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Summary

Summary
In Chapter 2 we give a description of an algorithm suggested by Reid

for studying extensions of a variety C < [P" as a hyperplane section of a
variety in P™+1,

In Chapter 3 we use this method to study surfaces with numerical
invariants p, = 3 and K2 = 4. We find that there are 5 families of such
surfaces and produce explicitly the canonical ring for a generic member of
each family. In[Ho 1] there is a geometric study of surfaces with these

invariants.

Proposition (15.2) is an example of an obstruction to the extension
deformation algorithm which appears in degree 4.

In Chapter 4 we write down some one parameter deformations
between the families. We conjecture that there are no degenerations,
II - IIL, or Il — III,. We draw some geometric conclusions, from the

algebraic descriptions, about the branch locus of surfaces of type III, III,
and IIT, as double covers of P2 [Ho1). It is also shown that a surface of

type II is the resolution of a numerical quintic with an elliptic Gorenstein
singularity of type k = 1.
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! Introduction

Abstract _

The aims of this thesis are 2-fold.

We consider the extension-deformation method of Reid in some
detail. In section 6 we explain its equivalence, as a practical tool of
calculation, to the cotangent complex as discussed in [LS]. We reproduce
the calculation of Pinkham [P] and the result of Griffin [G] as expository
examples of this method.

Secondly, we use this method to analyse surfaces with Py = 3 and

K2 = 4. We produce explicitly their canonical rings and use this
information to draw some conclusions about the geometry of the surfaces
and their moduli space.

Extension-deformation Theory

Since the cotangent complex was first introduced many people have
made use of it to explore the deformation theory of singularities (e.g. [P],
[Sc] and others). In [LS] Lichtenbaum and Schlessinger explain the
definitions of the spaces T! and their role in producing infinitesimal
extensions and deformations of rings. More recently Reid suggested a
method to study extensions of a variety considered as a hyperplane section
of another variety. This extension-deformation method is equivalent to
the calculation of T'. Griffin [G] used this method to solve the problem of
giving an explicit family of numerical quintics, {X,}, such that

1) X, is a smooth quintic in [P3, fort # 0,

2) X is a smooth numerical quintic whose canonical system has a
single base point.

In Chapters 3 and 4 we use the method to classify surfaces with
Pg = 3 and K2 = 4. In this case, as with the quintics it is possible to find a
format of the relations in each ring which survives the extension-
deformation process. This should lead to a good understanding of the
Space of extensions and the moduli space of deformations in each case.

—
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In Proposition (15.2) we give an example of an obstruction
occurring very late in the process. There are two formats for the ring in
this case which seem only to differ when there are nilpotents in the
extension. This means that one of the formats may not be present in the
intermediate stages of the calculation but conditions are imposed which
force it to return for the final result.

Surfaces of General Type

Much work has been done on the problem of describing surfaces
with small K2 (see for example [R3], [C1], [C2], [Cil, [Ho1], [Ho3]). In
particular in [Ho1] there is a geometric description of 3 classes of surfaces
with Pg = 3 and K2 = 4. Horikawa's approach here is predominantly
geometric in nature. There are two main differences between the results
here and those in [Ho1l. Due to a mistake on Horikawa's part, surfaces of
our type II were omitted from his classification. This mistake was
corrected only in a footnote to [Ho1l. Consequently the notation differs
and our surfaces of type III correspond to the Horikawa surfaces of type
II. Secondly we consider separately surfaces of type I, and III which
are indistinguishable using Horikawa's description of their branch loci
[Ho1, surfaces of type II.1].

Catanese ([C1], [C2]) has developed an algebraic approach to the
study of surfaces with small numerical invariants. The geometric
interpretation of this method is related to the study of generic projections
to [P3. Using this method Catanese and Debarre [CD] have studied regular
surfaces with Py = 1, K2 = 2. The extension-deformation theory of Reid

has now been applied in several different cases, and gives some hope of

proving the conjecture that the moduli space is irreducible in the torsion
zero case of [CD].
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CHAPTER 1 :
Preliminaries.
2. Notation
A curve is a projective variety of dimension 1 over C.
A surface is a projective variety of dimension 2 over C.
Given a nonsingular surface S, divisors D, D1 , D2 on S and the
corresponding invertible sheaf Og (D), we write:
D,D, = intersection number on S.
hi(D) = h'(0g(D)) = dimg H(S,04(D)) and
(D) = x(05(D)) = h(D) - h}(D) + h*(D).
IDI = the linear system in which D moves,
r = dim IDI = h%(D) - 1 and
for hO(D) > 1, we have Pp:S—-P r, the corresponding rational map.

A linear system of degree d and dimension r is denoted by the symbol

84

KS = canonical divisor of S.

04Kg) = N2Qg.
Pg = P,y(S) = hOK g) = geometric genus of S.
q(S) = h!(Kg) = irregularity of S.

00

R(S)D) = R(S,04(D)) = & HO(S,04mD)).

R(S,Kg) = canonical ring of S.
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Suppose we have a set of elements {x; € HO(rKX) li=1,..,k}. Then

% ! T. T
we use the notation S“(xi) to mean the set of elements {xi:...xij € Ho(anX) I

irt =n,ig € {1,..k}}.

t=1

We are interested mostly in surfaces of general type i.e. surfaces S
such that dim Proj R(S,Kg) = 2.

For the formal definitions of the theory of the cotangent complex see

[LS]. Similarly for the theory of weighted projective spaces see [D].

3. Facts and formulas

Let S be a nonsingular surface. We recall the following well known
results, for future reference.
Riemann-Roch Formulas (3.1) (see [B))
a) x(D) =1 - g +deg(D)

for a divisor D on a nonsingular curve of genus g.

b) x(D) = x(Og) +5D? - DKy)

for any divisor D on S.
Adjunction Formula (3.2) (see [B])
C2+CKg =2g-2
for an irreducible curve of genus g on S. Notice that
C? = CK ¢ (mod 2)
as a useful corollary.
Base Point Free Pencil Trick (3.3) (see [ACGH, p.126])
Let C be a smooth curve, L an invertible sheaf on C, and F a torsion

free Oc-module. Suppose that s, and s , are linearly independent sections of
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L and denote by V the subspace of HO(C, L) they generate. Then the kemnel
of the cup-product map
VE@H(C, F) » HO(C, FQL)
is isomorphic to HO(C, F®L(B)), where B is the base locus of the pencil
spanned by s; and s.,.
M. Noether’s Theorem (3.4) (see [ACGH, p.117])
If C is a non-hyperelliptic curve, then the homomorphisms
Sym* HO(C, K) » HO(C, £K)
are surjective for £ > 1.
The Index Theorem (3.5) (see e.g. [BPVdeV (2.15)])

Let D and E be divisors with rational coefficients on the algebraic
surface X. If D?>0and DE = 0 then E2 < 0 and E? = 0 if and only if E is
rationally equivalent to 0.

Bertini's Theorem (3.6) (see e.g. [Ha] I11.10.9.2)

Let X be a nonsingular variety over an algebraically closed field of
characteristic 0. Let 8 be a linear system on X with no fixed part. Then the
general member of 6 can only have singularities at the base points.

The Snake Lemma (3.7) (see e.g. [Co2] p.129)
Let R be a ring and consider the following commutative diagram of

exact sequences of R-modules:

A > A 5 A 50
la 1B Y
0 - B - B - B”

Then there is a map, A : ker ¥ -» coker a,such that

kera - kerp - kery - cokera - cokerp - coker vy

is exact.
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4. Structure theorems for Gorenstein rings
Definition (4.1)
Let R be a Noetherian ring and M # O a finite R-module. Then we
define "
grade M = inf {i | Ext\, (M, A) # O}.
This definition extends the geometric concept of codimension for an ideal.
Definitions (4.2) (see [Ma,p.142])

An n-dimensional Noetherian local ring R with residue field k is

Gorenstein if ExtiR(k, R)=0fori#nand =~ kfori = n. .

A Noetherian ring is Gorenstein if its localisation at every maximal
ideal 1s Gorenstein.

For a Gorenstein ring, R and perfect ideal I © R we have the equality

grade I = proj dim (R/I).

Let R/I be the canonical ring of a regular surface of general type.
Then R/1 is Gorenstein [GW] and the codimension of the canonical model of
the surface is equal to the grade of I [BE]. In this section we state the
structure theorems for ideals of Gorenstein rings of grade 2 and 3.
Proposition (4.1) (see [S])

Let I'be a grade 2 ideal in R such that R/I is Gorenstein. Then R/I is

a complete intersection.

O

Before stating the theorem for grade 3 ideals we shall say a few words
about Pfaffians. It is well-known (e.g. [Co1] p.220) that for every (2n)X (2n)
antisymmetric matrix, M, there can be found Pf(M), a polynomial in the
entries of M, such that Pf(M)2 = det M. We shall usually be interested in the

case n = 2 and in this case we have by convention:
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0 A B (]
A O E
Pf = -AF + BE - CD.
-B -D 0 F
-C -E -F 0 ]

- Proposition (4.2) [BE Theorem 4.2]

Let I be a grade 3 ideal in R, such that R/I is Gorenstein. Then I is
generated by the diagonal Pfaffians of an antisymmetric (2n+1)X(2n+1)
matrix, M. That is the Pfaffians of the antisymmetric 2nX2n matrices
formed by removing the ith row and ith column from M, i = 1,...,2n+1.

u
5. Canonical Linear Systems

We collect together the results of several theorems concerning surfaces of

general type with given values of p g and K2 into two lemmas relevant to the

particular surfaces which we study.
Lemma (5.1)

Let S be a surface of general type with pg = 3 and K§=4. Let
C e [Kgl be a general element. Then either

1) IKglhas no fixed part, g(C) = 5 and deg. base locus < 2
or .

2) Kgl = Il + E where T has no fixed part and E is a fixed (-2)-
cycle.
Proof

We know that [K ¢l is not composed of a pencil [Ho 1, XG]. Then let
Kg = T +E, where T is free and E is fixed. By [Ho 2, Lemma 2]

22

and by 2-connectedness of K g either E = 0 or
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I'E > 2.
Now 4 = Kg2 >T2 + TE 2 2. Therefore either 2 = TE = 2 and
hence E2 = .-2 or, alternatively, I' = K5. We consider these 2 cases
separately:

| 1) Kg = I'. By the Adjunction Formula (3.2) g(C) = 5. Now deg Kg- = 4
and dim [Kg-l = 1. If the degree of the base locus of [K gl > 3 there would be
a complete linear system of degree < 1 and dimension = 1. This contradicts
genus C = 5, and so deg. base locus < 2 as required.

2) Kg = I' + E. We must show that [['lis base point free. Considering Kgr!
we see as before that the degree of the base locus <2 and since deg E- = 2,
["jrl, and hence IT'l, is base point free.
O
Lemma (5.2)
Let S be as above. Then S is in one of the following mutually
exclusive classes:
L [Kglis free.
II. [K¢lhas one base point.
II. [Kglhas two distinct base points.
II,. K¢l = I+ E where [Tis free and E is a fixed (-2)-cycle.
Ejr = P, + P, for distinct points P, and P,
I, Kg =T + E where I' is free and E is a fixed (-2)-cycle. -
Er =2P.
Proof
From (5.1) we have 2 cases:
- 1) [Kglhas no fixed part and deg. base locus < 2.
I. deg. base locus = 0 and Kl is free.

II. deg. base locus = 1 and IKg| has one base point.
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IIl. deg. base locus = 2. Suppose IKgl does not have distinct base

points. Then [Kgdl = D + 2P where D is a g3 and 2P is fixed. By the

Adjunction Formula
2Kgic =K

and so (e.g. [ACGH], Appendix B) P is a Weierstrass point and 2P| = g%.

This contradicts 2P being fixed.
2) Kg =T +E where E2 = -2, As pointed out in (5.1) K|l has base locus
of degree 2. This gives cases III, and III;,.

O
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CHAPTER 2 :
Extension-Deformation Theory
6. Extension - Deformation Theory -
Let X be a canonically embedded surface of general type, and
C € [Kxl|a hyperplane section given by the vanishing of x € HO(X, Ky). If

we can write down the ring

R(C, Kyio) = BHOC, nKy )

explicitly then we can calculate all possibilities for the ring

R(X, Ky) = HOX, nK ).

We split this section into two parts, one explaining the general
strategy behind the above calculation, and one explaining the practical
algorithm by which this strategy is carried out in terms of the cotangent
complex of [LS]. A more satisfactory theory to accompany this essentially
practical approach is nearing completion and is expected to appear in [R2].
General Strategy (6.1)

Suppose C and X are as above, and we are given the ring R(C, Kxi0):
then our aim is to produce the ring R(X, Ky). Let D = Kx|c» then the
strategy (due to Reid) is to produce a sequence of families of rings,

{R(C, D)}, {R(2C, D@)},....{R(C, DM)}, {R(X, Ky )}

where,

R(C, D) = C[X1,...,Xk]/1,

R(4C, D) = Clx g, x,...x, /AP, x§) ,
R(X,Ky) = Clxg,Xyex, /AD)
Each R(AC, D(®) is to depend in a linear way on the one before and

—
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we have

R(LC, DW)/ (x5 h} e {R((L-1)C, DE-D)}.

For example, if C is smooth, in computing_ R(2C, D@) the theory is
essentially that of Kodaira and Spencer [KS].

In particular, the ring R(X, Ky) will be required to satisfy,

R(C, D) = R(X, Kx)/(x().
The following proposition goes some way towards describing the generators
and relations of such a ring.
Proposition (6.1) (compare [R2])
Suppose R = C[x,,....x,]/I and R’ is such that
R'/(xy) =R
for some x;; € R with deg x; > 0. Then
R’ = Clxg,....x /T
and:

i). If xp is a non-zero divisor and I = (f 1,...,fr), where the f; are
homogeneous, then there are homogeneous Fl’""Fr € I' such that I’ =
(Fl,...,Fr) where F; reduces mod X to f.

ii). With the notation of i); X 18 a non-zerodivisor of R’ if and only if
for every syzygy o;: ZIf; = 0 € Clxy,...,.xy], there are L, € Clx,....x,] such
that Z;: SI,F; = 0 € Clx....x,] where L, reduces mod x; to L.

Proof

We proceed by induction on the degree of g € R'. Firstly X oo X

generate because given g € R’ we have g mod Xg € Clxy,....x;] s0 we can

write g = g(Xy5....X}) +Xog', where g’ € R, deg g’ < deg g.

i) Consider the commutative diagram:
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0 0
J 4
GPNT - r N I
. | ! v
0 - xg) = | Clxgoexy] - Clx {000 X ] - 0
d J 2
0 - xgR' - R’ - R - 0
4 d J
0 0 0

We see that I' - I is surjective by the Snake Lemma (3.7). Thus for all
f € I, homogeneous of degree d, there exists Fe I'and F' € G:[xo,...,xk] such
that f = F - x,F' with F homogeneous of degree d.

Choose F,,...,F, in this way and let G € I' be any element. Then
G — ZLf, with 1, € €[xy,....x, ] and thus G - ILF; € (xp) NT.

Since X is a non-zerodivisor mod T, (xO) NI = X I' and
G - ZF; = x(G’ for some G’ of lower degree than G in I'. Continuing by
induction on degree proves i).

ii) Write F; = f; +xg; and suppose o; : ZLf; = 0. Then

ZLF; = xoZ;g;
Since Z1.F; € I' and Xo2lg; € ) X @ non-zerodivisor implies that X1 & €
I', and we can write Zlg. = Zm;F;. This gives us ZL.;F; = 0 where
Li =1 - Xom ;.

Conversely, if g € (]Z[xo,...,xk] and x4g = ZLF; then ZLf. = 0. Thus
there exists L; with XL.F, = 0, and x,g = X(I; - L)F; = xgZm;F; €
Clxg,....x ), where L; = 1, - x gm;, therefore g € 1.

O

This theorem tells us that the generators, relations and syzygies of
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R' = R(X, KX) occur in the same degrees as those of R = R(C, D). To
calculate the relations and syzygies explicitly, we observe that given f; € I

we are looking for

F; = f, +xf;+ x(z)fi" +o +x§ED +
such that fi(ﬁ) € Clxy,....x}], and the F; satisfy syzygies as in Proposition
(6.1) ii). We get the sequence of rings
{R(C, D)}, {R(2C, DD)},....{R(nC, DM)}, {R(X, K1)}
by calculating the F. in stages allowing successively higher powers of X

Practical Details (6.2)
Proposition (6.2) is to be found in a more general form in
[LS, Theorem (4.2.5)]. First we make some definitions to explain the

terminology found in the diagram (£ ) in the statement of Proposition (6.2).

Definitions
Suppose we are given
RD = €lxy,....x, /1

and

R® = Clxgpx %, /AP, x§)
such that R™ mod Xq 18 R,
1). Define Sy to be the graded Clxy,....x,J-module with grading [Sgly =
RM d-1 and with multiplication defined by |
fg = Oforallf, g € Sg.
2). Define Ty ) to be the graded Clx,....x, J-module with grading [Ty @l =
[RH], and with multiplication defined by

£-1 2-1 £-2
(;)Xépi)(g(«)xgqi) = xog%x(ﬁjg; Pid
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£-1 £-1
for all E) x(i)pi, iZ;;)xéqi € TR

[LS, (4.2.5)] gives the following result in ahighly theoretical setting. The
diagram (& p) in Proposition (6.2) has been taken from [LS, (4.2.5)] and
rewritten in a more pragmatic notation.
Proposition (6.2)

Suppose that we are given R® and R™ as above. Then R(4+1) exists
if and only if there exists a degree preserving module homomorphism {3 g In

the diagram (), such thatiy'ofy = o',

!

0—e X  2a (ff) —eClxpx] — RO 5 0

B
*4 o (Ep)
0—s S ib Tr® J_,g’ R® —» RD __5 0

The rows of (8 ) are exact. (fy,...,f;) is the free Clxy,...,x;]-module
generated by fy,...f. Zis the Clxy,...,x;]-module generated by Gy,...,6, such
that the top row of (£) is exact. The maps iz: S- T and jg: T » R™ are
given by

ig(@) = x*5!p and

£-1 £-2
. i _ i
ja( ;)x(l)pi) = XOZ:‘)XOPT

The maps « g and oy’ are defined inductively, indeed they depend on the

map B, , in the diagram (E,_; ).
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Step 1: RM 5 RP),
We have the following diagram:

0—se X —1» (f..f)—»Cx.x,)] —» RO 5 0

*1 (&)

0—s RO _ig RO _Jy RO — &+ R® > 0

Here the maps oy, &;" and j are all zero and i is the identity map.
Thus we must find B: (fy,...f,) » Sg such that deg B, (f;) = deg f. -1 and
Eliﬁl(fi) = 0 whenever i'(cj) = XLf. for some S;- The zero map is a solution
here and corresponds to the fact that first order extensions are always

unobstructed. The construction of Bl allows us to define,

ROB,) = Clxy,...x, /AP, ),

where I is generated by Fy,....F given by F, = f; + x,8,(f,).

Let B: (fs..f.) > Sp be a ‘general’ such map. That is {B(f1),...,[3(fr)}
are generic polynomials satisfying the required conditions.
Step 2 : (R, RG),

Suppose we have a ring R @ (B) from step 1. That is, we have a map
B:(f {»--fr) = Sg such that ZLB(f;) = 0 whenever i'(cj) = ZLf, for some S;.
B: (f{--f) = Sg can then be lifted to B~ : (f{s-0rf,) = Clxy,....x} ] Where
‘ ZliB~(fi) € I whenever i'(cj) = Zlifi for some S;-

Then a, : (fy,...f;) » TR is given by o, (f;) = B(f;). Consider
O'J- € (0'1,...,c5l), where i'(cj) = Elif; then step 1 has given the expression,
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We define az'(cj) = Zp,B(f,), and then B, in the diagram (E,) must satisfy:
miﬁz(fi) - EpkB(fk) = 0.

As in step 1 the construction of 8, allows us to put

ROB,) = Chxgpre.x /A, x),

where 1) is generated F {--Fp given by F, = f; + x of(f;) + x(2)[32(f D)

If there are no maps B, making the diagram (€,) commute, the
extension is obstructed. In this case, in trying to construct 3, we are forced
to put conditions on 3, that is we replace B by the most general B4 such that
(8,) can be made to commute.

Step £ : (R() 5 R(4HD)),

To go from R® 5 RU+D we repeat the above procedure. The
example in the next section shows how this algorithm works in a fairly
simple case and how obstructions occur in the calculations.

It is precisely because of the occurrence of obstructions that

{R®/ (x'e(')1 )} is a subset of, not necessarily equal to {R (#-1D},

7. Pinkham's Example.
In [P. Section 8] Pinkham computes directly the deformations of the
cone over the rational curve, C of degree 4 in P4, using the theory outlined |

in section 6. In this section we reproduce his calculation, by way of

€xample, pointing out the similarities with the later calculations in Chapter 4.
~ Example (7.1)
LetCyc [P* be the rational, normal curve defined by:
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rank <1

where X {5e0sX 5 ATE the coordinates in P%.

This yields the 6 equations,

. 2
I'l. X1X3 — X2,
r2: X1X4 = X2X3,

I‘3: X1X5 = X2X4,

I’4: X2X4 = X3,

r5: X2X5 = X3X4,

Tg! X3Xg = xz.
There are 8 syzygies between these 6 relations, namely:
O i Iy = Xolp + X3l = 0,
Gyl XI5 = X oIz + XyIy = 0,
O3! X I = X3l3 + XyTy = 0,
O 4t Xplg = X3l + XTIy = 0,
Og' Xoly = X3Ty + X1y =0,
Ot Xol'5 = X3r3 + X471y =0,
O7: Xolg = X 4T3 + X475 = 0,
Og: X3lg = X 4T5 + XsT4 = 0.

LetRp = ¢[x1,...,x5]/I where I = (ry,...,Tg). To write down the first

order extensions we must compute B(r;) i=1,...,6 such that the syzygies

Gy....,0g are lifted in the way prescribed in (6.2). Let us suppose that
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Mo

B(ri) =

ainj,l — 1,...,6.

J=1
Then the ideal I® (notation as in (6.2)) will be generated by

5

@ . :
o .ri+xoj=z1 &%, 1 = 1,...,6,

where the a;; are subject to restrictions imposed by the syzygies. We shall
now calculate the effects of these restrictions one syzygy at a time.

First we make some simplifications using changes of coordinates in
X{seX 5 For example, if we set

then we can rewrite r(%) with the coefficient of xyx5 equal to 0. In this way

before we begin our calculation we can make the assumptions that ay3 = a9y
=33 =2y =25=0.
Consider 64: X1y = X 5Ty + X4ry.= 0. We must have
xlﬁ(r4) - xzﬁ(rz) + x3[3(r1) € (rl,...,r6),
if B is going to make the diagram (81) commute. That is there exist Pys-rPg
€ C such that:

Xq(agqXy +a45Xs) - X

—
M
[

A25%;

.

+X3(a1X; +15Xy + 274Xy +2,5Xs)
2
= P1(X X3 = X2) +Py(X1%4 = X 5X3) + P3(X4Xs - X 5X,)

2 2
Since this is an identity in (IZ[xl,...,x sl, we can equate coefficients. We find

the following relations hold between the a

ij-
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a15=0,
31 =0,
923 =41,
d24 = s,
a5 = g4

Similarly, consider the syzygy
As before there must be py,....pg € € (not the same P1»----Pg as before, of
course) such that:

S

X1-21 a5;X; = x2j=21 a3:X; +x4@41%q +2a9Xy +ay4Xy)

)

2
= p1(x1x3 -X5)+ p2(x1x4 -X 2x3) +p3(x1x5 - X 5X4)

+ Pa(XXy =~ X %) + p5(x2x5 - X3Xy) + p6(x3x5 -X 421).

Equating coefficients we can extend the list of relations between the ay; with
those below:

244 =0,

asy =0,

a5y = a3

d53 = a3y,

54 Fag1 = 233,

855 Fayy =23,

azs=0.

If we treat the syzygy O3:X{Tg = X 3T3 + X,T, in the same way we get
the following polynomials for B(r;) which make the diagram (&) commute.
This is easy, but tedious, to check. Put ajy =a,ayy =b,as3 =c,ag4 =4,
then

9
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Brp) = axy +  bx,,
B, = ax, + bxs,
Bry = cxy + (a+d)x3  + bxy,
Bey = O, |
B(rs) = Xy + dxy,
By = CXy + dxs.

Thus we have computed the rings which correspond to first order
deformations of the rational, normal quartic in P4, They depend on 4 free
parameters, a, b, ¢ and d.

To find the space of second order deformations we again consider the
syzygies one at a time and find f3,: (r{s---fg) » R - which makes the diagram
(€,) commute. For example, reconsider the syzygy G, and suppose that
B,(r;) = a;,1 = 1,...,6. Then we must have:

X184 = X9y + X33y - (-aB(r ) =0.
Substituting for 3(r,) and equating coefficients we find that:

a1,=0,

a, = ab,
_ _a2

ay=-a“

Treating 0, in the same way we must have:
X135 = X 583+ X 427 = (-cB(r 1) - (a+d)B(r,)) = 0.
Equating coefficients again gives:
(a+d)b = 0,
a5 = -ac,
az = bc + a(a+d).
After considering G 3 we have the whole story:

al=0,

a2 = ab,
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ay = be + a(a+d),
a4 = —a2,
a5 = -ac,

ag = 0.
Moreover, we have (a+d)b = (a+d)c = (a+d)(a-d) = 0 as a requirement for
first order deformations to extend to second order. It can be seen (e.g. from
determinantal presentations given below or by continuing the calculation)
that the algorithm terminates here, in the sense that these new relations
satisfy ©¢,...,05 after removing the condition on the order of x. It is
important to notice that in general the algorithm will terminate in < N steps
where N is the maximum degree of the generators of the module of syzygies
( 01,..,0¢) (see section 11). As Pinkham remarks [P], this gives two
components of the space of deformations of the cone. If a+d = 0, we get the
rings given by,
R = Clx,....x5l/T,
where I' is generated by,
X, X, X4 +ax, X, +Cx,
rank <1
x2+bx0 X3 - ax, Xy Xs
If b = ¢ = a-d = 0, we get the rings given by,
R = GZ[xO,...,xS]/I’,

where I' is generated by,

rank| *2 X3 — axX X4 <1

x3+ax0 X4 XS

Notice that these two rings coincide when
a=b=c=d=0.

That is exactly at the ring of the cone over C 4




Extension-deformation theory
20

8. Griffin's Example and Deformation Theory.

In section 7 we saw how the relations in the ring R could be
formatted in two different ways. That is, the relations Iy,...,T¢ can be
generated by either,

X{ Xy X3 Xy

rank <1,

or,

rank X2 X3 X4 <1.

In each case the syzygies in the ring depend only on the shape of the matrix,
in the sense that if we replace each x; by a (reasonably general) linear term
li(xo,x1,...,x5) the resulting ideal will have an isomorphic resolution as a
Clx,....xs]-module. More precisely the terms in the resolution will have the
same number of generators in each degree and the maps will be given by
matrices of the same shape. In such cases we say that the given presentation
of the relations is formative (the ring structure depends only von the format
of the equations not on the individual coefficients). The idea is that a
formative presentation determines the homological algebra of the ring.

For example, any generic determinantal ring has the formative
presentation given by a matrix with a rank condition.

It is sometimes the case that a formative presentation of the relations
gives rise to all the extensions of a ring. In the notation of Proposition
(6.1), if

R'/(xg) = R
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for some non-zerodivisor x € R, deg xg = d > 0, then it is possible that the
relations in R’ can be placed in the same format as those in R. If this is true
for all extensions R’ we say that the presentation is informative in degree -d
(the information about the extensions is completely contained in the format
of the equations of R).

In [G], Griffin treated the case of numerically quintic surfaces, X,
using the method outlined in section 6. In the case where Kyl has a single
transverse base point he takes a nonsingular curve C € [Ky| given by
(x0 = () and calculates the ring R(C, KXIC)' Proposition 8.1 is a summary of
Griffins results in the above notation. Indeed in [R2] there is an extremely
beautiful presentation of the numerical quintics in terms of formative
presentations which has a lot in common with the case of Pinkham and the

examples given in chapter 4 of this thesis.

Proposition (8.1)
i). Let X and C be as above and let

Then,

R(C, Kxi0) = Clx(,X5,X3,y,2,25)/],
where I is generated by,

rank A<1,
giving I{seeeslss and

AM(A)! =0,

where

—
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a2 ay’ 0 0

M = ,
0 0 a3 o0
0 0 0 -1

giving r,, rg and ry. Here 3 € C and Q is a weighted, homogeneous quartic
Qx;y)-

ii). The presentation of the ring given in i) is formative.

iii). The presentation of the ring given in i) is informative.
Proof

1), 1i) and iii) are effectively the results of the calculations in [G].

u}
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CHAPTER 3:
The canonical linear system.

9. Canonical Curves.

Let X be a surface of general type with Pg= 3 and K52(=4. In

Lemma (5.2) we saw that X belongs to one of five different classes
depending on the behaviour of its canonical linear system [Kyl. [Kxl can
have 0,1 or 2 base points or a fixed (-2)-cycle. In this section we shall
analyse the nature of a general element C € [Kxl. We collect together
general facts about the canonical curve into a lemma.

Lemma (9.1)

Let X be a surface as above and C € Kyl be a general element.

I. If X is of type I then C is a nonsingular, non-hyperelliptic,
genus 5 curve.

II. If X is of type II then C is a nonsingular, non-hyperelliptic,
genus S curve.

IMI. If X is of type III then C is a nonsingular, hyperelliptic genus 5
curve.

I, and II,. If X is of type III, or I, then we can write
C=T+E where E is a (-2)-cycle and T is a nonsingular, genus 4
hyperelliptic curve with T.E = 2.

Proof

I. By the Adjunction Formula (3.2) g(C) = 5 and by Bertinis

Theorem (3.6) C is nonsingular. Suppose C is hyperelliptic and let D =

Kyic. Then 2D = KcandsoD = g% +Py +P,, where P; and P, are

—
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Weierstrass points [ACGH, p.288, Ex.31,32]. This is true for surfaces of
all types, but contradicts the number of base points in Cases I and II.

II. As before g(C) = 5 and C is non-hyperelliptic. Bertini's
Theorem (3.6) says that C is nonsingular away from the base point. But
from Lemma (5.2) deg base locus = 1 in this case and so C is nonsingular

at the base point.

II. g(C) = 5 and Kyl = g% + P, + P,, where P, and P, are the

distinct base points. Bertinis Theorem (3.6) says that C is nonsingular
away from the base points and since deg base locus = 2 C is nonsingular at
the base points.
III, and III,. By the Adjunction Formula (3.2) g(T') = 4. The rest
follows from Lemmas (5.1) and (5.2)
O

The eventual aim is to describe the ring

R(X, Kx) = é’SOHO(X, nKy)
Nn=

in terms of generators and relations. We do this in Chapter 4 but first we
calculate a ring associated to the canonical curve of X (cf. [Mu, lecture 1)).
In cases I, II and IIT we consider a nonsingular curve C € [Kxl and

the divisor D = Kyxlo on C, and calculate the graded ring

- R(C,)D) = é?OHO(C, nD). In cases III, and III, we consider a nonsingular
n=

curve I' € [Ky - El, where E is the fixed (-2)-cycle, and an appropriate
divisor on I. We make heavy use of the Base Point Free Pencil Trick
(BPFPT (3.3)).

—
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Case I. [Kyl| has no base points.
Theorem (9.2)
~ Consider C € IKx!, a nonsingular curve and D = Ky a divisor on
C. Then
R(C, D)= Clxy, x5, ¥4, Yol / <Qq, Q>
where the generators are deg (x;, y;) = (1, 2) and the two polynomials Q¢
Q, are weighted homogeneous of degree 4 in X1s X925 Y15 Yo
Proof.
Since deg D = 4, we can calculate, using the Riemann-Roch
formula (3.1a), that
dim HO(D) = 2,
dim HY2D) = 5 and
dim HO(D) = 4(n-1) forn > 2.
We aim to verify the information in Table 1 below. The notation is

explained in section 2.

Table 1.
degree generators new relations
1 Xl, X2

3
3 S3(x), %,y;
4 S*(xp), S2(x))y;, S2(y;) Q.. Q,
25 Nno new generators no new relations
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Let x{, X5 be generators of HO(C,D). Then

x7, X{Xy, X2 € HO(C, 2D)
are linearly independent (a relation between them would have to factorise,
contradicting the independence of X4 and x2), so choose yq, y, to

complete a basis for HO(C, 2D).

To show that S3(xi) ) {xiyj}i=_ ,1...2,3' form a basis of HO(C, 3D) we

use the BPFPT (3.3). Consider the natural map
¢: HO(C, D)®HO(C, 2D) » HO(C, 3D).
Since Dl is a base point free pencil, by the BPFPT (3.3), Ker(¢) =
HO(C,D) and hence dim Ker ¢ = 2. As dim HO(C, 3D) = 8, ¢ must be

surjective and {x%, x%xz, xlx%, xg, X1Y1> X1¥2s X2¥1> XoY5} is a basis for
HO(C, 3D).
As C is not hyperelliptic (Lemma 9.1), we can appeal to
M. Noether’s Theorem (3.4) to see the degree 4 generators. This tells us
that the 14 monomials in Table 1 generate this 12 dimensional space and
hence we can write down two relations Qq and Q, between them.
Let
¢,: HO(C, D)®HO(C, nD) » HO(C, (n+1)D).
Then by BPFPT dimIm ¢, =[2.(4n-4)] - [4n-8§]
= 4n
= h0(C, (n+1)D).
This shows that the X;» y; generate R(C, D) as an algebra, and the only

relations are generated by Q, and Q,, proving the theorem.

O
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Case II. [Ky| has a single transversal base point.
Theorem (9.3) |
Consider C € IKXI and D = KxIC’ then
R(C,D) = Clxq, x2, ¥1, ¥2, zl/1

generated by x;, y; and z with deg (xi, Yjp z) = (1, 2, 3) and related by I
which is generated by

Iyt X1y2 - X2y1,

1) X{Z - y%,

I3 :X2Z - Y1Y2,

I4:y1z - X2A - x4B,

r5: 22 - yoA - y1B,

where

A= a1y% + azx%yp_ + az xg , 3; € C,

B = B(x1,X2,y1,y2)
is a degree 4 weighted homogeneous polynomial in x1, X3, y1, 2.

Moreover Iy,....,T5 are the diagonal 4X4 Pfaffians of the following matrix [see

Section 4].
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Proof

) Our strategy is to choose sections of Oc(D) according to their
geometrical properties, (in fact, with respect to the order of their

vanishing at the base point P). Notice that C is trigonal because we can

write D = Dy + P where P is the base point and ID4l = g% on C.

We calculate the dimensions in Table 2 by Riemann-Roch. Let u
be a generator for HO(D—2P) and t: (’)CC,OC(P). Then ut € HO(D—P) and
we let v be the second element of a basis. Since ut? and vt vanish to

different order at P they are linearly independent in HO(D) and so form a

basis.
Table 2.
Space dimension generators
HO(D-2P) 1 u
HO(D-P) 2 ut, v
H%D) Z ut?, vt
HO(D+P) 3 ut3, vt2, w

Similarly we need one extra basis element w € HO(D+P) which does not
~ vanish at P.
We are aiming to establish Table 3 where X = ut?, Xy =Vt yy =

utw, Yy, =vwand z = uw?,

—
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Table 3.
n generators of HO(nD)  new relations
1 X{s Xy
2 S2x), ¥1» ¥y

3
3 S2(x;), X;¥;» 2 Iy
4 generated by monomials in XY ;52 Iy,I3
5 generated by monomials in X;pY502 Iy
6 generated by monomials in X552 Is

Notice that ut, v € HO(D-P) form a free pencil so we can use the
BPFPT (3.3) on the maps

@pm: HO@D+mP) ® HOD-P) - HO((n+1)D+(m-1)P)

This tells us that Ker Ppm = HO((n—l)D+(m+1)P) so that we can
calculate whether Phm is surjective.

Table 2 tells us that Xy, X5 generate HO(D). Consider

@4,4: HOD+P) ® HO(D-P) » HO(2D),

then Ker P = HO(ZP) which is generated by t2. This means that dim Im
P11 = 3x2 -1 =35, and so Py 1 is surjective and HO(2D) is generated by

u2t4, ut3v, t2v2, wut and wv. That is x:l)‘, X{X», x%, y{ and Y, as in the

notation of Table 3.
| To see the generators of HO(3D) we look at ¢, 1 whose kernel is
HO(D+2P). Now we can see that dim Im ®, 1 =7 and so Im Py C H0(3D)

is a codimension 1 subspace generated by the linearly independent

monomials u3t6, u2t5v, ut4v2, t3v3, wu2t3, wut2v, wtv2. However uw? €
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HO(3D) and is independent of those elements given since it does not vanish
| at P. Thus we have the generators of HO(3D) given in table 3. The relation
ry is given because x,y, = ut?vw and Xp¥q = ut?vw and so

T1-X1¥2 = X2¥4

For higher degrees we note first that Pn.1 is surjective for n > 3 (by

Riemann-Roch for curves (3.1a)

hOmD+P) = 4n-3
and

dim Ker ¢, ; = h%((n-1)D+2P) = 4n-6,
SO

dim Im Py = 2(4n-3) - (4n-6) = 4n
which is hO((n+1)D)). The generators in degree 4 come immediately from
this, and the relations r, and r; again follow from the substitution of the

definitions of x, x,, Y1» Y9 Z, giving

Iy X4Z = y%,
I3! X9Z = Y{¥o.
It remains to derive the relations r, and rs. These are inherited from
a single relation in HO(5D-P) which we construct now. The map
04,0 HO@4D) ® HY(D-P) » HO(5D-P)
has kernel HO(3D+P) and so dim Im @, = 15 = h%(SD-P). However we
can write down explicitly the monomials in HY(5D-P) as follows:

There are the 15 linearly independent monomials
u5t9, u4t8v, w3ty 2 u2tby3 ut5v4,

t4 5 4t6 3tSVW, U2t4V2W Ut3V3W

t2viw, uddw2, uZtZvw?, utv?w?, v3w?2 € Im P40

and one more uw3. Therefore we must have a relation

|
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R: u?w3 = g,
where g is a linear combination of the other 15 monomials by surjectivity
of ®4.0-
It follows that in HO(SD) we must have the relation
tR: tu?w3 = tg.
Rewriting this in terms of x,, x,, Y{» ¥, and z gives
Iyt y1Z - XA -xB =0,

where

A= aly% + a2X%y2 + a3 Xg , 3; € C,
B = B(X1,X2,y1,y2) is a polynomial in x1, X3, y1, Y2
In the same way, in HO(6D) we have the relations
ut’R = X145
2
Vt R = er4
and
That the above relations do indeed suffice to give the ring R(C,D) is a
check left to the reader. It can be seen (and follows from the theory of

Pfaffian rings) that the relations given satisfy the syzygies sl,‘...s5 below.

$1: X{I3 - Xorp + yiry=0,
52 “yir3 + yurz - zry =0,
$3: -xqr5 + Y1T4 + znp - Ari=0,
© 841 Xars - yorq - 3 - Bry=0,
$5:  -yir5 + zry + Ar3 + Bn = 0.

O
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' Case III. Two distinct base points.
Theorem 9.4
Let X be a surface of type IIl and C € IK«| a nonsingular curve; let
: D= Kxjc. Then
R(C.D) = Clxy, x5, ¥15 Y9, 21, 2,)/1,
where deg (x;, Yip z,) = (1, 2, 3) and I is the ideal generated by the relations

R below :

Degree 3 ri: x? - X2¥1,
' 3
I2: X1y2 - X3,

D . 2.2

egree 4 I3t y1y2 - X1%3,

I4. X123 - X221,

Degree 5 I5: y1Zp - x%z1,

T4: x%zz - Y221,

Degree 6 r7: -z% + kyi’ + uxgyz + x%h,
Ig: -21Zp + kx%y‘;‘ + ux%y% + X1X2h,

Ig: -z% + A.x‘fy1 + uyg + x%h,
where u, A € Cand h = h( is some polynomial of degree 4.

Alternatively, we can write I'{,..,Tg In a quasi-determinantal form as

follows :
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I',....Tg are given by
rank A < 1.
where
. -
2

2 Yy X3 %

A = )

X X Y2 3

I, Ig, Iy are given by
h 0 0 0]
0 Ayy 0 0

Proof

The canonical curve C is hyperelliptic in this case, as

IDI = gé + Py + Py, where Py and P, are the base points of [Kx| (P{ and P,

are Weierstrass points, as remarked in Lemma (9.1)). There is a standard
method of calculating R(D") for a divisor D’ made up of Weierstrass points
on a hyperelliptic curve (see [R2], [G]) and so we shall present the

computation with little proof.

Let u: OC 5 (’)C(P1+P2) , Vi OC G OC(P3+...+P12) where Py,...,Pqp

are the Weierstrass points on C. Then we choose t, tr € Ho(g%) forming a

basis, such that u2 = tyty and v2 = p(ty,t;), where p is the degree 10

Polynomial in ty,tp defining the 10 branch points.
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Table 4.
Space Generators New names
HO(D) utq, uty X{> Xy

4.3 4 _ 4 4
HO(2D) tht1ty,.nts Yi=thYy, =t
HO(3D) £,...,ut3, viy,vt = vt = vt

u1,...,UZ,V1,V2 Zl—VI,Zz—Vz

Given Table 4, the relations I'i,...,Tg are simply identities following from
the definitions of X1s X905 Y15 ¥2» 24 and z,, and the equality uZ = t1tp.

For the last 3 relations it is necessary to study the relation v2 = p(ty,ty) in
more detail. Since p(ty,tp) is degree 10 in t; and t,, using the definitions of

y1 and y» we can write

P(t1.t2) = Ayjt; + uy3td + tytohg(t )
where A, |L € € are non-zero and hg is of degree 8. Let

7

8 8
hg(ty, ty) = agty + a tity +...+ agt, a; € C,

then we can write hg(ty, ty) = h(x{, x,, Yi> ¥5), @ uniquely determined

quartic in R(C, D). Since z% = v2tfﬁlZ , 2123 = V2t{ty and z% = v2t% we get the

3 degree 6 relations in the statement :

r7: —z% + ly? + p,xgyz + x%h,
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I8: -21Zp + AX %y% + ux%y% + x1X2h,

19: -z% + kx‘f'yl + uyg + x%h.

It is easy to check that these relations satisfy the matrix equation

’ given. That is we can put

h 0 0 O-pxl qu
] , i
gy 33 7|0 A0 o0fly, X7 r %
0 Wy 0 2 =
X, X§ Y, 1z 0 2 2 N g g
- “10 0 0 -1
L J_z1 ZZJ

The syzygies holding between these 9 relations can be split into two groups.
The determinantal ones following purely from the determinantal form of

the first 6 relations are as follows :
21 cXqI3 =y +X%l'1 =0,
X, 1 Xor3 - x‘z‘rz + yor1 = 0,

23 X{Ig - x%r4 +zyrp = 0,

Z4:xqr5 - y1r4 +zqr1 = 0,

X5 Xors5 - x%r4 + zor1 = 0,

26 1 XoTg = Yor4 + zory = 0,

X7:y1r6 - x%rS +zqr3 = 0,

e
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g x‘;zr6 - yors +2zor3 = 0.
The second group depend only on the matrix form of the 9 relations

in the following sense. These syzygies can be constructed using the

I following observation (due to Reid). Consider the following matrix A*

i ]
, -X2 Xl
x{ ¥
A* = .
"}’2 X%
- V4
|2 A

Then observe that

(AMA =

The equality
(AHAMAT = A¥*(AMAT)

can be written as an equality of relations i.e. syzygies.
To : -Xol7 + X{Ig = Ay 2 2 -
g - X207 T X{Ig = Ay T] + UX3y2r) - Z1T4,
. - Yy2
210 ¢ —=X2Ig + X1I9 = Kx1y1r1 + uy%rz - ZoI4,

CL2 _
Z11:-X{r7 +yirg = -x1hry + HX%er:a - 2115,

e ——




The canonical linear system
37

2
2121 -x{18 +y1I9 = -Xphry + py%r3 - ZoTx,
23 - 2rg = -x1hry - Ay %13 -
13 - ~yar7 + X318 = -X1hry - Ay {13 - 2176,
2
214 -yorg + X%rg = -Xxphr) - Ax (Y113 - Z21¢,
2
| 2y5:-zpr7 + zq1g = -X1hrg - Ay 115 - ux%yzré,

2
216 : ~2rg + 2419 = ~Xphry - AX {y1rs - Hy3re.

Z1,....216 generate the module of syzygies, though the proof of this (and

similarly in (9.4,)) is a calculation best carried out by computer (e.g. [BS]).
O

Cases III, and IITy Kyl has a fixed (-2)-cycle.

Theorem (9.4a)

Let X be a surface with pg=3, K;2(=4 and such that the canonical
linear system contains a fixed (-2)-cycle, E. Suppose C=T+E € K+ as
in Lemma (9.1) and put D = Kxic» then there are two possibilities:

R(C,D) = C[x1,x2,y1,y2,zl,zz]/1
where deg (x;, y;, z;) = (1, 2, 3) and I is generated by I{s..)g:T7,Tg,Tg @S |

follows:

Degree 3 Iy X? = X2Y2,
I3: X1¥2 = X2Y1s

Degree 4 I3 Y%'X%yl’

—
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I'4: X122 = Xzzl,

Degree 5 T5: YoZy - x%zl,

I'6: y122 — y221,

Degree6
Case a) Iy —z% + Xy:f + uy%yz + xlzh,
2 2
18: 292 + Ay 1y, + My y5 + XqXh,
2 2 3
Tg: =23 + Ay ys + Uy; + x%h,
Case b) Iy —z% + p.y%yZ + xfh,
Ig: -z212p + p,yly%+ X1Xzh,
Ig: —z% + uyg + x%h,
where

A, LEC,
h = k1x‘1‘ +- xzx?x?_ + 7‘3":12"% + x4x1x§ + }»Sy% + Ay 1Yy +
2 2
)\.7}’2 + }\.leyz, }"i e C.

Alternatively, we can write I4,..Tg in the following form :

I'{...)Tg are given by

X

1 Y2 Y1 %
rank 5 <1
X X1 Y2 4
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and 14, 1g, 1y are given by

i Ix %

h O 0 0

] 2
t'%2 % Ao 0 o o2 *i| |17 1
X, x% Y, sz 0 0 Ay,+uy, oY1 Y2 Ie Ty

_0 0 0 —1.) Z4 ZZJ

In Case b we have A = 0.
Proof
Let E be the fixed (-2) - cycle and I[Kxl = I+ E. Then, by Lemma

(9.1), we can choose I to be a nonsingular genus 4 curve and

Kxic = gé +P1 + P, where Er = Py + P,. The two cases in the statement

of the theorem account for the possibilities:
Case a P, P, distinct points
Case b P =P, =P.

Notice that [Py + P,l = g} ( since 3g} = Kl = 2Ky - Py - Pyl =

Zg% +IP; + Pl ), so that in Case b P is a Weierstrass point.

We shall calculate R(C, D) in 3 main steps.
Step 1: we write down the ring R(I", Q) where Q is a Weierstrass

point.

Step 2: we produce from Step 1, R(T", 4Q) = R(T, 2g%), because D =

g +Py + Py, and s0 we have R(C, D) c R(T’, 2gJ).
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Step 3: we write down the condition which characterises R(C, D) as a

’ subring of R(T, Zg%) and subsequently R(C, D).

Step 1
Let Q be a Weierstrass point on I.  As in Theorem (9.4),
R(T, Q) = Cls, t, ul/Fyg,
where degree (s, t, u) = (1, 2, 9) and Flé is the degree 18 relation given by
Fig:uZ = @g(s,t).
Step 2

We can pick the generator t € g% of the form t = sys, where s;
vanishes at Q; for IQ; + Q,l = gé. We choose Q; = P; in Case a and Q=

Q, = P in Case b. Then we can write down bases for H0(4nQ) = HO(an;')

for small n as in Table 5.

Table 5.

n generators of HO(an%)

1 s, 52t 2

2 s7-nt4‘“, n=0,...,.4

3 §2nt6-n 1=0,....6, s3u, stu

4 s2n8-n n=0,... 8, sZk+13-ky k-0,.. 3

5 s2nt10-n n-0,...,10,s2k+1t5-ky k=0,....5
6 s2nt12-n n-0,... 12, s2k+1{7-ky k=0,..7

—
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Remembering the relation Fg the table is self-explanatory and can
be computed independently or with reference to [R2].
Step 3

Recall that D = g% + Py + P, where IP{ + Pyl = g% and that 2D = Zg%.
Then R(C,D) < R(T, 2g}) and moreover if f € HO(C, D) then f2 e

R(T,4gd). It follows that

f2(P1)/s8 = f2(P,)/s8
and so

f(P1)/s% = +(P,)/s%.
By consideration of the dimensions of HO(C, nD) we must have
f(P1)/s* = -f(P,)/s%.

It can then be seen that f € R(T, Zg;_) is an element of R(C,D) if and only if

f(Py)/s% = -£(P,)/s44,
where d = degree of f

Bearing in mind our choice of t we get the following table of

generators.
Table 6.
n generators of HO(nD)
1 X = 82t, Xp=t2
2 Sz(xi), y1=58, y2=36t
3 Sy, Xy, 2y=5%u, zp=stu

Using the definitions in Table 6 the following relations are seen to
hold:

R
I'l . Xl L X2Y2,

1'2 . X1y2 - X2y1,

e
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2.2
I3:Y2 =X1¥1s

I'41 XIZZ - lel,

_ 2
P Is: Y27y - X{Z4,

Ig Y122 — Y2Z1.
y As usual the degree 6 generators for R(C,D) are made up from lower
degrees. However at this stage the relation Fg from the ring R(T, Q)
makes its presence felt in R(C,D). Thus we get the 3 degree 6 relations

(with a slight abuse of notation),
2
Iy: ZI=S6(p18,
rg: 2122=S4t({)18,

ro: z5=s2t2Q;3.
Case a
We can write out N 8(s, t) as follows:
Py = AsI8 + ustOt+ A s142 4+ Agtd,

Then I4, Ig, Tg Can be rewritten,
L2 3 2
I7.-Z4 + ;\.yl + ].lylyZ + X%h,
o A2 2
Ig: ~Z1Zy + Ay1ys + Ly Y7 + XqXzh,

2 2
Tg: =23 + Ay y; + HY% + X%h,

e
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where

h= Agxd+A,xdx, +Agx3x3 + Agxyx3 + Asy? +

A6Y1¥2 + Myy3 + Agxiys,
after renumbering the A; € C.
Case b
Previously we chose t = 12 for © vanishing at P. In this case u = v
(v vanishes at the Weierstrass points missing P and Q) and so Pig = 1@y
This means that we can write
O1g = s+ A 142 + .+ Agtd,
The form of r4, rg, 1y in Case b now follows from Case a.
Thus we have written
R(C,D) = Clxy,x5,¥1,¥2:21,29)/1,
where I is generated as in the statement of the theorem. It is a simple check
to see that the determinant given does indeed produce the relations LyseeesT
These relations satisfy the following syzygies sy
Z{1xXqI3 = yorp +yqry = 0,

2
Ezi XoI3 = X1y + yorq = O,
231 X4Tg - y1Ig + 24T, = 0,
241 XqT5 = YoIg + 2411 = 0,
et Xofs - X214 + =0
5: 205 ~ X Ly v 2y E Y,

26: Xolg ~ Yory + Zorp = 0,

27 ¥2T6 = Y1Ts + 2113 = 0,
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28: x‘;‘r6 - YoTs +22r3 = 0,

Xg: -Xor7 +Xq1g = (Ayq + Wyp)y Ty = Z414,
Z10: -Xorg +X1Tg = (Ay{ + WLYp)yoIy = ZoTy,

2
Ell -X1I7 + erg = —-XIhI'1 + ()Lyl + uyz)y1r3 = ers,

iy =X %rg +YoTg = -Xphry + (Ayy + py,)yor3 - z,1s,
213' =Yar7 +y1rg = -Xthry - 2416,
214 ~YoTg +Y1rg = -Xphr) - z51g,
L5t -2pr7 + 218 = -x1hry - (Ayq + 1y2)y 1T,
Li6' ~Zprg + 2179 = -Xphry - (Ay; + Ly,)ysre.
O
Remark (9.5)

The rings in Theorems (9.4) and (9.4,) have been presented in a
format depending on certain matrices. That is in each case the relations are
generated by

rank A <1
and
AMAT =0
for a given 2x4 matrix A and a symmetric matrix M.
Given a polynomial ring P we make the observation that there is a

variety defined by

and
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All A12
Ry Rgl [l o Iyaf| .
’ 5 . . = O
RS R9 121 124 ) )
‘ | A1a Ada |
, for 11_]’ Al_] € P.

If I c P is generated by the matrix conditions above we can write out
the generators explicitly as follows:
Ryj tlyilpj - Ljlp;, 1 <1< j < 4, gives the 6 determinantal

relations

4

R7: i;hiAﬁ,
4

Rg: g{lliAZi’
4

Rg': ;IZiAli’

4
Rg: ;lﬁAZi’

with the condition that Rg = Rg’ in P. We make the obvious convention
that R; = -Rj; fori>j.
The point is that these 9 relations will then satisfy the syzygies below:
Sik + 11iRjk - IjRix + 1Ry 1 Si<j<k <4,
Tijic : iRk - iRy + IR; 1 Si<j<k <4,

give the 8 determinantal syzygies, and

—
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U_] . —lsz'] + lljR8 = %RUAM’ 1 Sj <4,

U_] : —lszg + 11jR9 = %RUAZ]’ 1 Sj <4,

give the remaining 8. As remarked in the proof of Theorem (9.4) these last
8 syzygies are constructed from the identity

(AHAMAT = A*(AMAT)
J where

Ly 1

A* =

_'124 li4 :
The rings of Theorem (9.4) and (9.4,) are now of this form if we put
the product

(A, A

11 12

MAT =

14

24J
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10. Deformations of canonical curves. ‘

In section 16 we calculate the number of moduli for surfaces of
each of the 5 types and in some cases write down concretely a degeneration
between surfaces of two different types. In this section we do the same
thing for the canonical curves of the surfaces. These calculations serve as

something of a model for the larger (surface) ones.

Theorem (10.1)

In the following diagram

I-1II-II- I, » i,

for any given canonical curve of a surface of type B, T, there can be found
a family {C}, of curves, such that Bt is the canonical curve of a surface of
type A fort # 0, and € = T is the canonical curve of a surface of type B,
whenever there is an arrow from A to B.
Proof.

In each case we simply write down a family of rings, R,, which
are rings of the type calculated for curves of type A when t#0 and a general
ring of type B when t=0.

In order for the corresponding deformation to be flat, the syzygies in
R, reduced modulo t, must be eqﬁal to the syzygies in R,.
Type I » Type II

Consider the ring,

Ry = Clxy%5,y1,y5,2)/T;,

where I, is generated by rlt,...,rst given by the 4X4 Pfaffians of the

following matrix (see Section 4):
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Yy =z A B 0 ]
Here A and B are as in Theorem (9.3).

First notice that this guarantees that R, mod t is the ring of a curve of
type II. Let us write down the relations rlt ,...,r5t.
I{:X(Yy - Xpyq +1tz,
. 2
I} XqZz-yq+tA,
I3:XyZ =y,Yy - B,
I‘4 . yIZ = sz - XIB,

Is: 2% - YoA - yB.

Now, for t#0, rlt allows us to eliminate z from R,. If we do this

~ Systematically in the rest of the equations we get two degree 4 relations,
2
r;f PoXq(XqYp - Xoy )/t -y 1 + A,

rgf P =Xo(X1yg - X9Y{)/t - y1y3 - B,

—




The canonical linear system
49

and find that these span I;. In particular
t t, t
r4 = X1r3/t - x2r2/t’

= yyrdse- yarin
So we see that for t#0, R, = Clx,X5,y,¥,1/<Q,Q,>,

as required.

Type II » Type III

In this case there are several ad hoc ways of writing down families
of rings which satisfy our requirements. We give one more or less at
random.

Let Ry = Clx{,X9,y1,Y9:21,29)/ I,, where I, is generated by
3
I’lt PX1- X2Y1 +tZl,
3
Iy X3 - Xqyp - tzlxzyi,
2.2
r3: Y1¥2 - X1X3 - tXZZz,
2
I4iXqZp - Xozq +tAyT,
2 2
2 2
Tg © X3Zy = Yozq +tAX X5y,

2 3 P
I7:27 - Ay1 - HX{X,y5 - x%h,

1g:-242y + lx%y% + ux%y% + X¢X5h,
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r9t : z% - Kx?yI - uy% - x%h + tzkhyl.

Again the notation used here corresponds to that in section 9. Using

rlt to eliminate z; when t#£0 we find that I, can be generated by the 4x4

' Pfaffians of the following matrix.

' 0 0 X1 X ¥q !
0 0 X% - t27‘Y1 Yo x%x2 +tz
M, = | -X§ + t27‘«Y1 0 -x%x2 +tz tzuyg ,
2 2 x%x2 -tz 0 ~t%h + x‘;
| Vi -tz -Puy) 2n- X1 0 J
where we are writing z for z,. M, gives us the relations rpf, rg, rj, rst, rgt and

we can write
r6t = —x2r3t/t - x%rzt/t,
r; = —x1r5t/t = ylrj/t,

ré = x%rj/t + x2r5t/t.
Thus R, is a ring of type II as required.
Type III - Type III,

Consider the ring,

Ry = Clxyxp.y1,y2,21,25)/T;

—
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where [, is generated by

| N Y2 S
rank M = rank <1,
Xy Xp Yitty, 1z
| and MPMT = 0 for some symmetric P.
For t = O this is clearly a ring of type III,. Fort # O we can perform a
sequence of basis changes and row and column operations on the matrix M
until we are left with the presentation given in Theorem (9.4) for a ring of
type III.
Type III, » Type III,
l The presentation of the rings given in Theorem (9.4,) makes the
deformation clear in this case. Consider the rings
R, = ¢[x1,x2,y1,y2,zl,22]/ L,
where IX 1s generated by Tg poeensTg -
Ty ol given by
1 Y2 Y1 %

rank 5 <1
2 X1 Y 7,

I7 %0 Tg A To given by
2 2
r7: 21 - Ay] - By 1y, - X h,
. 2 2
Ig: 2123 = AY1Y2 - My1y3 - X{Xah,

2 2 3
ro: 23 - Ay;y2 - Hy3 - x3h.
Then R, is a ring of type III, and Ry, is a ring of type III, as required.
O

—
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The degeneration II - III given is not a structured one. However we
can write down a degeneration I - III in a structured way (10.2). We hope

to find a 2-parameter degeneration I - III factoring through II at a later

date but as yet this remains undiscovered.
Proposition (10.2)
J The degeneration of type I curves to type III curves can be expressed
by the ring
Clxy%9,y1:¥2 212/ T,
where degree (x;, y;, ) = (1, 2, 3) and I, is generated by 15 relations

{rij}13i5j-1. I is derived from an antisymmetric 6X6 matrix, M,, by
2<j<6

deleting the ith and jth rows and columns and taking the Pfaffian of the 4x4

antisymmetric matrix remaining (see section 4). The matrix Mt is shown

below:
F ;
0 t 2z x3 Y1 %1
0 % Y2 %7 )
0 —kxly% + klexzy1 - x,h —].szy% + uxl)(%y2 - x4h ly% + p.y%
0 “XyZ, + X4z, + th Z, + thzy1
0 %~ XY,
| 0 ]
Proof
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R(C, Kxi0) = Clx{,X,,¥1,¥7,21,25)/1
be as in section (9.4). |
It suffices to show that the ideal generated by ry 2,'...,r56 is equal to I
when t = 0 but when t # 0 we can eliminate z; and z, and be left with two

quartics. Below is a list of the 15 relations generated from M,
L tAx,y2 - Ax2x,y, + Xoh) + y,z, - x2
I56 - WAk Y = AX(Xn¥1 T Xgll) TYaZ1 =Xk
. 3 _ . x 2 n + x2z. -
Ty * tUX,y5 HX{XJy, +X4h) + X{Z1 - Y12y
:t(X02Z, - X,z - th) + X 2x2 -
I3g - HWX2Z =~ X124 1%2 = Y1¥2
. _ Cth) - x 2 2 _ 2 h
Tpg ° 21(X222 X424 )-x 2(},szy2 HX{X5Y7 + X4 )
+y,(Ax,y% - Ax2X,y, + X,h)
YI\AX1YT — AX XY T+ Xo0),
Ti6 : Zy(X92Zy - X424 = th) -y, (Ux,y % - p.xlx%yz +x,h)
+ x%(kxly% - AX %xzyl +x,h),
Tys: —t(?xy% + uy%) +XyZ{ = X(Zy,
I35 1 ~t(zy + tAXyyq) + X3 = X;Yy,
Toe : -Z2¢(Zy + tAX,Y4) + x 2(Ay2 + 2)+x(7&x 2 _Ax2x.y, + h)
25+ ~21(Z 2Y1) TRAYY T HYY) + X (AXqYT - AXTXoYy + Xh),

Tyg 1 =25(Zy + tAX,y ) + yz(?»y% - uy%) + xz(lxly% - Ax %xzy1 + X,h),

r34 s —t(21 - t}lxlyz) + X2y1 -X :13,




r24 .

T14

I3
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P -z4(z - tExgy,) +y{(Ay % + uy%) + x1(ux2y%._— ux1x%y2 +x4h), '.
P =2y(zq - tUX{y)) + X :lz(ky% + uy%) + xz(ux2y% - uxlx%yz + x4h),

: —x%(z1 - tHX1Y,) + y((zy + tlxzyl) +x4(Xyz5 - X424 - th),
:=Yo(zy - tUXyy,) +X %(z2 + tszyl) +X5(X525 - X424 - th),

:(Xxly% - ?»x%xzyI +X,0)(z4 - tHX{y,) = (X, % - uxlx%yz +x4h)(z, +

tAx,y,) + (?»y% + p.y%)(xzzz - X424 - th).

We make the following definitions:

Iy T34
ry i T35
r3:-rgs,
Iy T3
r5t D =Ty,
ré S o

I7 % =Tyq = UXpYoT35 = HYol3g,

Ig : ~Tps + AX,y Tay4,
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t. _

It is now easy to check that r(i) = r; and that those I which we have not used

in the above definitions are generated by the others. The Proposition

follows easily.

O
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CHAPTER 4.
, Surfaces.
11. Form of extension calculations

As can be seen in section 7 extension-deformation calculations, when
worked through fully, are long even in simple cases (such as Pinkham's
example). In this chapter we work through the calculations extending the
relatively complicated rings given in section 9. This makes the proofs of
Theorems (13.1), (14.1) and (15.1) extremely long. For this reason we
have kept to a strict scheme when making the statements and proofs of these
theorems and to aid the reader we present this scheme below.
Scheme for Theorems in Chapter 4.
Statement of theorem is of the form

Let X be a surface of type I (II, III, IIIa, IIIb). Then the presentation
for R(C, D) in Section 9 is formative and informative in degree -1 (see

section 8). In fact

R(X, Ky) = Clxy,..1/T
where T is generated by 'er ,...,?'n as follows:

Description of T,...,T
Proof of theorem is of the form
Reproduction of R(C, D)

The first item in the proof is a reproduction of the format of the ring
R =R(C,D)forCe IKyl, as given in Section 9. We then observe that this
format is formative. To prove the theorem we need to extend this ring.

That is, if R is related by S with syzygies El,...,Zm, we want to write

I e ——
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T, i1 = aX,

such that the T satisfy syzygies Sj which reduce mod x, to Z;.
Step 0 : Simplifications

It is possible to make simplifying coordinate changes to reduce the
possible choices of the a;. This has the effect of shortening the calculations
considerably.
Step 1 : R - R(2)

We make the extension R -+ R(?) where R2)/ (xg) = R as outlined in

Section 6. This involves taking the syzygies one at a time and finding the

r(zi) (i = 1,...,n) which will lift them. It is usual that after lifting just 5 or 6

syzygies the expressions for r(zi) (i = 1,...,n) can be written in the same

formative presentation as the I (i = 1,...,n). This means that the other
syzygies will automatically be lifted by these expressions.
Step 2 : R(?) 5, R(3®)

We make the extension R(1) 5 R@) where R?)/ (xg) = R. Again we
put the relations in the ring R into the format of the relations in R, if this
is possible.

Step £ : R(#) , R(3+1)

Having made the extension up to R™) we extend to RU4+1), The
algorithm will certainly have terminated in n steps, where n is the
maximum degree of the generators of the module of syzygies. In fact

keeping a formative presentation will guarantee that it terminates in many

fewer steps than this.
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12. Surfaces of type I.
Theorem (12.1)

Let X be a surface of general type with Pg=3, K)2(=4 and such that

the canonical linear system , [Kx| has no base points. Then

R(X, Kx) = Clxp,x1,X2,y1,y2] /<R @ R,@>
where degree (x;, yj) = (1, 2) and R{4,R,@ are weighted homogeneous
polynomials of degree 4. Hence X is the complete intersection
X4.4 < P(13,22).
Remark (12.2)

The generalised hyperplane section principle (Proposition (6.1)) tells
us that in each degree there are the same number of generators and relations
in R(X, K+ ) as there are in R(C, D). This means that R(X, KX) is a
Gorenstein grade 2 ring and the theorem follows immediately from this
(Proposition (4.1)). However since the result is such an easy one the proof
given below has been included to to illustrate the extension-deformation
method of Section 6 in a transparent way.

Proof of (12.1)
Let C € [Kx! be a nonsingular curve, given by the vanishing of
xp € HO(X,Kx). In Theorem (9.2) we found that:
R(C,D) = Clx{,X2,¥1,¥2)/<Q1, Q2> ,
where Q1(x1,X2,y1,¥2), Qa(X1,X,,y1,y,) are weighted homogeneous degree 4
polynomials.
Step O : Simplifications

As the calculation is very simple we do not need to simplify by

making coordinate changes.
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Step 1 : R » R(2)

We make an extension of the ring R(C,D) to one R(2C,D®). That is
we must find the most general f3 : <Q,, Q,> - R(C, D) such that B(Qq) and
B(Q,) are degree 3 polynomials and

Q1B(Q2) = QzB(QQ € <Q1, Q>
Of course this equation holds for arbitrary degree 3 polynomials so we can

write,

R(2C, D@) = Clxg,x1,X0,y1.¥2l/ (1), x3):

‘ where I?) is generated by
2
r?: Qq - xBQy,

r%: Q, - xBQy.

Step 2 : R@) 5 R()

Similarly for the second order extension we find
B,: <Q¢, Qy>- R(C, D) such that B,(Q¢) and B,(Q,) are degree 2
polynomials and

Q1By(Q) - QuB5(Q)) € <Qy, Qp>.

Again this is true for any choice of degree 2 polynomials.
Step £ : R(4) 5 R(4+1)

Repeating the process twice more gives us R() of the form,

RO®) = €lxo.x1.%2,y 1,2/ (R, D R, @ x3)
where R; ) and R, are weighted degree 4 polynomials.

This yields the theorem immediately.

O

—
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13).Surfaces of type II.
Theorem (13.1)1

Let X be a surface of general type with Pg=3, K)2<=4 and such that

the canonical linear system has one base point. Then the Pfaffian
presentation of the ring R(C, D) calculated in Theorem (9.3) is formative
and informative in degree -1. The canonical ring of a surface of type II is

of the form:
R(X, Kx) = Clxq,x1,X5,¥1,¥2,2] / 1

where 1 is generated by Ti,...,rs corresponding to the 4x4 Pfaffians of the

matrix M [cf. curve case (9.3)],

0 0 X1 X Y1+ Asxg

0 0 }’1 y2 z
M = X4 ¥y 0 -Z + xof1 -A +x0f2
- X, =Y, Z-X%f; 0 B+ x0f3

-y -Ax3 2 A-xif, -B-xif 0

Here A and B are as in Theorem (9.3), A5 € C and fy, f,, f3 are all

polynomials with coefficients in € written out in full below.

— 2 2
fl = t3X1 + usXp,

—




Surfaces of type II
61

3 % '
p fp= -tgx7-tsxix, - t6"1"% = t7x% - IgX1y) — gXoyy -
tinz - 3 - 2 - 2 = X Xn = XnX 2—
102 = V1X0 ~ U3XpXq - QgXpX | - q7XpX1X — ggXpX 5
q10X0Y2>
3 3 2
f3 = {HxXqyp + tHXoyo + tllxl +vxp + U1X(2)X1 + q11X0X1 +

d2X0Yy2 +d4XpY1-
The relations thus given are precisely

r1-X1¥2 - X2 Y1,
. _ e Aex 2
rp . X1Z y1 5x0y1,
r31X9Z - y1y2 - Asx 2yo,
T4 (V1 +Asx)@ - Xofy) - X2(A - x0f5) - x1(B + x4f3),

r5:2(z - Xyf;) - y2(A - Xofa) = y1(B + x4f5).

These relations satisfy the syzygies, s { yoensS s below given by:

S1:(yp + 7L5xg);1 - X2+ XT3 =0
Sy :zry - Yor2  + yqT3 ()
§3:(A -xgf)ry - (z- Xof )12 + yir4 - XqTs =0
S4:(B+ X0f3);1 + (z - Xofl);:; - y2;4 -+ X2;5 =0
Ss: -(B + x¢f3) 2 - (A- xof2) T3+ zr4 - (y1 + X5x(2))?5 =0

—
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Remark (13.2)

By the general hyperplane section principle (Proposition (6.1)) we
know the number of generators and relations in each degree for the ring
R(X, Ky). Observing that the ring must be Gorenstein and codimension 3
the structure theorems in section 4 tell us that the ideal of relations is
generated by Pfaffians. We prove this explicitly by using the extension-
deformation algorithm.

Proof of (13.1)
Let C € | Kxl be the general nonsingular curve given by the vanishing

of xg € HO (X, Kx), and D =Kx|c. In Theorem (9.3) we showed that,

0
R(C,D) = &, HY(C,nD) =Clx4, X3, y1, 3, zI/1,
where deg (x;, yj, z) = (1, 2, 3) and I is generated by

I1eX1y2 - X2 Y1,

2
12:X1Z - y{,
I3 :X2Z - y1Yy2,
T4 :y1Z - X2A - x{B,
15 : z2- ysA - y1B,

where

A= a1y%+a2x%y2+a3 Xg ,a,€ C

and

B = B(x1,X2,y1,y2) is a general degree 4 polynomial in
the weighted coordinates x1, X3, y1, ys. |
] | We have already written these down in Theorem (9.3) as the diagonal 4x4

Pfaffians of the following matrix,

—
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Yy -z A -B 0
The syzygies between the relations are,
$1: X{r3 - Xprp + yqry = 0,
§2: Y113 - yorp +zry = 0,
§3 : XqI5 - yqI4 - 213 + Ar; =0,
$4 1 XoIs = yorq - zr3 - Bry =0,
$5:y1I5 - zr4 - Arg - Brp = 0.
It is easy to notice here that the Pfaffian format is formative (section 8).
Having constructed R(C,D) we use the algorithm in Proposition (6.2) to

calculate the ring
R(X,Kx) = Clxg, x1, X2, y1, y2, 2/1,
where T is generated by,
T1:1X1y2 - X2 y1 - OXo,
) 2
I2:X1Z - yi - ByXo,

I'3:X2Z - y1y2 - ByXo,

r4:y1Z - X2A - XIB - YXO,

T'5:22 - yoA - y{B - 8xp.
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Here deg (o, By, v, 8) = (2, 3, 4, 5), and the Tj satisfy syzygies s; which
reduce mod x to s;. | '
Step 0 : Simplifications.

We make some coordinate changes. For example consider
T'11X1yp - X2 Y1 - OXp.
By judicious changes of coordinates in x1, X5, y1 and y, we can ensure that

T1:Xqy2-Xpyq - 6x}

where & € C.
Similarly, looking at
~ . 2
r2:X1z -yj-PBixo

if B1 = Bxpy1 + by’ then using T4 we can write

By = Bxiy2 - GB x3 + by’
so we may assume that 3{ has no terms in xpyq. By change of coordinates

in z we may also assume that B; has no monomials in which x{ appears.

So, we have arranged that

~

Ty X{Z- y% - llxox% - MyXoX2y1 - A3XoZ - Agx %x% -

K5x%y1 - }.6x(2)y2 - ?\qxgxz - Kgxg , A€ C.

—
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By using Ty we can assume that B, has no monomial in xpyq1 and .

using all the relations we can assume that x,y1, y%, y1y2 and y1z do not

appear in vy or 9.
Step1: R R(2)

We begin our construction of
R(2C,DP) = Clxg, x4, X2, y1, y2, 2/(x2, 1)
where I?) is generated by,

2) . ;
r(1) 1X1y2 - X2 Y1 - &%,

r(%) 1 X{Z - y% - B’;%0,

r%) : X2z - y1y2 - B'2Xo,

r(ﬁ) Y1z - X2A - x1B - ¥'xq,

r(g) 122 - yoA - y1B - §'xq,
where deg (a'(x1,X2,Y1,Y2), B'i(x1,X2,Y1,Y2,Z)s Y (X1,X2,Y1,Y2,2),

0'(x1,X2,¥1,y2:2)) = (2, 3, 4, 5). These satisfy the syzygies s(‘}),...,s(g) such

that s(iz) reduced mod xg is s;. By Step 0 we notice that:

2
r(1) I X1Y2 - X2Y1,

2) . 2
r(z) ‘X4qzZ - yi- (XIXOX% + 7\.2X()X2y2 + 7\.3XOZ).

—
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Let us look at the syzygy s; which must lift to a syzygy, which we call s(%).

This means that

x1r(§) - x?_r(%) + ylr(:;‘) = X0 S

where S € 1(2), that is,
x4B' - klxg - sz%yz - A3xpz €1

is of degree 4. Equating the left-hand side of this with a general degree 4

element of I we have

' 4
x1B'y = Ax5 - Ax3ys - AgXoz = pyr3 + pory + X{Pary + Xopary
2
= P1X2Z - P1y1Yy2 + P2X1Z - pay ]
2
T P3X1Y2 - P3X1X2Yy1 + P4X2X1y2

- Pax3y1.
Comparing coefficients it is easy to see that A=hy=A3=p"5=0.
We have shown that in R(2C,D®) we are forced to put a'=p'1=p',=0
in order for the syzygy sq to lift to a syzygy in R(2C,D®). In a similar

way consider the syzygy s3 which lifts to a syzygy s(‘g‘). This tells us that

x10 - yryel
is of degree 6. That is

—
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X10 - Y1Y = t1T5 + tyXqr4 + t3r4 + t4x%r3 +tsX{Xor3 +
2
t6X%r3 T 17y113 + tgyar3 + tgXiry +t10X1X2r)
3
+ H1X3T2 + tyay1ry + t13yors + t14xqry +

3 3
t15XjXorq1 + t16X1X%1'1 +U7X5ry +tigXqyqry +

t19X1y2r1 + tyoX2yr1 +t21X2yory + typzry.
We can assume that
0=98'+ 8",
,Y=,YI + ,YN,
where
x18" = y1Y'.
So there is some f € Clxy,X,,y1,y,,z] of degree 3, such that &' = yf and

Y = x4f . Given our restrictions on § we can assume that f = (px? , ¢ € C.

So we equate coefficients in,

x10" - y1Y' = t1r5 + thxqrg4 + t3rg + t4x%r3 + 5X1Xpr3 +
t6x%r3 + t7yqr3 + tgyorz + tgx%rz + 110X 1X2I2
+ t11><%r2 T 112y112 +ty3y2rp + t14X?r1 +

2 3
t1sxjXary + t16x1x%r1 + t17X5r1 +t18X1yqr1 +

t19X1y2ry + taoXay1rq + tp1Xpyars + tapzrq
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and discover that t{ = 0,t; = 0,t3 = 0, tg = 0, t7=0,tg =0,t19=0,ty1 =
 0,t12=0,t13=0, tyg = 0 and tyg = 0.
~ Also

2 2 3 2.2
Y= (pxi1 4 t4x1y2 + 5X1X2y2 + t9x1y1 + t14xlx2 + t15x1x2 +

4
t16X1X;3Z T 117Xy 119X 1Xoys + t21X%Y2 +122X27,
3 2 2 3 2
o= PX1y1 + t4X1X2Z + t5X5Z + l9X1Z + t14X7y2 + t15X1X2y2 +

t16X1X%yz + t17X§°§yz T 119X1y2z + t21X2>'% + 122Y22Z.

It is now a relatively simple matter to check that this y and § do in fact give

a lift of s4 and s5 to s(%) and s(? respectively:
s(i) :X20 - yov €1,

s(? :y10 -zye L

Thus we have computed

R(2C,DP) = Clxg, x1, X2, y1, y2. 2/ (x3, 1?)
where, after relabelling the coefficients in y and 8, I is generated by
r(%) D X1y2 - X2Y1,

2) . 2
r(z). XIZ_yl,

D xpz - y1y2,

—




2).
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2 5
14 Y12 - X2A - x1B - t1X0X Y2 - 12X0X1X2y) - t3X0X Y1 -

@

3 2 4

t4Xpx X2 - tsXpX 1X% - teXpx1X % - 17X0X 5 - tgXQX1X2y2

2 4
- 19XpX Y2 - t10X0X2Z - t11X0X 7,

2

22 - yoA - y1B - tyxgX1X9z ~tyxox 3z - taxgx 2z -
- 2 3
4X0X1Y2 - I5X0X 1X2Y2 = t6X0X1X2Y2 - t7X0X 5Y2 -

3
t8X0X1Y% = t9X0X2Y% - 110X0Y2Z - t11X0X 1Y1-

These relations satisfy the following syzygies

@)

@

@)

$9° ¢ X1r(‘;') = er(%) + y1r(%) =0,
Dy -y @4 1@ o,

$3: x1r( J y1r( ) zr(z) + Ar(z) tlxoxlr( ) - tzxoxlxzr(%)

2 (2)

- B3XQXITY - t4X0X r(z) tSXOX%XZr - t6X0X1X2 @

t7Xox3 @ . tsxoxwzr(f) = t9xoxzyzr(? - tyoXozr (%)

=0,
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s(i) : xzr(? - yzr(i) = zr(g) + Br(:;‘) + t1x0x1y2'r(%) =

2.2
e

txxxr(2)+txx I‘(z)—t X (2)+
1X0X1X2I3" + XXy r'y” — 12X0X5 3

- 13X0X %r

tq 1XOX?l’(%) =0,

s(g) : y1r(§) - Zf (i) - Ar(%) - Br(%) + tlxoxlzr(%) + tzx()xzzr(%)

+ t4x0x?r(§) + t5x0x%x2r(%) + t6XOX1X%r(§) + t7x0x%r(%) +

2 P 2 32
tgx0x1y2r(3) + t9X0x2y2r(3) =+ t10XOZr(3) + 14 1x0x1r(2)
= 0.

Notice that these relations can be written in the Pfaffian form as

previously. The following matrix yields r(%),...,r(? as its diagonal 4x4

Pfaffians:
[ 0 0 X4 Xy Y1 -
0 0 Y Y2 z
M@ - X -y, 0 “Z+Xgp;y  -A+Xx4D, |
Xy Yy  Z-XgDy 0 B+ XoP3
Yy 2 A-Xp, -B-xpp, 0 ]
where

P1= t3X1,
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3 2 o2 3
P2 = -U4Xq - tsX Xy — (gX1X5 ~ 17X 5 = tgX1y) - tgXpy) -

thZ’

3
P3 = UXqyy +1y1X].
Step 2 : R(2) 5, R3)
Using this ring we extend R(2C,D(2)) to

R(3C,DP) = Clxq, X1, X2, y1, y2, 2/ (xg, 1),

where I®) is generated by,
3).
T(l) P X1Y2 - X2 Y1
3). 2 2 2
r(2) DoXqz-yg - k4x0x% - Asxgy1 - l6x%y2,
3 ° n
19 xpz-yiyp - Bx 2,
3). 2 2
1 1 y1z - %A - x¢B - tyxox $y; ~tyxoxixays - taxgx 2yy -
3 2.2 3 4
l4Xpx X2 - t5XQX1X5 - teXQX1X ;5 - t7X0X 5 - tgX0X1X2y2
-t 2y - tgXXoZ - t 4_ yx2
9X0X2¥2 — 110X0X2Z - t11XpX | - ¥ X[

3).
r(5) : 22 -yoA -yB - t1X0X1X2Z -tyXX %z - t3x0x%z -

3 2
4XpX1Y2 - tsXQX X2y - teX0X1X2y2 - t7X0X 3_)’2 -

3 "
| tsxoxw:% - t9X0X2y% - t10%0Yy2Z - t11X0X 1y1 - & X%,

—
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satisfying S(i3 ) which reduce mod x(% to s(iz), 1=1,..,5.

If we consider s(?) we find that " (= Mx%x% + ?»5x(2)y1 + K6x3y2 )

and "', must satisfy
x1p") - xoB" €1
which is of degree 3. Hence it can easily be seen that A4 = Ag = O and B",
= Asy,. Similarly s; gives
x1B"y - xpB"; €1
but
x1B") - x2B"; = Asy1y2 - Asy1y2 = 0,
as required.
We must also check that s3, s4 and s5 can be lifted using these values
and calculate ¥ and 8". s3 renders
x10" - y1Y"' + Aszyq € I
of degree 5. That is
X18" - y1Y" +Aszy1 = Qir4 + QoXqT3 +q3X213 + QX112

2
T gs5Xar2 + geXiT1 + q7X1X2rq1 +

qu%n +qoy1r1 + q10y2ri.

Equating coefficients we have

q1=93=4g5=q9 =0,
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"

2
Y'= - Asz+qQox1yz +Qax1ys +gexixa + q7X1X% + qu% +
3
q10%2¥2 +q11X7,
" 2
8" = qxpz +qaX1Z + QeX{y2 + Q,X1X2y2 + qgX3y2 + Q10y3 +

2
q11X1Y1-
Substituting these values into similar equations derived from s4 and S5

shows that we have indeed constructed

R(BC,D®) = Clxg, X1, X, y1, 2, 2 763, 1),

where I® is generated by,

r®: x1y5 - xoy1,

r(g): X{Z - y% - 7»5X(2)Y1,

rQ: x92 - y1ys - Asx 2y,

r(i): (y1 - stg)(z - t3x0x%) - x2(A - x(-tgx i’ - t5x%x2 - t6x1x% - t7x% -
tgX1¥2 - toXay) - t10Z - QeXoX % - Q7XgX1Xp ~ GgXgX 3 - G10Xgy2)) -

3 2
X1(B + x(t1x1yy + thXoy5 + ty 1X1 +d11X0X] + q2XqY2 + 44%0Y1))s

—
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€]

3 2 .
T 5): z(z - t3x0x%) - y2(A - xg(-tgX ] - tsX7Xp - t6x1x% - t7x% - tgX1Yp -

)
loX2¥y2 — t10Z - QgXpX | - 97%XpX1X2 - Q8X0X% = q10XY2)) -

3 2
y1(B +Xo(t1X1ys + thXoys + t11X] +q11X0X{ + d2XgY2 + 94X0¥1))-
It can be seen quite clearly that these relations can be given in

Pfaffian form as before. The matrix, M), can be formed by picking the

entries (M(3))ij equal to the entries M;; reduced mod xg. The reader will by

now, no doubt, have understood both the mechanics of the calculation and
be able to guess the solution at the end of each step. We show the rest of

the calculation only for the sake of completeness.
Step 3 : R®) 5 R¥)

We now extend to
R(4C,D®) = Clxg, x1, x, Y1, Y2, 2 /(Xg, 14,
By consideration of s{ we see easily that

4
I'(1): X1¥Y2 - X2 ¥1,

4 2
r(z): X1z -yq - 7\.5x(2)y1,

4
£9: X0 - y1y2 - Asx 2y,




Surfaces of type II
75

To compute Y’ and &' consider the lift of S3»

’ . m ”" 2 2
$3:X18" - y17" - t1Asx {y2 - tohsxqXoys - t3Asx {yq € L
This is a degree 4 element of L
Notice that we can write

e 2 L 4
Y o =wxy+y

ne

0" = u{x1y1 +s

Then a similar calculation to the previous ones shows us that

i 2
Y" = ugys +uzxyxp - tahsxy

S”' = Uz + (113 + t17\,5)X1y2 = t27L5x2y2
It is again a simple task to check that these new relations do allow us
to lift all the syzygies as required . In fact we get
R(4C,DW) = Clxg, x1, X2, y1, 2, 21 /(x§, 1Y),

where I4) is generated by

(4). -
I'12X1y¥2 - X2 Y1,

4 2
r(z): X1z -y{ - KSX%yl,

4
13 %02 - 1y, - Asx Zy2,

—
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4 2 2 3
' yiz = %A - xX1B - t1XoX 1y2 ~12XpX1X2y2 - 13X0X Y1 - t4X(X X2 -

2 4 2
t5X0X1X% - t6XoX1Xg - 17X0X 5= 18X0X1X2Y2 - t9XpX 5¥2 - t10X(X2Z -

2.2
t11xox{ - Asxdz - Qxx1ys - qsx3xqy1 - q6X GX1X2 ~ QX 3%1X3 -

3 3.2 3 3
qu2X3 - Q10X2X2}'2 - Q11X2X1 - U1XpXq — U2Xpy1 - U3XpX1X2
02 0 0

+t37\.5X8x%,
r®: 22 - y,A - yB -t =t ~t ~t -
Y28 - y1 1X0X1X2Z - XX 22 3X0X1Z 4X0X1yz
2 3y, _ 2 _ 2 _
I5X0X1X2Y2 - t6X0X1X2y2 — t7X0X 5Y2 - tgX0X1y5 - t9XQX2y5 - t{oXQy2Z
-t11X0X1Y1-q2XOX2Z CJ4X0X1Z QGX0X1Y2 q,X 0X1X2yz~

2 3 3
q8X2X%YZ - quXZ}’% - q11x2x1y1 - UgXQpX1y1 - u2Xpz-
0 0 0

(u3 + t1As)x3xqy2 - trAsxgxay2.

These relations satisfy

$D: 19 - xarD + yyr® - ax2 @ g,

4 4 4
. yirD @ s Do,
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s(g): x1r(g) . ylr(j) - zr(g) + Ar(?) - tlxox%r(g) = t2x0x1x2r(g) -

3.4) 2. (4

t3x0x%r(‘21) - U4XpX Ty - tsXpX {Xor'y’ = t6x0x1x2r(4) - t7x0x3 4 _
t3x0x1y2r(£1") - t9x0x2y2r(‘11) - t1oXpzr (‘11) - qzx(z)xlr(g) - Q4X (75x1r(§) -
q6x2x%r(1 - q7x2x1x2r - quzx%r( ) qlox(%yzr( ). uzxgr( )_
u3x(3)x1r(‘11)s 0,

s(4) xzr(§) yzr(j) - zr(ﬁ) + Br(zll) + t1x0x1y2r(‘11) - t1x0x1x2r(g) +
tzxoxzyzr(f) - tzxox%r(g') - t3x0x%r(3) + t“xox?’r(l) qoX xzr(g) +

2,24 3 e 3.(4
qzxoyzr(1 —q4x2x1r 3 +q11X (1) . u1x0x1r(1) - up_xor(3)—

U3X(3)X2r(?) =0,

s(? 2 y1r(§) - zr(j) - Ar(g) - Br(z) + t1x0x1zr(4) + tzxoxzzr(‘f) +
t4x0x?f D+ tsXQX o1 D+ %X0X1X%r(§) + t7XQX31 (3) +tgxoxqyory) +
toxoxayar's + tyoxozr) + tyyxox3r - qx2r' + qux2ar ) +

2,2.(4) 4) 2,.2.(4) 4 2.2 (4)

q6XO 11'3 +q7X x1x2r3 +q8X x2r3 +q10x0y2r3 +q11X xlr?_ +

u1x8x1r(g) + U3X8X1I‘(3) + t1k5x0x1r

(4) 4_

3 +y27»5x X2r
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Step ¢ : R(4) 5 R(E+1)
' As we extend from £C to (4+1)C and work modulo higher powers of
x( there are fewer monomials of lower degrees. The calculations get
somewhat easier and so the final ring required shall be written down here.

We conclude that,

R(7C,D) = Clxg, x4, X2, y1, y2, ) /(x3, T),

where T is generated by

r1-X1¥2 - X2 Y1,
~ 2
2 X1Z-y71- }»5X%Y1,

I31XZ - Y1y2 - Asx 3y,

~

: 2 2
41 Y1Z - XoA - X1B - t1XgX 1y2 - thXoX1X2y2 - t3X0X {y1 -
- 2.2 3 4
4X0X (X2 - t5X0X X5 - tgXpX1X 5 = I7XpX 5 - tgXX1X2Y?2

- t9X0X%Y2 - t10X0X2Z - t11X0x § - }VSX(Z)Z - QZX%XU?. -

2 2
QaXGX1Y1 - Q6XgX1X2 - X 2x1x - qgx 2x3 — qyox 2xay; -

3 3.2 3 3 3.2
q11x%x1 = UgXQpX] - uXpyq - U3XpXqXp + t37&5x0x1 =

vx8x1 ~ legxz + u27k5x(5),
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. o 2
rs§: z2 - y2A - le - XX 1X2Z - 12XpX %Z - 13Xpx 12~
3 2 _ 3. _
L4X0X1y2 - tsX0X 1X2y2 - tgXpX1X2y2 - t7X0X 5Y2
2 2 3., _ 2
1gX0X1y7 ~ toX0X2Y 5 = t10X0Y2Z = t11X0X Y1 - QX jXoZ
2 2
- Q4X5X1Z - %X%Xﬁ’z - q7X%X1X2Y2 - %X%Xﬂz -
2 3 3
qu%y% - Q11X3X1Y1 - UgXpX1yq — UpXpz -
- tiAs)xgx1y2 - toAsx3xaya - (vi - Asqp)x Gya -
(u3 - t1As)xgx1y2 - toAsxgxay2 - (V1 - Asq1)x gy2

v - Asq2)x 1

These relations satisfy the syzygies below

EI: X1;3 - X2;2 =+ YI;I + KSX%;I =0,

;2: y1F3 = y2;2+ Z;1 =0,

§3: X1;5 -¥1 ;4 - 2;2 + A;l + t1x0x"{‘;3 + t2XOX1X2;3 + t3X0X%F2 +
t4x0x?;1 + t5x0x‘}x2;1 + teXQX1X3T 1 + t7x0x3_F1 + tgXgX1yarq +

~ ~ ~ ~ 2~
toXpXoyar1 + tigXpzrq + qzxgxlr'_z, + q4x%x1r2 + q6x8x1r1 +

~ ~ ~ 3~ 3 ~
q7X8X1X2r 1+ qu(%X%rl 3 q1ox(2)y2r1 +ugXpra +usxpxqry =0
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5,0 XoT5 - yaT4-273 + Brq - tyXgX{yaT{ + t1X0X1X27 3 - thXoXay2 T
2~ 2~ 3~ TR-J ST
+ XpX3r3 + t3xox1r3 - l1Xpxrq + q2XpX2r3 Q2Xy2rq

X2X113 - QU1X2X%T{ - UX2X(T +upX3r3 + usxaxsrq = 0,
g4XpX113 q11011 1AQALT] 0 0

~

5 YiT5-214-AT3-BT) - t{XgX{2T{ - thXgX9zT 1 - t4x0x‘;’?3 -
t5XQX{ X273 - teXqX1X3T3 - t7xox 373 - tgXgXqya T3 - toXqXay, T3 -
t40X073 - t1{X0X T2 + QX375 - Qox 227 1 - qex2x3t3 - q7x x1xa13 -
Q8XGX5T3 - 410X Zy2T3 - Q11X X312 - UIX3X{Ty - Ugx3x{T3 -

- e S
t17»5X0X1r3 - yz)»5X0X2r3 = 0.

At this stage the algorithm terminates and we can write:

R(X9 KX) = G:[X09x1yx29y13y25zl /T .
As with the curve we can fit the structure of this ring into a Pfaffian one.
At the moment the relations are not quite written in such a way that a skew

symmetric matrix with appropriate Pfaffians can be found. By adding

multiples of T, T, and T3 to T4 and T this may be remedied and the

matrix M, in the statement of the theorem will deliver a generating set for

~

I.

O
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14).Surfaces of type III.
Theorem (14.1)

Let X be a surface with pg = 3 and K>2( = 4 such that the canonical

system has two base points. Then the presentation of the ring R(C, D)

given in Theorem (9.4) is formative and informative in degree -1. In fact

R(X, Ky) = Clxg,X{,X2,y1:¥2,21:Z9)/ 1.
The degrees of the generators are,
deg (xi, Yip zk) = (1, 2, 3) respectively.

1is generated by 71,...,7g as follows:

-

2 2
Xy Y1 Xy =01 XXy ~0ly3X) Z4
Let A =

2 2
Xy X17041%p%q~%y3Xg Y2 2

Then ry,...,rg are given by,

rankA<1
T4, Tg, Tg are given by,
7 T3
= APAY,
g Tg

"~ where P = (Pij) is a symmetric matrix with entries
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2
Pyy = -h - 81xgxyy1 - 82001% X1 - 83%gXay2 - 811xgx 1y, +
) 2y — 815%2ys - 8ygX 2y, ~ 81aX0Zq — O1cX X +
119%11XgY2 ~ 015X(3¥1 = 018X 5¥2 = 013XpZ1 ~ 016X X1
3 3 2.3
8o4X0X1 + B25X(xg - SypX x5 + 828,
1 3
Py = 2(=85Xpy1 - 86Xy, + 8p7% (),
1 3
Py3 = 2( - 8,%0y1 - 84Xy, + 854X ),

1 2 2
Py = 2(=31303X 5 + 8,3%7),

2
Py = -Ayq - 810%g%p — 831X §»

_ 15 2
P3 = =2017%(;

1
P4 = =7815%y,

P33 = —Hy; - 8401x § - 8;gx3,
P34 = -3¢y,
Pyy=1.
Remark (14.2)
As was remarked in the proof of Theorem (9.4) relations generated
by rank M < 1 and MPMT satisfy syzygies given by (M*M)PMT =

M*(MPMT). This shows that this presentation is formative. For reference

the relations ;1 ’---’;6 in the statement of the theorem are reproduced below:

—
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L3 2 2
r1: Xy~ Xpy1 - Oq1XpX 1~ a13X0X1,

. 3 2 2
T2+ X3 = Xq¥2 — 0p1XpX 3 — 03X X),
~ 2 2 2 2.2
r3: yi¥y2-X lx% + a11x0x1x2 + a21x0x1x2 + a13x0x2 +

2.2 2 3 3
023XpX1 — 011091X(pX1Xp = Q1 Cy3X Xy ~ Olx30Ly {X (Y] —

0‘23‘113"3’

T4 . X122 = X221,

) 2
T5- X421~ Y172 — Qq1XpX1Z4 - Q43X 74,

Te: X323 - YyZy - OyXoXezy - Gzax %Zz
Proof of (14.1)
Let C € [Kxl be given by the vanishing of Xq € HO(X, KX) and let
D= Kx|c. In Theorem (9.4) we showed that
R(C,D) = Clxy,x5,y1,¥2,21,25)/1,

where degree Xi» ¥i» Z; = 1, 2, 3, and I is generated by I(,...,Tg as follows.

The relations below are + those given in (9.4).

| Degree 3 rq: x? - X2Y1,
‘ v o _
‘ Irp: X2 X1¥2,
, |
Degree 4 r3:y1ys - x%x%,

T4 1 X1Z2 - X271,

—
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Degree 5 Is : x%zl - Y12y,
6 : X323 - ypz1,
Degree 6 Iy : z‘% - ky? . uxgyz - x‘i"h,
I8 : -Z1Zy + ).x%y% + p,x%y% + X1Xzh,

19 : z% - }.x‘fyl - uyg —x%h.

The first 6 relations were written determinantally as follows,

rank M = rank ) <1

These give rise to determinantal syzygies as follows,
Zyixqr3+yqrp + x%rl = 0,

: 2
22 . =Xor3 - X 112 = yor1 = 0,
X3 :X{rg - x%r4 -zqrp =0,
24 X{r5+yqr4 - zqry = 0,
e - 2 _
51 =XaIs = X {14 + zorq = 0,

Z6 : ~XaT6 + yorg + zor9 = 0,

X7 -yqrg - xg_r5 -zir3 = 0,
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g x%r6 + yors + zpr3 = 0,

and it was found that the syzygies involving r;, rg and rg are the following,

29 - XoI'7 +XqIg + Z1r4 - ly%q + ;,Lx%yzrz =0,
>N -x 2 2= 0
10 - ~X2I8 — X1I9 + ZoIy X 1¥1r1 + lysrp = 0,
21 :x? - Z4Ts - Px 3yor3 + xthry = 0
11 XqT7 + y118 - 2415 - WX 5yor3 + xthry = 0,
) PP _ 2 hri =0
12 - =X 118 = y1T9 - Zpr5 - Wy 5r3 + Xxphry = 0,
213 :yor7 + x%rg +zqrg + ky%rg, - x1hrp = 0,
2
214 -yorg - x%rg + 216 + AX{y1r3 - xphr) = 0,
215 :2zor7 + zq1g - Ky%r5 + ux%y2r6 + X1hrg = 0,

: 2
216 : -2o18 - 219 - AX yirs + uy%r6 + xohry = 0.

Remember that we wrote down these relations in a format dependent
only on the matrix M and a symmetric matrix. We shall use this format to
shorten the extension-deformation calculations.

We now use the extension-deformation theory to extend this ring to
R(2C, D(z)) then to R(3C,D(3)), R(4C,D(4)) etc. If at each stage we can
show that the relations lift to ones in the same format for some Lii'.P;; where

lij’ reduces mod x to lij, P;;' reduces mod xg to P;; then the lifted relations

will automatically satisfy syzygies Z{',...,Z1¢’ such that %' reduces mod XQ

to %; as required. This will shorten some of the checking procedures along
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the way.
Step 0 : Simplifications
First we do some basis changes to simplify the calculations. Suppose
R(X,Kx) = ¢[X0,X1,x2,}'1,yz,21,22]/ 1,

where T is generated by,

3
T1 I X] - X2y1 - 41X,
Ty 1 X3 - X{Yy - aX
‘ 2 1 X5 = X1y - aX(,
. 2
| 13:y1y2 - X1X% - byxo,
T4 1 X12) - X2Z1- byxo,
C w2
] T5 1 X121 - Y1Z2 - C1Xq,
Te : X3z - y2z1 -C
l - 8242 ~ Y221 —C2X(),
.2 3 4 2
r7 1z -Ayy - UX5y) - x1h - dyxo,
. 2.2
I8 :-21Zp + 7Lx1y1 + ;,Lx%y% + x1x2h - d)x,

Ig : z% - kx‘l"yl - uy% - x%h - d3xp.
Here the aj, by, c; and d; are polynomials in xg, X1, y1, y7, z1 and zp so that

| the T; satisfy syzygies il such that fﬁ reduces mod xq to £;. By changing

| " basis we can assume that

2
a1 = 01Xy + 012y2 + 0l13X0X1 + 014X3,
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' 2
a = a21x:§_ +022y1 + 023X0x3 + 024X,

3
b2 = B2121 + B22zp + B23xgy1 + Baaxoys + Basxp.

The c; are degree 4 and so ( with a chosen basis for HO(X,4KX) ) we can

write
3 2 2 2 2
€1 = Y1,1X1¥1 + Y1,2X1X2Y1 + Y1 3X5y1 + Y1,4X1Y2 +Y1,5X1X2y2 + Y1,6X5Y2
2
| Y1791 + Y1,8Y1Y2 + Y1,0¥3 + 11,10X121 + Y1,11X221 + Y1,12X227 +
| Y1,13X0X%X2 + 71,14XOX1X% T Y1,15X0X1Y1 + Y1,16X0X1Y2 + Y1,17X0X2y1 +

' 2
Y1,18X0X2Y2 + Y1,19X0Z1 + Y1 20X0Z + Y1,21X(2)X1 + Y1,22X(75X1X2 + Y1,23X8X%

3 3
+ Y1,24X(2)Y1 + Y1,25X(2)Y2 +Y1,26X0X1 +Y1,27XpX2 + Y1,28X8,

1 and similarly for c with y; ; replaced by Y2,i- Since h0(X,5Kx) = 44 we
could also write down expressions for the dj depending on 44 parameters

before we begin the calculations (but we won't).
Step 1 : R » R(2)

| We begin the calculation of R(2C,D®)). Consider

2(312): X1 r(%) +y 11.(%) + x%_r(%) € xoI?,
‘, Then
| ' x1b'y +y1a'y + x%a'l €L
That is,

—
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X1b't +y1a's +x3a’1 = pyr3 + porg + paxqrq + P4Xory

+ P5X1r2 + pexara,
; where p; € C.

' Comparing coefficients we see at once that:
*12=022=P2=P3=p5=pe=0 and a1 {=-p1, 21 =-p4,

’ , 2
b'y= —auxlx% - 01X2X T

These coefficients also satisfy

1D 1y ® 4 2D

7t Xor + y2r(%) € xol@,

In the same way 2, must lift to a syzygy in R(2C,D®);

X3 :xqC - x%b'z -zqa'h e L

Substituting what we already know from Step 0 about a’; and b’, we get

X1 - Ba1x521 - Bpoxdz; - opyx3zy € L
This leads us to the equations between the coefficients

B22=0, ¢'s= (B21 + 021)x72; .
However, looking at

Ly -xqC' - yiby +zqa'y €1,
we find that
B21=0,c'y = 011x121.

So far we have deduced that,

’ 2
aq= a11x1,

—
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a’2 = azlx%,

' 2
b 1= —a“xlx% = a21x1x2,

s = 0,
'y = 011X121,
C'y = Oip1X22).

Incidentally, the relations r(%),...,r(%) are still determinantal in form. In fact
they are given by,
2 _
’ X4 Y1 X3 = Og1XgXy 24
rank ) = 1.
X2 X~ QyyXpXy Y2 )

From this we can see that all the determinantal syzygies are lifted by these
choices of polynomial.

The calculations get much longer when we consider the

nondeterminantal syzygies, X,...,.21. In order to lift Xy we need,

X2d’1 + delz +Zlb'2 - Xy‘;)‘a'l + ux%_yza’z €l

| We can write
d'y = 81xqy2 +d'
1 1X1Y> 1

d'y = Mty yxqy} - (oo +8)xpy2 + d,

where

de'l + delz €l

—
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} Since dy and d, are degree 5 , this equation is degree 6. Taking a basis of

HO(5Kxc) we can write
( d'j = 8 1X9Xoy1 + 8; X (X2y1 + 8 2x2X0y + & 4X1X2yn + 5 24
i = 0 1X1X2Y1 1,2X1X2Y1 + 0j 3X7X2Y) + 0; 4X X3y, i,5X1Y1
2
85, 6X1Y1Y2 + 8; 7X1y3 + &; gx(Xpz + 8 9x3z1 + 8; 10Xay2 + di.11X2Y1Y2 +
2
8,12%27 + 8; 13121 + & 14y123 + & 15yp2 + 8; 16Y222-

Similarly taking a basis for the degree 6 part of I we find that we

have to solve,
| xd'y +xydy = tyyyr + tyr + X1y + t4X Xty + tsXBrg + tey s +
t7yaTg + tgXiry + toxyx3ry + toX X,y + 1ty 1X3T1 + t{oX Y 4Ty
+ t13x1y2r1 + t14x2y1r1 + t15x2y2r1 + t1621r1 + t1722r1 +

2 2
t18X1X2r2 + t19x1x2r2 + tzoxgrz + t21x1y1r2 + t22x1y2r2 +
123X 112 + th4XoYory + tysZ1Ty + tyeZory
It is found that

tt=0fori=1,24,5,8,09,10, 11, 12, 13, 16, 18, 19, 20, 23, 26.

After renumbering we see that
' 2 2 2
d'y = 81x{%Xpyy + 8yx(x3yy + 03X 1%y, + 84x1 X3y, + Osx1y7 +

O6X1y1ya + 87’(1}’% + O0gX1Xpzq + 89)(%21 + 510x2y% +

011X2Y1Y2 +812Y121 +813y12, + 8, 4y,21.

—
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, 2
d'y = -8yxyx3y; - xqy1y2 - 83x1x 3yy - 84x1y3 - Osx2y 1 -

2
S¢Xoy1y2 - (87 + HOC21)X2Y% - 53X‘27‘Z1 - Bgyzq - 810X {Xoy4

2 2
- 011X 1X9¥2 = 812¥12 - 813x (X021 - By4y52, + Moty xy 2
Now some restrictions are placed on d’; using our calculated values for

a'y,a’y,b'y, 'y and the syzygy 0

That is ,

2

81X1X:23y1 + 82X1X2y1y2 + 83X1X%}’2 + 84)(1)(2)’% + SSX%yI + 86)(%)’1}’2 + (87
2 2

+ uazI)x%y% + 58’(321 + 89gXpyrzy + 810x1x%y1 + 511x1x%y2 +819Xpy12Zy +

2 2
| 513X1X221 + 514)(2}'222 - Ka11X1X2y1- Xla3 -lallx ‘11y1 + ]J,(XZIX%)’% el

Writing out the righthand side of this equation in full and comparing
" coefficients gives,

| d’y = -81x;x3y; - 8yx1y1y2 - 83x,x 5Y2 - 84x1y3 - 8sxay 2-

2 2
86%2¥1Y2 = Boyoz - 810x Fxpy; - 8y4x 1%2¥2 = 812y12, -

2
813X1X221 + Aoty 1X1y] + RO 1xpy3,
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' 2 2
d 3 = —2ka11x2y1 + 81X1y1y2 + 82X2y1y2 = 83X1y% + 84X2y2 +
2 2 2
85X1X2y1 + 56X1X2y2 + 89}’222 + 810X1X%y1 + 811X1X2y2 =+

2
812X1X2Z1 + 813X2Z1.

Consequently,
0=514=0, 87=-2p01;

| We have shown that the following expressions for r(:lz) ,...,r%) are necessary

to extend the syzygies Xy,...,.£{9. They have been written in the formative
‘ presentation of the statement of the theorem. This will prove that they also

extend the syzygies )TN PP

'. r(%),...,r(é) are given by
X4 1 X5 = OyXgXy 7y
rank M® = rank ) <1,
o XT %1%y R %

' r(%), r(g), r(g) are given by

o) JG)

M@pMOT _ ,
@ @
8 9

where P is the symmetric matrix with coefficients,
| P11 = -h - 81x0%ay1 - 83%0%5y, - 813%021 - 81 1%0X Yy,
P13 = 2@sxoy; + 8gxo¥,),
Py3 = 3(- 8yxgy1 - 84%gy,),

..
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Piy=0, |
Py = -Ayy - 810%%y,
| Py3=0,
Pyy = =3815%
P33 =-Uy,,
P34 = 289,
Py = 1.

These relations satisfy the syzygies 2(2),. ( ) ¢ following from the format

| (see Remark (9.5)). Below are listed 2(2) 2(2) 2(2) 2(2) Z%) and 2(128

which we use in step 2.

E(%) : xlr(%) + ylr( ) + xzr(l) ~ Olpy1XgXorI %) =0
E(%) : —xzr(%) -x%r(%) - yzr(%) + a“xoxlr(%) =0,
Z(%) x1r(%) - xzr(i) - zlr(%) + a21x0x2r(§) =0,
| Z(g) : -xzr(? 2 (2) + zzr(l) + allxoxlr(ﬁ) =0,
2%) xzr(%) + x1r(8) + z4r 4) Xyz @, ux%yzr(%) + 82x0x1y1r(%) +

2 2 2 2
S4xxqyrs + Soxoz41'3) - S10x0x2y1r' Y - 81 1X0Xyr' P -

2
512XO>’1r 4 - O13%0Xyr (5) + HO‘21X0X2Y2Y(2) =0,

e ————]
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5@ 3t 31D 4 7@ @ , 2,2

-Xor'g’ = X{r'g +2zry - kx%ylr 2)

r | + Wy Ty’ + 81XoX1y Iy +
2 2 2 2 2
t 53X0X1Y2r(2) - 55X0X2Y1r(1) - deXoX2Y,r (1) - 59XOY2r(4) - O1XqXor (5)

2
- Ao xgxqyir P = 0.
| Hence we have extended R(C,D) to

RQ2C.D®)=Clx,x1,X2,1.¥2.21, 29/ (x2, 1)

where 1@ is generated by r(%) ,...,r(g) .
| Step 2 : R(2) » R(®)
We extend R(ZC,D(Z)) to R(3C,D(3)) in the same way. First we

1 extend the determinantal syzygies.
Begin by extending Z; to a syzygy =& in R(3C,D®))

5@, 4 D 4o B, 2.0 3

1:X1I3 + Yirs I' 1" = G21XOX2I' 1 € X01(3)

That is,

5 2
| X1b"{ + Y1093y + X%0‘137% - 011021X Xp € I

is of degree 3. We deduce that
b"; = -0ly3x 2 + - 2
1= ~0q3X5 T Q101X 1 Xy~ Op3X T
This expression for b also lifts £, to 2. To lift £, we need

X1C”2 = X%bnz —zla23x2 el

e e
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Bearing in mind our simplifications at step 0 we set about finding solutions

for this expression. To begin with let

C”2 - 6”2 5 X%f ’ b”2 — an + le

where f is degree 1. Since the possibilities that ¢”, contains a term in xg

and that b,"” contains a term in x‘;' have been excluded by our previous

simplifications, f=0.

| Thus we need

’ X1€"'p - x %1_3"2 -Z{0y3Xs € L.

Comparing with a general degree 4 element of I gives,

" 2
C 2 = 02323 + YpX(Xy
b"2= Yy1.

To lift to E(g) we need

| X20”1 + X%bnz - Zp0l43Xq € I,

that is,

XpC"q + 'sz%yl - 2p03%X1 € L
It is easy to deduce that,
Y2=0
. ¢y = ay3zy,
A simple check shows that these expressions for a”,a"5,b" ,b",c"

and c" also lift the remaining determinantal syzygies.

e e ————————
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k Now we see if they will lift the nondeterminantal syzygies and calculate

I expressions for d”{,d", and d”3. First consider
3 m " " 2. n "
2(9) : X2d 1 + X1d ) + Zlb 9= lyla' 1 + px%yza 2 + 52(121X1X%y1
+d,0 2y + 800 (X221 = 8100l 1X ZXnYy —
4U21X1X2Y2 T 090p1X5Z1 = 01001 1X1X2¥1

2 2.3
811(111)(1)(2}’2 = 813(111)(1)(221 + HGZIXZY2 € L.

Comparing this with a general degree 5 element of I gives
2
x2d" 1 +x1d"5 - MotyaXqy T + LOp3X3ys + 8y0p1x1x3yq +
8405 1X1X3y, + 80y X3Z{ - 8190ty (X 2Xoy 1 —
4021X1X2¥2 T 090 1X5Z1 = 01001 1X 1 X2Y1

2 2.3
8110011X1%X9Y7 = 813011 1X1XpZ1 + HOL XYy

t11'6 + t2r5 + t3X11'4 + t4x2r4 + t5x%r1 + t6x1x2r1 +
2
t7x%r1 + t8y1r1 + t9y2r1 + t10x1r2 + t11X1X21'2 +

/ t12"%f2 T 43y Ty + t4Yars.

Equating coefficients we get

( ti=ty=t3=ts=te=ty=tjo=t1;=t1=0,

7] 2 2
d”1 =815x1y1 + 816X1Xay1 + 817X3y1 + 81gXTY, + 819X (Xoyy +

2
820%3y2 + 821y1 + 823¥1¥s + 823%121 + SpgXzy

7. s e —————————
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d" = (8100t11-815)x Xgyq - (82091 +B1)x 3y - 817y1y, +
(811011~ 81)X X9y, ~ (819 + 84051)X 3y, -
2
(noLy? + poys + 820)¥3 - 831x3y1 - Sypx 3y, +

(313011 - 823)%921 - (Bg0tpq + 8y4)X02) + Aot3y 3

Now by considering
2(3) d" d” b” 2 2. 2.m 5 2
10- X2d 2 +X1d 3 -23D0 5 + AX7y1@"1 - Hy5a 5 - 010y 1X{XJy{
) 2
- 8301X1X3Y) + 85011 1X X5y + Bty X3y, +

2.3
812(111X1X221 + ka“xlyl el
and, in the same way as before, comparing coefficients we find that
2
820=-2H003 - MOy 1, 8p4=-8gayy,
and are left with

n 2 2
d 1= 815X1}’1 + 816X1X2Y1 + 817X%}’1 + 818){1}’2 + 819X1X2y2 -

(2uoys + Haz‘;’)xgm + 521Y% +82y1Y2 +893x424 -

Og0lp1X521,
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1 d”y = (81901 1-815)x1Xpy1 — (801 + S1g)x %yll - 847y1y2 +
(B110t11-81)x1Xpy5 = (819 + 84051)X 3y, + Hatp3y3 -
821X1Y1 - 820% vz + (By30t44 - Sy3)xpz¢ +Acty3y7,

d"3 = (840 - 8ygatqq + 615)x%yi + (050191 + 016)y1Y2 +

817){%}’2 + (53(121 - 811(7.11 + 818)){%}’2 + (54(121 + 819)}’% +

(-850111 + 821)x1Xpy1 + (-8g0t11 + 8p0)X1X0yy +

2,2
(823 = 8130t 1)X925 - 81501 1X9zq - M2043 + 0y X7y

So we have proved that r(?),...,r(g) must be of the following form in

order for the syzygies X,...,.Z; to lift:

rank M3) =
) 5 5 ]
X - _ _ -Z
1 J Xy~ 0a1 X% 003%g 1
|
' rank 2 5 <1,
2 Xq=0y XXy -0 X, 2 Z5
| gives
3)..3 2
T 1) Ry = RN =Gy Rpx - 0‘13X%X1’

@ .3 2 2
T'27 2 X5 = X1¥2 = 01 XpX 5 = Qp3XgX,

e ——
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3) . 2 2 7 2.2 2.2
’ I'(3) ‘Y1y2 - X IX% + a“xoxlxz + a21x0x1x2 + (113X0X2 + CX23X0X1 -
2
Oq1021XpX1X2s
(3)

I'q : X1Zy - Xzzl,

3). 2 2
T'5" X121 = Y122 — Oq1%XgX1Zq - 13X {Z1

| 3.2 2
| T'e - X322 = Y271 ~ 0a1XpX2Zp — Q3X (oZ),

| and we may write, r(§,), r(g), r(g), as

r§3) r§3)

MOPOMBIT - .
3 B
Ig 9

Here PG) is the symmetric matrix given by reducing the coefficients in the

matrix P mod x(3) (P as in the statement of the theorem).

Since these relations have been presented in the form given in the

statement of the theorem they satisfy syzygies 2(3),...,2(136) such that Z(i?’ )

reduces mod Xq to Ei.

So we have demonstrated that

RBC,DO) = Clxg,xq.x0.y1.¥2.21,25)/ (x3, I3,
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where I®) is generated by r(?) ,...,r(g).

Step £ : R(4) 5 R(4+1)
We continue algorithmically extending R(3C,D3)) to
R(4C,D™),R(4C,DM) to R(SC,D®) etc until we have reached R(7C. D).

At this point the algorithm ends and we will, in fact have the ideal 1
generated as in the statement of the theorem. The remainder of the
calculations are similar to the above and the result has been stated in
Theorem (14.1).

O
15).Surfaces of type III, and III,.
Theorem (15.1)

Let X be a surface with Pg=3, K§=4 and such that the canonical

linear system contains a fixed (-2)-cycle. Then Lemma (9.1) shows that X
is a surface of type IIl or Ill. In each case the presentation of the ring
R(C, D) given in Theorem (9.4,) is formative and informative in degree

-1. In fact for X a surface of type III; we have

R(X, Kx) Clxq,x1,X2,¥1,y2,21,22)/1.
The degrees of the generators are,

deg (xi, yj, zi) = (1, 2, 3) respectively.

1 is generated by t1,...,rg as follows:
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| 101
| Then 1'y,...,T¢ are given by,
rankA < 1
’ r7, T8, Tg are given by
= APAY,
s To

l where P is a symmetric matrix, (cf. 14.1), and the Pij are,
P —h+8xx2(x a )+ 6 3+8 +
11 = 67072141 ~ 11X/ T 01XpX 2 + 011XZp
2 2.2 1.2 n, 3
87'Xg¥a(xy = 0t11%g) + 81X gx3 + 84Xy 1 + 86 X3 (x; - 0ty %X,)
+ 81"x8x2 + 81"’xg,
2 .2 "
Plz = %(557(0)(2 + 86 XOX2 + 85 Xg),
2 2 2 "
P13 = %(84)(0)(2 - fXO(XI - all)(o) + 55 XOX2 4 84 X(3)),
1 2
P1a = 2016%0(xy - 011%g) + Bgxgx, +819'x),

2
P22 = fXO,

P23 = %(89'){(2))9

Pyy = 385y,

12
P33 = Ayy + 1y, +8g'xq,
| Py =308 %),
P44 = —1.
In the above, h, A and | are as in Theorem (9.4))and §, &.'...., f € C.

1, 190

s T
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The case where X is a surface of type III is analogous.
) Remark (15.2)
We only present the calculation for surfaces of type III, here as this
] ._ calculation illustrates some points of interest. In the previous cases the
presentations we have considered have been formative and in fact all
extensions of R(C, D) in degree -1 have had a presentation with the same

format. That is all the extensions R(nC, D(“)) are given by an ideal 1(n)

| which is generated by xg and relations given by the same presentation as
those in R(C, D). In Theorem (15.1) however, as in the example of
| Pinkham, this is not true. The ring R(X, Ky) has the same presentation as
R(C, D) but not all the intermediate rings R(nC, D(“)) have. There is an
obstruction at step 7 forcing exactly the conditions upon the ideal which are
required to give R(X, Ky) the formative presentation. The format given in

Remark (9.5) does survive at every step however.
Proof of (15.1)
Let X be a surface of type III, E be the fixed (-2)-cycle and Ky =
I' + E. In Theorem (9.4,) we calculated the ring R(C,D) for D=Kx|c and
found that
R(C,D) = Clx{,X,¥1,¥2:21:25)/1,
where degree (x;, Yjp z,) = (1, 2, 3) and I is generated by

Xt Y2 Y1 4
rank M = rank 2 <1

2% Y2 %
giving
degree 3 Iy x:;’ - XY,

i X1Y2 = X2Y1,
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degree 4 r3: y% - x%yp
T4t XqZp - XpZ4,

degree 5 I5: YpZy - x%zl,
Te- Y122 = Y211,

and

degree 6 I —z% + Ky? + uy%y2 + x%h,
. 2 2
Ig: =Z4Zy + Ay1ys + Lyq¥3 + X1 Xoh,

2 2 3
Tg: =25 + Ay ys + Uy; + x%h,
where, ALEC

and

h= 7\1);‘11 + sz?xz + Mx%x% + 7»4x1x% + kSy% +AgY1Y2

| + }\,7y% + 7\.8)(:1)'}’2, A’i € C.
These relations satisfy the syzygies 245,21 following
212 XqI3 = yoIy + yirg = 0,

2p: XaT3 = X1t + Y1y = 0,
Z3: XqTg = yiT4 +2Z415 = 0,
L4t XI5 = Yoy + 2411 = 0,
X5 Xorg - x%r4 + 2911 =0,
L Xolg = Yolg + 2915 = 0,
Z7:yolg = yqIs + 213 = 0,

Xg: x%r6 = yorg +zor3 = 0,

R e
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Tg: -Xor7 + X418 = (Ayq + Hy,)yqry - 2414,

Zy0: ~Xarg + X1Tg = (Ayq + Wyp)yory - Z,1y,

; A i1 —x%r7 + yoIg E -Xthry + Ay + pyp)yqrs - zgrs,
B1p: -X{rg + YaTg = ~Xahry + (Ay; + 1y,)yrs - zors,
213t ~Yf7 +¥4rg = -X{hry - 21,
2141 ~YoTg +Y1Tg = -Xohry - z51¢,
Ly5t -Zpr7 + 2418 = ~X1hry - (Ayy + Hy,)yTe,
Zi6 ~Zfg +24Tg = -Xphry - (Ayq + [Ly,)ysre.

Step 0 : Simplifications

We begin our extension at this point after first making some

simplifying basis changes. We wish to produce a ring
R(X,Kx) = Clx(,X1,X2,y1:¥2:21,2)/T

with T generated by (with a few sign changes in comparison with the curve

ring):
.3
ri{. X1 - X2¥2 - Xpd1,
ra- X1y2 = X2¥1 - Xpap ,
T3 X1Zy - X9Z1 - Xgby ,
2 2
T4:X1Y1 - Y2 - Xgby ,
o2
1‘5. Xlzl - y222 - X001 s
Ig- Y122 = Y2Z1 - XCyp

2 2
F7: 21 - Ay3 - My iy, - x3h - xod; ,

I
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- 2 2

Tg: 212 — Ay1ys - Hy;y2 - X1Xoh - xody

~ 2 2 3

To: Z) - Ay(ys - Hy3 - X%h - Xod3

| where deg (a;, by, ¢;, d;) = (2, 3, 4, 5) such that the T satisfy syzygies ij

and flj reduces mod xg to ;.

By changing coordinates we can assume that
- 2 2
1 a1 = 0q1X1 + Qypyy H013X0X 1 + Q14X
2 2
a3 = Q1X1 + Op¥1 +03XpX1 + QlpgX),

3

b2 = B2121 + Baozp + Bazxoy1 + Baaxoya + Basxp.
The calculations are in practice somewhat more manageable if we begin by
calculating the determinantal relations so that they lift the syzygies Ziseerlg

to any order. In other words we begin by using the algorithm of Section 6
on the ring

R = C[XI,XZ,yI,Y2,Zl,22]/f,

where I = (rl,...,r6). Having lifted I',..,Tg 0 this ring the calculation to

lift them from R is simplified.

Step 1 : R » R(2)

Taking X, we produce expressions for ay, a, and by which will lift

this single syzygy.

21 : lel - Y22y + Y124 € f

- that is mod XQ»
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3 2.2 3 2
B11xixg + B1ox1x3 + P13x1X2 + B14x1yq + Bysxyxoyq +
2
B1ex1X2ya + B17Xq21 + B1gX1Z - 0p1X1Y2 - CooY1Ys +

2 2
®11X1Y1 + A2y

2 2 2
t1y2 = t1x1y1 + thIZZ - t2X221 + t3X1y2 = t3X1X2y1 +

2 4 3 2
t4X1X2y2 - t4X2y1 + t5X1 - t5X1X2y2 +t6X1X2 = t6x2y2

where t; € €. Equating coefficients we get:
B 2 2
a1 = Oq11X1 + Ol13XgX1 + Ol14X(s
B 2 2
ap = Qp1Xq H0lp3XX 1 + QyyX(,
! 2 /.
by = -0y 1X1y1 + 01Xy + B1y'Xox T + B12'XoX 1%y +
[} 2 ! ’ n 2
| B13%0x2 + B14'%0y1 + Bysxgys + By1"Xgx1 +

n 2 ne.
B12 "xgx2 + B4 xg.

Substituting this back into

21 : lel - Yoap + Y11 € f

and continuing the calculation eventually leaves

2
a1 = 0q1Xq + Qy3XpXq,

2
ap = Op1X1 + Qp3XpXy,
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2 2
l by = -Qq1X1y1 + Gp1Xpy1 + G XX - Ay3xgyy +

2
023X0Y2 + (103X X 1.

We must check that these formulas satisfy

T i x9bq - x%a2+y2a1 el

It is easy to check that this is the case only if ctyy = 0.

Now using these formulas and the remaining syzygies fg,...,ig we

calculate by,c{ and c,.

ff_; . X1C2 - y1b2 +zla2 (= i

gives
3.2 2.3 4 3 2 2
12,1X1X2 * Y2,2X1X2 + V2 3X1X3 + Y3 4X1yq + Y2,5X1X2Y1 + Y2,6X1X2y1 +
2 % 2
12,7X1%2Y2 + Y2,8X1¥1 + Y2,0X1Y1Y2 + Y2,10X1Z1 + Y2,11X1X22¢1 +

2
Y2,12X1%222 = B21¥121 - Booyizp + 044x 21 € L.

Setting the above expression equal to a general degree 5 element of I

and equating coefficients gives
€2 = XC2',

3
by = B23xoy1 + Baaxoys + Basxp.
Continuing in this way with £; and 4 gives us
_ 2
g = 011X + Qy3Xpxq ,

ay = Ux3XpX1,

by = -01X1¥1 - Qly3XgY1 + 023%X(Y2 5

e TS e R LR ettt
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by =0,
Cf = ~Cy1Xq21 — Gr3%0%1 »
Cg = —DEXpey

| The relations corresponding to these formulas are given by the
following matrix and rank condition which means we do not need to check
the remaining determinantal syzygies as they follow automatically from this

form of the equations.

X1 Y2 Y1 Z
rankf = 2 2 2, =t

2 X7 O%qXoX T G3Xg  Yp ~Oo3Xy 2
gives the 6 relations we have thus far calculated though we do not of course
know yet whether the full generality of these equations will lift the

remaining (non-determinantal) syzygies for any values of dy,d, and ds.

In fact the remainder of this calculation goes through as in the
previous cases except for the existence of an obstruction in the final stage.

To make this clear we produce a ring in Proposition (15.2) which extends R

modulo xg but cannot be extended further. This ring exhibits all the

obstructions occuring in the calculation.
O
Proposition (15.2)
Let R = R(C, D) be as in Theorem (9.4,). In the notation of the
extension algorithm, we denote by R®) any ring which is formed from R at
step (n-1). The rings given below (dependent on a, B, v, 8, €) are

extensions of R

RO = Clxg, X15 X2, Y15 ¥2, 21, 25)/(1O), X(6))

where 19 is generated by:
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r(?), (6) given by
| %1 Y2 Y1 2
rank <1,
| ) x% - XX, - Bx02 Y, - ng )
and r(é) (6) r(9 given by
J (’?) izt - (vl pypyys - xth - 8y
- 8X8Y2,
R izi7 - O +uyyDoa -1 - xpxoh - Sxgy

- sxf)(x% - 0XgX1),

(8) rzi - Ay +uy)(y, - vx3)?

xsh  -8x§(x} - oxgx,)

- 8x6(x1 - 0X()Xs.

The above rings R will extend to some R if and only if

oy = -€p.
Proof

R®©) extends R because it is given in the formative presentation of
Remark (9.5).

To extend R(6) to a ring R(7) the following syzygies must lift to

syzygies in R(7:
Zy: —xzr(g) + x1r(g) - zlr(g) + (Ay? + uy1y2)r( + 8x0r(6)
s EXOT(?),

Zi0: —xzr(g) +x41§ - zzr(g) + (Ayq + 1y,)(y, - 'yx%)r(g)

+ 8x8r(?).
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Let r7'= r(‘;)+x8d1,

rg’ = rQ + x§d,,

19 = r(g) + x8d3.

It is easy to see that to lift X9 we must have

X9 1 -x8xpdy + x8xydy - Syx8xy - efx§x; € XSI.
This forces

di=0
and

d2 = 8'Y + 8]3.
To lift £; we need

210 : -X§xod; + x§x1d;3 - SPx§x € ng.
In turn this forces

dy=0
and
ds = 8B.
These conditions imply that the ring R(6) can only be extended to

some R(7) if
Oy = -€B.

O
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CHAPTER 5:

| | Geometrical Consequences of Calculations.

16. Deformations of surfaces and their moduli space.

In this section we draw some geometrical conclusions about
surfaces with p g= 3, K? = 4 and their moduli space. We determine in some
cases whether surfaces of one type deform to surfaces of another. We can
produce explicit families of surfaces {X}ec parametrised by t € € such that
Vt#0, X, is of type A but for t=0, X, is of type B whenever A and B are

connected by an arrow in the following diagram:

II/I\III
4

1,

¥

1y

These are produced using the explicit form of the canonical rings given in
Chapter 4.
Theorem (16.1)

The above hierarchy holds between surfaces with Pg = 3,K2=4.
Proof.
I-1II.

We exhibit an explicit family of surfaces X heT> With X, of type I
when t£0, and of type I when t=0.

e L
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Let
X, = Proj Clxp,x X5,y 1,y 5,2)/1,

where I, is generated by r{,...,rg as follows,

=
—

:s X1Y = X ¥y + 1z - x,f ),

ri: X1z - yq(y+ st(z)) +t(A - X of2),

H
L~

PXpZ = Yoy + lsxg) - t(B +xyf ),

ty+ stg)(z - Xof 1) = x (A - X of5) - x (B +Xx¢f3),

e

-
W~

1 (z - xofl)z -y (A - xofz) -y 1(B +x0f3).
Here A, B, £, 5, fs, 7\.5 are as in Theorem (13.1). This is in fact the
the ideal given by the 4x4 Pfaffians of the matrix (see section 4):

[ 0 t X, X, Y, +AXG ]
-t 0 Yy Yy z
M, = X, -Y, 0 ~Z +x0f1 —A+x0f2
X, Y, Z- xof1 0 B+ xof3
_ yAx2 -z A- x,f2  -B-x5 0 |

When t#0, we can eliminate z from these relations using r;, this gives

z = xof; - (x4, - X,y )/t
Substituting into all the other relations we get that

R
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rz = (xlr; - xzré)/t,
t t t
rs = (yr3 -y 1/t

and r§ and r_% are general degree 4 relations in X(X1:X2Y Y- Thus for t#£0

we have a surface of type I but for t=0 we have the standard ring for a
surface of type II.

In this case the Pfaffian form of the relations for a surface of type 11
lends itself to a quick and easy way of writing down a deformation, however
for surfaces of type III writing down an explicit flat deformation is rather a
large calculation.

I- 10

In Proposition (10.2) we have exhibited a structured deformation for
the canonical curves in this case. However for the surfaces such a
deformation has not yet been found. We therefore refer to [Ho1] Theorem
(2.3) to show that a deformation does exist. We hope to find an explicit
example at a later date.

Il — 101,
Let
Xy = Clxgx 1%y 13y 221:251/ 1,

where [, is generated by r{,...,rg as follows:

r{,...,ré are given by
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J . X1 Yy ) “

rankMt=rank <1.

2
X 8 Yyitoxgtty, 2z,

Here gl = X% +a11X0X1 +a13X%, (111, a13 € q:

r7t, rg, ré are given by

for some symmetric matrix P.

Notice that X, is precisely a surface of type IOI,. Fort# Oitis easy to
see that a series of row and column operations with changes of basis will put
the matrix M, into the form which gives a surface of type III (see (10.1)).

T, -» 1T,

A deformation can be found analogous to the one for curves in the
canonical linear system (see (10.1)). That is, considering the form of the
rings given in Theorem (15.1), the deformation is given by the parameter A.

O
Number of moduli.

There are several possible ways of calculating the dimension of the
moduli spaces. In [Ho1] Horikawa computed the dimension of H1(X,®X). It
is also possible to count the number of parameters needed for the
construction of the curves in [P2 forming the branch locus of the double

cover in cases III, Hlal and III(see section 17). Since we have calculated the
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form of the canonical ring for all these surfaces, we can count the number of
1 parameters on which this construction depencis. We aim to show the table
below. In general the calculations do not give a rigorous proof of the
dimensions of the moduli spaces, but a lower bound. [Ho1] gives 32 for the
dimension of the moduli space for surfaces of type I which then serves as an

upper bound for the other types.

Type of surface Number of moduli
I 32
il 31
I 31
4 30
I, 29

Type 1
X = Proj (IZ[xO,xl,xz,y1,y2]/<Q1,Q2>

where Q, and Q, are generic degree 4 polynomials. We must count the
number of parameters on which Q, and Q, depend and take into account that
we are only interested in the subvariety of the weighted projective space
[P(13, 22) which they define. We do not wish to count surfaces which only
differ from each other by an automorphism of [P( 13,22).

The total number of degree 4 monomials in X0» X15 X2, Y1, Y2 = 30

Number of parameters for Q=30

We can divide Q; by any nonzero coefficient and reduce it modulo
Q,, therefore we need only count 28 parameters. In the same way we count
28 for Q,.

Let A = group of automorphisms of P(13,22). Then we can check
that A acts faithfully on {(Q,, Q,)} and rank A = 24.
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Therefore the number of moduli = 28 + 28 - 24 = 32.

Type I
X = Proj ¢[x0,x1,x2,y1,y2,z]/l, where I is generated by the 4x4

Pfaffians of the following matrix:

i A
where the 1, are generic degree 1, q; are generic degree 2, c; are generic

degree 3 and the f; are generic degree 4. By exactly analogy to the previous
calculation we compute the number of variables on which the matrix
depends and take into account that we are only interested in the subvariety of
P(13, 22, 3) which they define. We then consider the number of
automorphisms of the ambient weighted projective space and whether it acts
faithfully on the set of ideals.

Number of parameters which entries in matrix depend upon = 130

Taking each relation in turn we are allowed to divide through by a
nonzero coefficient and reduce modulo the linearly independent relations of
the same degree. A short calculation shows that this allows us to take off 58.

Rank of group of automorphisms of [P[13, 22, 3] = 41

Assuming that the group acts faithfully on our set of ideals, the
number of moduli = 130 - 58 - 41 = 31.
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Type III
By Remark (9.5) we have that
X = Prqu:[XO;xl 9X23y 1,}’ 2>Z 1’22]/1’
| where I is generated by
94 9 ¢

rank <1,
L a3 q ¢

and

r:4A1 + 1Ay + QA5+ cAy

rg: LA{ +q3A, +q4A5 + CrAy
which is identically equal (in Clxg.x1:X9,Y 15Y 2,2 1:Z,]) to

rg':1;B; +qB, +q,B3+¢B,

rg:1,By +q3B, +q,B; +¢,B,
where degree I, = 1, degree q; = 2, degree c;, Ay, B, = 3, degree
Aj.B»,A3B3 = 4 and degree A{,B; =5. All the polynomials can be general
under the restriction imposed by rg =13,

Now we count the number of parameters required to construct the
matrix and Ay,...,A4 and then the freedom of choice in forming Bi,...B4.

Number of parameters required for 14,91, qp, ¢4 = 37,

Number of parameters required for 1,, q3, q4, ¢5 = 37,

Number of parameters required for Ay, Ay =156,

The expression 1By +q{B, + q,B5 + c;B, has 193 separate
monomials. Thus the freedom of choice for By,...,.B4 = 193 - number of

degree 6 monomials
=193 - 115
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= 78.

Therefore we ha\}e, so far, 156 + 78 + 37 + 37 = 308 parameters.

As before, taking each relation in turn we can divide through by a
nonzero coefficient and then reduce modulo the linearly independent
relations of the same degree. This means that we can take off

2+2+8+8+22+22+51+51+51=217.
Rank of group of automorphisms of [P(13,22,32) = 60.

Assuming that the group acts faithfully, the total number of
parameters on which our construction depends is 308 - 217 - 60 = 31 as
required.

Types IIL, and IIT,,

These follow in the same way as case III.

17. The 1-canonical map.

In [Ho1] Horikawa shows that surfaces of type III and III, are
birationally equivalent to double covers of [P2, and he describes the branch
locus in each case. We show the same result by an explicit calculation of the
branch locus and do the case [T, in addition (see Introduction).

Theorem (17.1).

Let X be a surface of type III, III, or II,. Then X is

birationally equivalent to a double cover of [P2 with branch curve as follows:
Type III. A degree 12 curve, made up of a degree 10 curve f 10 and
two lines 14 : (x1 =0),1,: (x2 = 0). f;( has two triple points (possibly

infinitely near) on each 1; and a quadruple point at 1;Nl,.
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% b

Type IIl,. A degree 10 curve, having two triple tacnodes (possibly

infinitely near) and a quadruple point all lying on a line.

Type III,. A degree 10 curve, made up of a degree 9 curve fg and a
line1: (x = 0). fg has 3 triple points lying on 1 as in the diagram below.

Proof
In each case the 1-canonical map gives a double cover of [P 2
and we can recover the branch locus from the canonical ring by completing
the square. We rewrite the relation ¥, as
T7:2'2-hg
and eliminate the variables y, y,, z,. By making these eliminations we find

the generators and relations of the integral closure of ¢[x0,x1,x2] in R(X,
Ky).
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| We consider each case in turn.

Type IIL

Refering to Theorem (14.1) we see that we can write

- 1 1 1 3 1 2
f7:(Z1 = 5812%0%1Y1 - 589%082 = Fh1s%] = Fh16X Xz - —?»18X1X2-

2
—513XOX +—513(111XOX1 —823X Xl)

1 1
7\, 7»16x1x + 27"128"%7“21 + 25123)%)(‘1" +

2 4 ’ ’ ’
23XOX% + XIAI + y1A2 - g2A3 s

N
o
w
Ay
—_ N
>4
(=
P4
ol W]
+
A&—-

where
2 2
81 = X7 — (q1X0Xq —- Q43X G,

2 2
82 = X3 — Qa1XpXp — 03X 1y

and

Ay’ =x1(x 1Py +y(P1y+goP13+21Pyy),

Ay’ = y1(xX1P12+y 1Py + goP23 +21Pyy),

Az’ = g(x1P13+y1Pp3 +8oP33 +21P3y)
after the removal of all monomials involving z; and z;. Now we use rq and
Iy to write yy = X1g4/X; and y, = x,8,/x respectively. Substituting this
into the above and clearing the denominator gives

17" X1Xp(x224 - )2 = fyo,

for some degree 10 polynomial f 10(X-X 1,X2) and some g derived from the

expression for T, above.
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By multiplying both sides by x {x, we produce the required equation,
1 r;": (z)2 = fin
where f15 = X{X,f .
Consider the intersection of the curve fy( with the two lines 1i: (xq =

0) and 1,: (x9 = 0). We find that

Iy 10 ={[xgXxpl€ P2Ix; = 0, -pxags =01,

and

Thus £y intersects 11 and 1, as stated in the theorem.

Type III,
Working as in the previous case we find that we can write
' 4 2
Ig . X2(22 -g)= flO’
which we can write down as
1'9" : (Z’)2 = flO
where
fIO = (xlgl - (123X(2)'X2)2(}\.X%g1 = }»a23X3X1X2 + UX 181Xy + 88')((2))(%) +
X (other terms)

Considering the line 1 : (x, = 0) we find that it meets fi0 = 0 where —Kx?g:f

= 0. This shows that there is a quadruple point at [1:0:0] and triple points at

[1:P:0] and [1:Q:0] where P and Q are the roots of x% - 041x1 - 043 = 0.

The tangent lines at [1:P:0] are given by
P}»(XI(P = Q)P - a23X2) 3= 0.
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Similarly at [1:Q:0] the tangent lines are given by
QMx1(Q - P)Q - aty3%,) 3 = 0.
This proves the theorem in this case.
Type 11T},
Working as in case I, we now have A = 0. Thus r9 becomes
19" : (z')2 = x,fy

where

fo = (x181 - a23x(2)x2)2( Ux(gq + 68’x8x2) + Xp(other terms).

Considering the line (x, = 0) we find that it meets fg = 0 where ux?g? = 0.

This shows that there are triple points at [1:0:0], [1:P:0] and [1:Q:0] where P

and Q are the roots of x% - 0y1X{ - 043 = 0. The tangent lines at [1:P:0] are

given by

(Px{(P - Q) - ap3x,) 2(}1Px1(P - Q) +dg%y) =0,
and at [1:Q:0] by

(Qx4(Q - P) - aty3%,) 2(uQx4(Q - P) + dg%,y) = 0.
This proves the theorem in this case.

O

Another consequence of our calculations is that it is possible to find
specific curves on the surfaces. Surfaces of type II, for example, can be

shown to contain an elliptic curve which can be contracted to an elliptic

Gorenstein singularity of type k=1, [R1]. We show this in the next theorem.
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Theorem (17.2)
Let X be a surface of type II. Then there is an elliptic curve

E < X and a numerical quintic X with a single elliptic Gorenstein singularity

P of type k = 1 and a contraction mapm: X - X such that n(E) = P.
Proof

Refer to Theorem (13.1) for our description of the canonical

ring of X. Consider the subvariety of X given by

Xy =Xp=y1+h5x5=0.
Then ry,...,r4 are all trivially satisfied by these conditions and I5 gives the

following equation,

I'g: }\.SX%(B + ng + q2X(2)YZ -A 5q4X8) +

¥2(-A - t 10%0Z = V1X§ - 4 10%0¥2) - 2(-2 +upx ).
This is the equation of a degree 6 curve, E in P(1,2,3). It is easy to

check that it is nonsingular and hence elliptic. The base point of the

canonical system is given by the equation z2 = ly%. Of course, this point

lies on E and K| goes through E only at this single point and is trivial off it.

This is enough to prove the theorem (see [R1]).

O
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