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The incompressible Navier-Stokes equations

2—1:—1/Au—|—(u-V)u—|—Vp=O
and
V-u=20

with initial condition u(x,0) = ug(x).

“...it is interesting to consider another
boundary conidtion which has no phys-
ical meaning” (Temam, 1985):

Periodic boundary conditions on Q = [0, L]3:

u(x + Lej, t) = u(x,1t).

Zero total momentum:

/ udx = 0.
Q



Kinetic energy:

Julf? := /Q|u<x>|2dx.

H:{u: V-u=0 and ||u|\2<—|—oo}.
H C [L*(Q)]°.

Enstrophy:

/Q curlu(x)[2 dx = || Dul|2.

V={u: V.u=0, and |[|Dul]®<+oo}.
vV c [HY(Q).

We will also use

H? ={u: ||Au|]® < 4oo}.



Fourier series:

for u:
u(x,t) = > 1k, t)e2mikx/L
keZ3
(723 =173\ (0,0,0)) with
u(k,t) = a(-k,t).

We have the Poincaré inequality
2 —1 2
[ul[* < Ay || Dul|
and
|Dul|? < AT Aul?
with A\; = (2n/L)%.

for the pressure:

p(x,t) = 3 p(k,t)e?mkx/L
keZ3



The NSE in Fourier form:

%ﬁ(k, t) + vik|*t(k, t) + ikp(k, t)

+i ) [ak,¢) - kK"u”,t) =0
k/+k"=k
and

k-u(k,t) =0 and u(k,0) = ug(k).

Eliminating the pressure gives

d
400k 1) + vlk|?adk 1)

kk' . M (LI
—|—<I——2>| > [ak,t) - k"ak”,¢)
K%/ o=k
=0
or
g—ltl —vAu+ MN[(u-V)u] = 0.

where (M) (k) = (I — (kk7 /|K[2))d(K).



Truncate the Fourier series expansion of u:

uy(x,t) = Yty (ke X/t
k|<N

to obtain the Galerkin approximation:
d

&AN(k, t) + v|k|[%iy(k, t)
kk1 . / /17 ~ 7
+ I_F l Z [uN(kat)k]uN(k7t)
K%)=k
k'], |k"|[<N
= 0.

T his finite-dimensional system of ODEs has a
unique solution

{un(k, 0}k <
that exists for all ¢t > 0, and

fux @I+ [ 1Dy ()2 ds < [u(0)]%



T he Bolzano-Weierstrass T heorem

Given a bounded sequence of real numbers
la;| < M for all j=1,2,...

one can find a subsequence oy = a;,
(jn are integers such that j,41 > jn)

such that

anp — a”, where la™| < M.



Given a sequence of functions uy with

J, Pan GO dx = uy? < M2

there exists a subsequence un; such that every
Fourier coefficient converges:

uy, (k) — u(k)

for every k as j — oo.

But for the sequence

uy(x) = o2mi(Nep)-x/L _ o2Nmiz/L

we have
uy(k) — 0 as N — oo

for every k.



Weak convergence of uy to u,

uy — u.

for every v € H,

/Q uy(z) - vix)dx — /Q u(x) - v(x) dx.

or

the Fourier coefficients of upy converge to those
of u and the kinetic energy of {uy} is uniformly
bounded.

Inequalities are preserved:

u, — u = |u|| < liminf ||uy]|.
n—aoeo

but equalities are not (in general).



Estimates uniform in N:

fan @I+ [ 1Dy ()] ds < (o)

With
kkT - / 1~ /!
byk) = |1- % > [un(, )k lan (k" 1)
|k| k/_I_k//:k
K|, |K"|<N

we have only

by ()| < [luyll[[ Dupll.

So integrate in time:

t
fi(k, ¢) = t(k, o) — ,,/ k[2d(k, s) ds
to

T
_/t:) (I‘&>i > [a(k,s) - K"la(k”, s) ds.

|k|2 k/+k"=k



Global existence of weak solutions:

A weak solution is a function u(x,t), with

ue L¥(0,T; H) N L%(0,T; V)

that satisfies the time integrated equations for
each individual Fourier component.

T heorem. There exists at least one weak so-
Ilution such that the energy inequality

2 ' 2 2
[u(IP +v [ D) ds < Juol® (1)

holds. Furthermore (u(t), ¢) is continuous for
every ¢ € H.

Given an initial condition with finite kinetic en-
ergy, there exists at least one solution whose
Kinetic energy remains finite, and its Fourier
coefficients evolve continuously in time.



Local existence of strong solutions:

[l ¥)v] - wx]| < col| Dul[ DV AV w,

d 2 > _ €D 6
&HDUH + v||Aul|| SﬁHDUH

and so
| Dug||?

V1 — 2kt| Dug||*

|Du(t)|? <

where k = ¢ /13

Theorem. Given ug with ||Dug|| < oo there
exists a time T' > 0 such that

ue L>(0,T;V)N L?(0,T; H?)
and the solution is unique on [0,T).

Given an initial condition with finite enstro-
phy, there exists a solution whose enstrophy
remains finite for some (possible small) time
interval, and while this is the case there are no
other solutions.



Unigqueness of strong solutions:

Let w = u — v, so that

OwW

5 vAw + M(w-V)u4MN(v-VvV)w = 0.
Take the inner product with w, and integrate:

1d

2 2 _ _
S lwlP + VDW= = [[(w- V)u] - wdx

It follows that

kQ

d 2 2 2
&HWH + v||Dw]| ||D11||||AUH||WH

Ignoring the v||Dw||? term gives

2
I < e (% [ IDuCs) i auc)] ds w12
and

[ ipu(liaus) ds

< ([ 1o 1R) " ([ 1aue)P)

1/2




Integral bounds and continuity

| D*ul|? = [k[**[a(k)|* < oo
k

U

u(x) = Z ﬁ(k)GQﬂ'ik-X/L
k

is continuous, provided that s > 3/2.

Similarly if

|D%u||? = Y |k[%|ak)|? < oo
k

for s > k4 3/2 then all derivatives of u up to
order k are continuous.

If ||D%ul|? < 400 for every s then u is smooth.

If |D%ul|? < Ms!b—% then u is analytic.



If u is a strong solution then u is analytic for
all t > 0 (Foias & Temam, 1989).

Write ||ul|r = ||e7!VIu|| where

eIVl = Z eT’k|ﬁ(k)e27Tik-X/L.
k
M s!

2 S 2
ullzs < M = D ullc < i

‘/[(u V) - eQTMAw‘

1/2 1/2
< c||Dul|¥ 3| au|lF 2| Dy || AWl

Multiplying the equation by —e2tlVlAu gives

d 5 > _ 2 2, ¢
&HDth + v||Aullf < ;”Dth —|—;||Du||?.

Which vyields
| Du(0)]|

V1= et Du(o)|*/v

1etVIpuy||? <



From
d C
—||Dul]? 4 v||Au||? < —£||Du]|®
dt v

and

| Dug||?

|Du(t)||* <
V1 — 2kt| Dug||*

we have...

Rate of blowup:

If ||Du(t)|| — oo as t — T then
1

D 2> .
| Du(t)|] \/Qk(T —

Global existence for small initial data:

Theorem. If ug satisfies

2 —-1/2 2,1/2
| Dug|? < 5 M/202A)

then there is a unique strong solution which
exists for all time.



The set of singular times 1

(Leray, 1934)

Define
> ={teRT: |Du(t)| = oo}.
T hen
D 24t < 2
v [ IDu®|P dt < fuo|

implies that u(X) = 0.

Furthermore

u(t €RT 2 v[Du(s)||? 2 offugll?) <ot
in particular
u(t € RT . || Du(s)|? > ¢y /22A3)

1/2

c 2 .
< 21/2||110|| =T

Every weak solution is eventually strong.



Hausdorff measure & Hausdorff dimension

Define
pn(X,d, e)
= inf{zfr? ri<eand X C UiB(wi,Ti)},
i

where the B(xz;,r;) are balls with radius r;.

The d-dimensional Hausdorff measure of X,
AU X)), is given by

HUX) = lim (X, d, €).



The set of singular times II

(Leray, 1934; Scheffer, 1976)

We can write

[0,00)\Z = | J JqU (T, 0),
q=1

For t € J; we have (with a = v3/2¢5)

IDu(t)|]? > a(rg —t)~1/2.

T hen
> |Jq|1/2 = (rq— lq)1/2 > +-00.
q q

A simple argument gives

#1237y = o.



The set of space-time singularities

(Cafarelli, Kohn, & Nirenberg, 1982)

(x,t) is regular if u(x,t) is essentially bounded
in a neighbourhood of (x,t). Define

Qr(x,t) = {(y,s) | |ly—x| <r, t—r® < s < t+r?}

Theorem. There exists an e > 0 such that if
(u,p) is a suitable weak solution and

. 1 2
limsup — |IVu(x,t)|cdxdt < e
r—0 T QT(Xat)

then (x,t) is a regular point.

It follows that if

S ={(x,t): (x,t) is not regular}.
then
#1(S) =o.



