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The incompressible Navier-Stokes equations

∂u

∂t
− ν∆u + (u · ∇)u +∇p = 0

and

∇ · u = 0

with initial condition u(x,0) = u0(x).

“...it is interesting to consider another
boundary conidtion which has no phys-
ical meaning” (Temam, 1985):

Periodic boundary conditions on Q = [0, L]3:

u(x + Lej, t) = u(x, t).

Zero total momentum:∫
Q

udx = 0.



Kinetic energy:

‖u‖2 :=
∫
Q
|u(x)|2 dx.

H =
{
u : ∇ · u = 0 and ‖u‖2 < +∞

}
.

H ⊂ [L2(Q)]3.

Enstrophy:∫
Q
|curlu(x)|2 dx = ‖Du‖2.

V =
{
u : ∇ · u = 0, and ‖Du‖2 < +∞

}
.

V ⊂ [H1(Q)]3.

We will also use

H2 = {u : ‖∆u‖2 < +∞}.



Fourier series:

for u:

u(x, t) =
∑

k∈Ż3

û(k, t)e2πik·x/L

(Ż3 = Z3 \ (0,0,0)) with

û(k, t) = û(−k, t).

We have the Poincaré inequality

‖u‖2 ≤ λ−1
1 ‖Du‖2

and

‖Du‖2 ≤ λ−1
1 ‖∆u‖2

with λ1 = (2π/L)2.

for the pressure:

p(x, t) =
∑

k∈Ż3

p̂(k, t)e2πik·x/L



The NSE in Fourier form:

d

dt
û(k, t) + ν|k|2û(k, t) + ikp̂(k, t)

+i
∑

k′+k′′=k

[û(k′, t) · k′′]û(k′′, t) = 0

and

k · û(k, t) = 0 and û(k,0) = û0(k).

Eliminating the pressure gives

d

dt
û(k, t) + ν|k|2û(k, t)

+

(
I−

kkT

|k|2

)
i

∑
k′+k′′=k

[û(k′, t) · k′′]û(k′′, t)

= 0

or
∂u

∂t
− ν∆u + Π[(u · ∇)u] = 0.

where (Πφ)̂ (k) = (I− (kkT/|k|2))φ̂(k).



Truncate the Fourier series expansion of u:

uN(x, t) =
∑

|k|≤N

ûN(k, t)e2πik·x/L

to obtain the Galerkin approximation:

d

dt
ûN(k, t) + ν|k|2ûN(k, t)

+

(
I−

kkT

|k|2

)
i

∑
k′+k′′=k
|k′|,|k′′|≤N

[ûN(k′, t) · k′′]ûN(k′′, t)

= 0.

This finite-dimensional system of ODEs has a

unique solution

{ûN(k, t)}|k|≤|N |

that exists for all t ≥ 0, and

‖uN(t)‖2 + ν
∫ t

0
‖DuN(s)‖2 ds ≤ ‖u(0)‖2.



The Bolzano-Weierstrass Theorem

Given a bounded sequence of real numbers

|aj| ≤ M for all j = 1,2, . . .

one can find a subsequence αn = ajn

(jn are integers such that jn+1 > jn)

such that

αn → a∗, where |a∗| ≤ M.



Given a sequence of functions uN with∫
Q
|uN(x)|2 dx = ‖uN‖2 ≤ M2

there exists a subsequence uNj
such that every

Fourier coefficient converges:

uNj
(k) → u(k)

for every k as j →∞.

But for the sequence

uN(x) = e2πi(Ne1)·x/L = e2Nπix/L

we have

uN(k) → 0 as N →∞

for every k.



Weak convergence of uN to u,

uN ⇀ u :

for every v ∈ H,∫
Q

uN(x) · v(x) dx →
∫
Q

u(x) · v(x) dx.

or

the Fourier coefficients of uN converge to those

of u and the kinetic energy of {uN} is uniformly

bounded.

Inequalities are preserved:

un ⇀ u ⇒ ‖u‖ ≤ lim inf
n→∞ ‖un‖.

but equalities are not (in general).



Estimates uniform in N :

‖uN(t)‖2 + ν
∫ t

0
‖DuN(s)‖2 ds ≤ ‖u(0)‖2.

With

bN(k) =

(
I−

kkT

|k|2

) ∑
k′+k′′=k
|k′|,|k′′|≤N

[ûN(k′, t)·k′′]ûN(k′′, t)

we have only

|b̂N(k)| ≤ ‖uN‖‖DuN‖.

So integrate in time:

û(k, t) = û(k, t0)− ν
∫ t

t0
|k|2û(k, s) ds

−
∫ t

t0

(
I−

kkT

|k|2

)
i

∑
k′+k′′=k

[û(k′, s) · k′′]û(k′′, s) ds.



Global existence of weak solutions:

A weak solution is a function u(x, t), with

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V )

that satisfies the time integrated equations for

each individual Fourier component.

Theorem. There exists at least one weak so-

lution such that the energy inequality

‖u(t)‖2 + ν
∫ t

0
‖Du(s)‖2 ds ≤ ‖u0‖2 (1)

holds. Furthermore (u(t), φ) is continuous for

every φ ∈ H.

Given an initial condition with finite kinetic en-

ergy, there exists at least one solution whose

kinetic energy remains finite, and its Fourier

coefficients evolve continuously in time.



Local existence of strong solutions:∣∣∣∣∫ [(u · ∇)v] ·w dx
∣∣∣∣ ≤ c2‖Du‖‖Dv‖1/2‖∆v‖1/2‖w‖.

d

dt
‖Du‖2 + ν‖∆u‖2 ≤

c2
ν3
‖Du‖6

and so

‖Du(t)‖2 ≤
‖Du0‖2√

1− 2kt‖Du0‖4

where k = c2/ν3.

Theorem. Given u0 with ‖Du0‖ < ∞ there
exists a time T > 0 such that

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2)

and the solution is unique on [0, T ).

Given an initial condition with finite enstro-
phy, there exists a solution whose enstrophy
remains finite for some (possible small) time
interval, and while this is the case there are no
other solutions.



Uniqueness of strong solutions:

Let w = u− v, so that

∂w

∂t
− ν∆w + Π(w · ∇)u + Π(v · ∇)w = 0.

Take the inner product with w, and integrate:

1

2

d

dt
‖w‖2 + ν‖Dw‖2 = −

∫
[(w · ∇)u] ·w dx

It follows that

d

dt
‖w‖2 + ν‖Dw‖2 ≤

k2

ν
‖Du‖‖∆u‖‖w‖2.

Ignoring the ν‖Dw‖2 term gives

‖w(t)‖2 ≤ exp

(
k2

ν

∫ t

0
‖Du(s)‖‖∆u(s)‖ds

)
‖w(0)‖2

and∫ t

0
‖Du(s)‖‖∆u(s)‖ds

≤
(∫ t

0
‖Du(s)‖2

)1/2 (∫ t

0
‖∆u(s)‖2

)1/2
.



Integral bounds and continuity

‖Dsu‖2 =
∑
k

|k|2s|û(k)|2 < ∞

⇓

u(x) =
∑
k

û(k)e2πik·x/L

is continuous, provided that s > 3/2.

Similarly if

‖Dsu‖2 =
∑
k

|k|2s|û(k)|2 < ∞

for s > k + 3/2 then all derivatives of u up to

order k are continuous.

If ‖Dsu‖2 < +∞ for every s then u is smooth.

If ‖Dsu‖2 ≤ Ms!b−s then u is analytic.



If u is a strong solution then u is analytic for
all t > 0 (Foias & Temam, 1989).

Write ‖u‖τ = ‖eτ |∇|u‖ where

eτ |∇|u =
∑
k

eτ |k|û(k)e2πik·x/L.

‖u‖2τ ≤ M ⇒ ‖Dsu‖2 ≤
Ms!

(2τ)s
.

∣∣∣∣∫ [(u · ∇]v) · e2τ |∇|∆w
∣∣∣∣

≤ c‖Du‖1/2
τ ‖∆u‖1/2

τ ‖Dv‖τ‖∆w‖τ .

Multiplying the equation by −e2t|∇|∆u gives

d

dt
‖Du‖2t + ν‖∆u‖2t ≤

2

ν
‖Du‖2t +

c

ν3
‖Du‖6t .

Which yields

‖et|∇|Du‖2 ≤
‖Du(0)‖√

1− ct‖Du(0)‖4/ν
.



From
d

dt
‖Du‖2 + ν‖∆u‖2 ≤

c2
ν3
‖Du‖6

and

‖Du(t)‖2 ≤
‖Du0‖2√

1− 2kt‖Du0‖4

we have...

Rate of blowup:

If ‖Du(t)‖ → ∞ as t → T then

‖Du(t)‖2 ≥
1√

2k(T − t)
.

Global existence for small initial data:

Theorem. If u0 satisfies

‖Du0‖2 ≤ c
−1/2
2 ν2λ

1/2
1

then there is a unique strong solution which
exists for all time.



The set of singular times I

(Leray, 1934)

Define

Σ = {t ∈ R+ : ‖Du(t)‖ = ∞}.

Then

ν
∫ ∞
0

‖Du(t)‖2 dt ≤ ‖u0‖2

implies that µ(Σ) = 0.

Furthermore

µ
(
t ∈ R+ : ν‖Du(s)‖2 ≥ α‖u0‖2

)
≤ α−1;

in particular

µ(t ∈ R+ : ‖Du(s)‖2 > c
−1/2
2 ν2λ

1/2
1 )

≤
c
1/2
2

ν3λ
1/2
1

‖u0‖2 := T ∗.

Every weak solution is eventually strong.



Hausdorff measure & Hausdorff dimension

Define

µ(X, d, ε)

= inf

{∑
i

rd
i : ri ≤ ε and X ⊆ ∪iB(xi, ri)

}
,

where the B(xi, ri) are balls with radius ri.

The d-dimensional Hausdorff measure of X,

H d(X), is given by

H d(X) = lim
ε→0

µ(X, d, ε).



The set of singular times II

(Leray, 1934; Scheffer, 1976)

We can write

[0,∞) \Σ =
∞⋃

q=1

Jq ∪ (T,∞),

where Jq = (lq, rq) and T ≤ T ∗.

For t ∈ Jq we have (with a = ν3/2c2)

‖Du(t)‖2 ≥ a(rq − t)−1/2.

Then ∑
q
|Jq|1/2 =

∑
q

(rq − lq)
1/2 > +∞.

A simple argument gives

H 1/2(Σ) = 0.



The set of space-time singularities

(Cafarelli, Kohn, & Nirenberg, 1982)

(x, t) is regular if u(x, t) is essentially bounded

in a neighbourhood of (x, t). Define

Qr(x, t) = {(y, s) : |y−x| < r, t−r2 < s < t+r2}

Theorem. There exists an ε > 0 such that if

(u, p) is a suitable weak solution and

lim sup
r→0

1

r

∫
Qr(x,t)

|∇u(x, t)|2 dxdt ≤ ε

then (x, t) is a regular point.

It follows that if

S = {(x, t) : (x, t) is not regular}.

then

H 1(S) = 0.


