at P ∈ X if there
exists an expression f = g/h with h(P ) 6= 0.

As an alternative, for any d > 0 and any homogeneous element f ∈ Rd,
define the principal open set Xf ⊂ X by Xf :=

{
P ∈ X

∣∣ f(P ) 6= 0
}

. Then
Xf is an affine variety having coordinate ring

k[Xf ] =
(
R
[ 1
f

])0
=
{
gmd
fm

∣∣∣ g ∈ Rmd} . (3)

The subscript 0 means homogeneous of degree 0, that is, Gm-invariant.
In other words, what is going on here is a systematic construction of the

quotient (CX \ 0)/Gm: the open sets (f 6= 0) ⊂ CX for f ∈ Rd provide
arbitrarily small Gm-invariant affine open sets covering CX \ 0. For every
such open set, take the set theoretic quotient, and make it an affine quotient
variety by taking the ring (3) of all Gm-invariant fractions as its coordinate
ring.

2.2 Local affine coordinates

Since every point of CX \ 0 has at least one xi 6= 0, the quotient X is more
modestly covered by the standard affine pieces X(i) = (xi 6= 0). I treat first
the construction of P(a0, . . . , an) for simplicity, so take R = k[x0, . . . , xn].
Then the affine ring (3) is conveniently described as a ring of invariants for
the cyclic group Z/ai acting on a polynomial ring.
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The basic idea, just as in the homogeneous–inhomogeneous trick for
straight projective space, is that I want to set xi = 1 on the affine piece
xi 6= 0. However, before doing that, I first adjoin the aith root of xi, setting
xi = ξaii , so that wt ξi = 1; the point of doing this is to be able replace
each xj by a homogeneous ratio of degree 0. For clarity, suppose i = 0.
Since ξ0 = a0

√
x0 has weight 1, each xi now occurs in a homogeneous ratio

of degree 0 with only ξ0 in the denominator, namely xi/ξ
ai
0 . Thus setting

ξ0 = 1 amounts to replacing each xj by this ratio. After adjoining ξ0, the
ring (3) of homogeneous rational forms of degree 0 is the polynomial ring

k[x(0)
1 , . . . , x(0)

n ], where x
(0)
i =

xi
ξai0

for i = 1, . . . , n. (4)

To get what I want, I still need to get rid of the irrational quantity ξ0. For
this, note that adjoining ξ0 = a0

√
x0 is a cyclic Galois extension of rings,

with Galois group ξ0 7→ εξ0, where ε ∈ µa0 ; here µa0 ⊂ Gm is the group of
a0th roots of 1, which is a cyclic group of order a0 (assuming characteristic
coprime to a0). We can eliminate the irrationality ξ0 by passing to the
ring of invariants of µ/a0 acting by x(0)

i 7→ ε−aix
(0)
i . The conclusion is that

the affine piece x0 6= 0 of P(a0, . . . , an) is the quotient of An by the action
x

(0)
i 7→ ε−aix

(0)
i , that is, the quotient 1

a0
(a1, . . . , an).

Remark 2.2 The discussion here was at the algebraic level, concerned with
difficulty of writing down all the homogeneous ratios involving a variable x0

of degree a0 > 0. The point, however, is exactly the same as the geometric
difficulty of 1.1 of not being able to find a slice of the group action (at a point
of the x0-axis whose stabiliser group jumps up compared to its neighbours).
Introducing a0

√
x0 also provides a finite cyclic covering space on which the

Gm action extends to an action having a slice.

3 Truncated rings R[d] and Veronese embedding

The dth truncated ring is the subring R[d] ⊂ R defined by

(R[d]) =
⊕
d|n

Rn =
⊕
i≥0

Rdi.

In other words, we take only the homogeneous pieces of R of degree divisible
by d. Although we’ve passed to a smaller ring, ProjR does not change up
to isomorphism, because any homogeneous ratio in R can be expressed as a
homogeneous ratio in R[d].

5



There are two different conventions in use about degrees in R[d]: we can
view the elements of Rdi as having the same degree di in the truncated ring
as they had in R, or we can divide degrees through by d. It is common for
either convention to be in force in papers, sometimes both within the same
argument.

Example 3.1 R = k[x0, x1] has ProjR = P
1 (with coordinates x0, x1).

The truncated ring R[2] = k[x2
0, x0x1, x

2
1] is the homogeneous coordinate

ring of the plane conic C := (u0u2 = u2
1) ⊂ P

2. This is a very familiar
argument: at every point of C either u0 6= 0, and then the local parameter
is x1/x0 = u1/u0, or u2 6= 0, and then x0/x1 = u1/u2 is a local parameter.

The same applies to all the Veronese embeddings

vd ⊂ Pn ↪→ P
N where N + 1 =

(
n+d
n

)
;

most famously, the surface v2 : P2 ↪→ P
5 embedded by

(x0, x1, x2) 7→ (x2
0, x0x1, . . . , x

2
2).

Example 3.2 In Example 1.1, we embedded P(1, 1, a) ↪→ P
a+1 by taking

(x1, x2, y) 7→ (xa1, x
a−1
1 x2, . . . , x

a
2, y).

Both P(1, 1, a) and its image F ⊂ Pa+1 have advantages: P(1, 1, a) corre-
sponds to the polynomial ring k[x1, x1, y], with only 3 generators, albeit of
different weights, and no relations between the generators. The image F is a
straight projective space, with a+ 1 homogeneous coordinates (of the same
degree 1 or a as you like), and an obvious set of defining relations. F is a
cone with a ruling |L| by generating lines, and a rational projection to the
base of the cone ∼= P

1. You can recover the structure of P(1, 1, a) by taking
the linear system or generating lines, and noting that the hyperplane section
of F ⊂ Pa+1 is linearly equivalent to aL.

Proposition 3.3 (Veronese embedding) For a graded ring as in Defi-
nition 2.1,

ProjR[d] ∼= ProjR for any d > 0.

Proof Any homogeneous element f ∈ Rm has a power fd ∈ R[d], and the
ring of fractions R[d][1/fd] is isomorphic to R[1/f ]; this is obvious because

gmi
f i

=
fdj−igmi
fdj
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(where dj ≥ i). In other words, any homogeneous ratio of elements of R can
be written as a homogeneous ratio of elements of the truncated ring R[d]. On
the other hand, ProjR and ProjR[d] are both constructed just from these
rings of fractions by taking elements of degree 0 then Spec. QED

3.1 Applications

Proposition 3.3 has two applications: to reduce to the “straight” case when
R generated in degree 1, and to reduce to the “well formed” case when there
is no orbifold behaviour in codimension 1.

Proposition 3.4 For a graded ring as in Definition 2.1, there exists a trun-
cation R[d] which is generated by its elements of the smallest degree; in this
case, one would normally divide degrees by d, and say that R[d] is generated
by elements of deg 1 (except in cases where some confusion may arise).

The point is purely combinatorial: given wtxi = ai, there exists some d
so that every monomial of degree md can be written as a product of elements
of degree d. The idea of the proof is to set Xi = x

N/ai
i , where N = lcm(ai),

and argue on R as a module over the graded ring k[X1, . . . , Xn], proving
various finiteness assertions for it. I omit the proof in this draft (see [EGA2],
Lemma 2.1.6).

Definition 3.5 (well formed wps) A wps P(a0, . . . , an) is well formed if
no n− 1 of a0, a1, . . . , an have a common factor.

Proposition 3.6 Consider the weighted polynomial ring R = k[x0, . . . , xn],
where a0, . . . , an are positive integers with wtxi = ai. Then

(I) If d is a common factor of all ai then R[d] = R; thus P(a0, . . . , an) =
P(a0/d, . . . , an/d).

(II) Suppose that a0, . . . , an have no common factor, and that d is a com-
mon factor of all ai for i 6= j (and therefore coprime to aj). Then the
dth truncation of R is the polynomial ring

R[d] = k[x0, . . . , xj−1, x
d
j , xj+1, . . . , xn].

Thus, in this case

P(a0, . . . , an) = P

(a0

d
, . . . ,

aj−1

d
, aj ,

aj+1

d
, . . . ,

an
d

)
.
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In particular, by passing to a truncation R[d] of R which is a polynomial
ring generated by pure powers of xi, we can always write any wps as well
formed.

Proof If d | ai for every i then the degree of every monomial is divisible by
d, so that (I) is obvious. In this case, truncation does not change anything.

If d | ai for every i 6= j then xi ∈ R[d] for every i 6= j, but the only way
that xj can occur in a monomial of degree divisible by d is as a dth power.
Thus R[d] is as in (II). Replacing

R = k[x0, . . . , xj , . . . , xn] by R[d] = k[x0, . . . , x
d
j , . . . , xn]

changes the ring R, but does not change ProjR. The point is that since
d | ai for i 6= j and is coprime to aj , the only way that xj can appear in a
homogeneous ratio with other xi is as an expression in xdj . QED

Well formed is equivalent to the condition that the quotient morphism
A
n+1 → P(a0, . . . , an) does not have orbifold behaviour along any coordinate

hyperplane H : (xi = 0).

Example 3.7 Consider the weighted projective plane P(bc, ac, ab) with co-
ordinates x, y, z, where a, b, c are coprime integers; then P(bc, ac, ab) → P

2

defined by (x, y, z) 7→ (xa, yb, zc) is an isomorphism. In other words, al-
though the rings k[xa, yb, zc] ⊂ k[x, y, z] are of course not equal, because of
the way the weights are arranged, the two rings provide exactly the same
opportunities for forming weighted homogeneous ratios.

Now consider the quotient ring R = k[x, y, z]/(xa+yb+zc); then SpecR
is the singularity X : (xa+yb+zc = 0) ⊂ A3. However, ProjR ∼= ProjR[abc]

is the line P1 ⊂ P2. In this case the Gm action on A3 has the nontrivial
stabiliser subgroups µa at every point of the coordinate line x = 0, etc., and
the quotient morphism (X \ 0)→ P

1 ⊂ P2 has orbifold points of order a at
the intersection of P1 with the coordinate lines x = 0, etc.

A famous case is the E8 singularity X : (x2 + y3 + z5 = 0), which is
naturally weighted homogeneous with weights 15, 10, 6. The Gm quotient
morphism X → P

1 defined by the ratio x2 : y3 : z5 has stabiliser of order 2,
3 and 5. The weighted blowup Y → X (the graph of the quotient morphism
X → P

1) is a surface having cyclic quotient singularities of order 2, 3, 5 at
the 3 points, giving rise to the Dynkin diagram of E8.

Remark 3.8 In fact in this case, we can recover the ring R from its Proj
together with its orbifold structure (this probably doesn’t make sense at
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present, but will be explained in a later chapter): let C = P
1 ⊂ P2, marked

with three points Px, Py, Pz of order 2, 3, 5. The orbifold canonical class

KC +
1
2
Px +

2
3
Py +

4
5
Pz

has degree 1
30 , and one can check R(C,KC+ 1

2Px+ 2
3Py+ 4

5Pz) has generators
x, y, z in degree 15, 10, 6.

4 Hilbert series and applications

Definition 4.1 (Hilbert function and Hilbert series) Given a graded
ring R, the Hilbert function is the numerical function

Z→ Z given by d 7→ Pd(R), where Pd(R) = dimk Rd.

The Hilbert series of R is the formal power series PR(t) =
∑

d≥0 Pdt
d.

It usually happens that PR is a rational function with denominator∏n
i=0(1− tai) where R has generators of degree ai.

Example 4.2 The straight polynomial ring k[x0, . . . , xn] has Hilbert func-
tion Pd =

(
n+d
n

)
. The Hilbert series is

P (t) =
∑
d≥0

(
n+ d

n

)
td =

1
(1− t)n+1

.

The power series expansion is well known, but it can be calculated as
follows (say, when n = 2):

P (t) =
∑

Pdt
d = 1 + 3t+ 6t2 + 10t3 + · · ·+

(
d+ 2

2

)
tn + · · ·

So by long multiplication

(1− t)P (t) =
∑

Pdt
d = 1 + 3t+ 6t2 + 10t3 + · · ·+

(
d+ 2

2

)
td + · · ·

− t− 3t2 − 6t3 − · · · −
(
d+ 1

2

)
td − · · ·

= 1 + 2t+ 3t2 + 4t3 + · · ·+ (d+ 1)td + · · ·

Repeating another couple of times gives (1− t)3P (t) = 1 as required.
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Proposition 4.3 The weighted polynomial ring k[x0, . . . , xn] with weights
a0, . . . , an has Hilbert series

P (t) =
1∏n

i=0(1− taii )
.

Proof For a single variable,

1
(1− xi)

= 1 + xi + x2
i + · · · .

The rhs is just a list of every monomial in k[xi] counted once each. Taking
the product of these expressions over each i gives

1∏
(1− xi)

=
∏ 1

(1− xi)
=
∑

xm,

where the sum on the rhs consists of every monomial xm = xm0
0 xm1

1 · · ·xmnn
in k[x0, . . . , xn] counted once each. If we substitute xi = tai in this for-
mal expression, each monomial xm contributes one summand twtxm

to the
rhs. QED

The proposition says that the number Pk of monomomials of weight k
in k[x0, . . . , xn] equals the coefficient of tk in the stated power series P (t).
Calculating the terms of the power series is exactly the same problem as
calculating the set of monomials of weight k, so this is a convenient way
of holding the information of the numerical function Pk, but does not itself
make the calculation any easier.

Example 4.4 The hypersurface ring R = k[x0, . . . , xn]/(fd) has Hilbert
series

P (t) = (1− td)/
∏

(1− tai)

and a weighted c.i. of degree d1, . . . , dk gives

P (t) =
k∏
j=1

(1− tdj )/
n∏
i=0

(1− tai)

Example 4.5 Let C be a hyperelliptic curve of genus g with the linear
system |A| = g1

2. By Clifford’s theorem, this is the most special of all special

10



linear systems, and the dimension of H0(C, kA) is completely determined
by RR1:

h0(C, kA) =

{
k + 1 for k ≤ g,
1− g + 2k for k ≥ g.

Thus the graded ring R =
⊕
H0(C, kA) has Hilbert series

P (t) = 1 + 2t+ 3t2 + · · ·+ gtg−1 + (g + 1)tg + (g + 3)tg+1 + · · ·

Doing long multiplication by 1− t a couple of time as in Example 4.2 gives

(1− t)P (t) = 1 + t+ t2 + · · ·+ tg + 2tg+1 + · · ·
(1− t)2P (t) = 1 + tg+1.

Thus

P (t) =
1 + tg+1

(1− t)2
=

1− t2g+2

(1− t)2(1− tg+1)
.

This is the Hilbert series of the weighted hypersurface C2a ⊂ P(1, 1, a) where
a = g + 1.

5 More important examples

5.1 P(1, 2, 3)

This can be treated in several ways: write k[x, y, z] for the polynomial ring
with wtx = 1,wt y = 2,wt z = 3, so P(1, 2, 3) = Proj k[x, y, z].

1. The general definition of P(a0, . . . , an) as a Gm quotient and the local
coordinate trick 2.2 shows that P(1, 2, 3) is covered by 3 affine pieces

A
2 with coordinates y/x2, z/x3

1
2(1, 1) " x/η, z/η3

1
3(1, 2) " x/ζ, y/ζ2

1For a divisor D on a nonsingular curve C of genus g, RR says

h0(C,D)− h0(C,KC −D) = 1− g + degD.

Here H0(C,D) = L(D) = {f ∈ k(C)|div f + D ≥ 0} is the Riemann–Roch space of D,
with h0(C,D) = dimH0(C,D) and KC is the canonical divisor. D is a special divisor if
both h0(C,D) 6= 0 and h0(C,KC −D) 6= 0. Clifford’s theorem says that a special divisor
D satisfies

degD ≥ 2(h0(C,D)− 1),

and equality holds (apart from the elementary cases D = 0 or D = KC) if and only if C
is hyperelliptic and D = kA where A = g1

2 .
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2. Consider the action of the symmetric group S3 on ordinary P2 by
permuting the coordinates x1, x2, x3. The quotient morphism is given
by P2 → P

2/S3 = Proj k[x, y, z] where

(x, y, z) = (x1 + x2 + x3, x1x2 + x2x3 + x3x1, x1x2x3)

are the elementary symmetric functions.

3. The order 6 truncation R[6] of k[x, y, z] corresponds to a Veronese
embedding of P(1, 2, 3) embeds it as a (singular) del Pezzo surface of
degree 6 S6 ⊂ P

6. Write out the 7 monomials of degree 6 as the
Newton polygon

x6 x4y x2y2 y3

x3z xyz
z2

(5)

It is not hard to write out the 9 quadratic relations between these
monomials; they define the image S6 ⊂ P6.

4. Toric variety corresponding to the cone dual to (5).

5.2 Weiestrass model of an elliptic curve

If E is an elliptic curve, and P ∈ E a marked point (that can serve as the
origin of the group law), the graded ring R(E,P ) =

⊕
k≥0H

0(E, kP ) is
of the form k[x, y, z]/f6, and defines an embedding E ⊂ P(1, 2, 3). It is a
hyperplane section of the variety in (3) above.

5.3 Double covers

X2a ⊂ P(1, . . . , 1, a) defined by y2 = f2a(x0, . . . , xn) is a double cover of Pn

branched in the hypersurface (f2a = 0) of degree 2a.
The hypersurface X2b ⊂ P(1, 1, 2, b) is a double cover of the ordinary

quadric cone P(1, 1, 2) = Q ⊂ P3 ramified in the vertex and in the inter-
section of Q with a hypersurface of degree 2b.

6 The hyperplane section theorem

Let R be a graded ring, and x0 ∈ R a graded element of degree a0. Suppose
that x0 is a regular element of R, that is, a non-zerodivisor. Then multipli-
cation by x0 is an inclusion R ↪→ R with image the principal ideal (x0), and
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I arrive at the exact sequence

0→ (x0)→ R→ R→ 0,

where R = R/(x0). Geometrically, if ProjR is the hyperplane section of
ProjR given by x0 = 0.

The hyperplane section principle says that under these assumptions, we
can deduce a lot of the structure of R from R and vice-versa.

Theorem 6.1 (hyperplane section principle) 1. Let x1, . . . , xk be
homogeneous element that generate R, and x1, . . . , xk ∈ R any homo-
geneous elements that map to x1, . . . , xk ∈ R. Then R is generated by
x0, x1, . . . , xk.

2. Under the assumption of (1), let f1, . . . , fn be homogeneous generators
of the ideal of relations holding between x1, . . . , xk. Then there exist
homogeneous relations f1, . . . , fn holding between x0, x1, . . . , xn in R
such that the fi reduces to f i modulo x0 and f1, . . . , fn generate the
relation between x0, x1, . . . , xn.

3. Similar for the syzygies.

Proof I just give a sketch. For (1), I can choose xi 7→ xi by the assumption
that R → R is graded and surjective. Given any y ∈ R, suppose that it
maps to y ∈ R. Then y = g(x1, . . . , xk) for some homogeneous polynomial
g. Taking the same g gives

y − g(x1, . . . , xk) ∈ ker{R→ R} = (x0)

so that y − g(x1, . . . , xk) = x0y
′, where y′ has smaller degree than y. Thus

by induction, I can assume that y′ is in the subring generated by x0, . . . , xk,
and I conclude by induction.

(2) and (3) are similar, and are omitted in this draft.

7 Preview of material of later chapters

The Hilbert syzygies theorem. Cohomology and the Cohen–Macaulay con-
dition. Canonical class, the Gorenstein condition assuming well-formed.
Orbifold canonical class and the Gorenstein condition more generally. Un-
projection.
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