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Talk structure:
• Part 1: Conceptual

◦ Introduction: streaks
◦ Two conceptual frameworks for streaky

structure origin:
which is true?

◦ Numerical experiments
◦ Predictive force of the new framework
◦ Implications

• Part 2: How to make predictions within the
new framework?

◦ Generalised optimal perturbations
◦ Simplified versions
◦ Difficulties

• Part 3: There is work to do!



Part 1

Geometry and the mean profile
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Visualisation plane
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Velocity streaks in a turbulent flow at y+ = 5.



Lift-up by longitudinal vortices
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Lift-up by longitudinal vortices
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Lift-up by longitudinal vortices
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Lift-up by hairpin vortices
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Lift-up by random wall-normal motions
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Action of shear
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Diffusion effect
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? which is true ?

Lift-up by hairpin vortices
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Diffusion effect
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Streaks ⇐ organised vortices Streaks ⇐ properties of

lift-up of the mean profile +

mean shear + diffusion



Toy model:

ũ = Lṽ, ṽ = N [ũ]

ũ(z) =
∑

n un exp(inz), ṽ(z) =
∑

n vn exp(inz).

L is such that

un = λnvn

The solution has a clear pattern of ũ(z): |un| has a

pronounced maximum at certain n = k.

Why? There are two simple explanations.



un = λnvn |un| =max at n = k because:

Lift-up by hairpin vortices
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Old concept: New concept:
Diffusion effect
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|vn| =max at n = k |λn| =max at n = k

n

|un|
|vn|
|λn|

n

|un|
|vn|
|λn|

Structure of ũ ⇐ structure

of ṽ.

Structure of ũ ⇐ structure-

forming properties of L.

? which is true ?



Numerical experiment-I

∂c

∂t
+ ~u · ∇c = S(y) +

1

Re
∇2c, ∇ · ~u = 0, 〈c〉 = U(y)

Velocity streaks in turbulent

flow.

∂~u

∂t
+~u·∇~u = −∇p+

1

Re
∇2~u

Scalar streaks in the flow

with ~u = ~U(y) + ∇φ, where

φ(t, x, y, z) is random and

isotropic in planes parallel to

the wall.



Numerical experiment-II: two scalars in the same flow
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Predictive tool - the code

Input:

Gradient profile dU
dy

or dC
dy

Reynolds number Re

Wall-normal Reynolds stress 〈v̂2〉(y)

Transverse Reynolds stress 〈ŵ2〉(y)

Visualisation plane coordinate yVP

⇓

The code

⇓

Output: streak spacing l and some other parameters



Predictive ability of the new framework – 1
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Predictive ability of the new framework – 2
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Predictive ability of the new framework – 3
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Implications

• New conceptual framework is easier to work in, as it is

linear. Many possibilities are now open:

- Predicting structures.

- Riblets.

- Active control strategies.

• Other theories (RDT, Landhal, Carpenter) based on

linearised Navier-Stokes equations receive a new

interpretation.

• Turbulence structure regeneration cycle/chain.

– Let us change the conceptual framework!



Part 2. How to make predictions within the second

conceptual framework? The idea:

ũ = Lṽ, ṽ = N [ũ]. un = λnvn

If |un| =max at n = k because |λn| =max at

n = kλ ≈ k then k can be found approximately

without studying the nonlinear operator N.

The optimal perturbation idea.

Let ||w̃(z)|| =
∑

n w̃2
n
.

|| Lw̃ || → max, ||w̃|| = 1 ⇒ w̃ = ṽopt(z) = exp(ikλz),

⇒ k ≈ kλ.



Apply the same idea to the Navier-Stokes equations:

~u′ = ~u − ~U and p′ = p − P where ~U and P are the mean

velocity and pressure distributions (assumed steady).

Rewrite full NSE as

linear mechanism (∼ L−1 in the model)
︷ ︸︸ ︷

∂~u′

∂t
+ U · ∇~u′ + ~u′ · ∇U + ∇p′ −

1

Re
∇2~u′ = ~F ,

~F =

(∼ N in the model)
︷ ︸︸ ︷

−~u′ · ∇~u′ − ~U · ∇~U − ∇P −
1

Re
∇2 ~U,

∇~u′ = 0

Maximise ||~u′|| over ~F , ||~F || = 1.

Simplification: consider ~F = δ(t) ~u0(~x) only.



In 1993 Butler and Farrell solved the so-called optimal

perturbation problem for a flow in a plane channel:

∂~u′

∂t
+ U · ∇~u′ + ~u′ · ∇U + ∇p′ −

1

Re
∇2~u′ = 0

∇~u′ = 0, ~u′
|t=0 = ~u′

0

Find ~u′
0 such that ||~u′

0|| = 1 and the max
t>0

||~u′|| is the greatest

possible.

This gave streaks with spacing l+ = 540. Assuming that the

perturbation exists only for t < te = q2/ǫ = 〈uiui〉
〈νui,jui,j〉

gave

l+ ≈ 100 in agreement with near-wall measurements.

Butler and Farrell did not explain why optimal

perturbations were expected to give predictions about the

developed turbulent flow.



Toy model extended: ũ = Lṽ, ṽ = N [ũ, c̃], c̃ = Mṽ.

ũn = λnṽn c̃n = µnṽn

λn =max for n = k µn =max for n = l 6= k.

|| Lw̃ || →max, ||w̃|| = 1 ⇒ w̃ = ṽopt(z) = exp(ikz), ⇒ k.

||Mw̃|| →max, ||w̃|| = 1 ⇒ w̃ = ṽc
opt(z) = exp(ilz), ⇒ l.

ṽ ≈/ ṽopt(z) and ṽ ≈/ ṽc
opt(z)

1. Optimal perturbation is not a model of real flow ⇒ no

reason to limit its lifetime.

2. Maximising ||u = Lw̃|| does not give the dominant

wavenumber of c̃ and vice versa ⇒ choose your norms

properly.



GOP: approximate simplified solution – 1.

||u′||2yVP
= max

t

∫

VP

u′2dx dz → max, (or ||c′||2yVP
→max),

||~u0||i =

∫ (
v2
0

〈v̂2〉
+

w2
0

〈ŵ2〉

)

dx dy dz = 1

(*)

VP is the visualisation plane at y = yV P from the wall, 〈v̂2〉(y) and
〈ŵ2〉(y) are the normal Reynolds stresses, and u′ and c′ satisfy

∂c′

∂t
+ v′ dC

dy
− 1

Re
∇2c′ = 0

∂u′

∂t
+ v′ dU

dy
− 1

Re
∇2u′ = 0

∂v′

∂t
+

∂p′

∂y
− 1

Re
∇2v′ = δ(t)v0(y, z)

∂w′

∂t
+

∂p′

∂z
− 1

Re
∇2w′ = δ(t)w0(y, z)

∂v′

∂y
+ ∂w′

∂z
= 0



GOP: approximate simplified solution – 2.

In Fourier space u′ = iuβeiβz, v′ = ivβeiβz and w′ = wβeiβz.

uβ(t, y)=

∫

(Gv(t, β, y, η)vβ0(η)+Gw(t, β, y, η)wβ0(η)) dη (∗∗)

〈u2
β〉 ∼

∫ (

G2
v(t, β, y, η)〈v2

β(η)〉 + G2
w(t, β, y, η)〈w2

β(η)〉
)

dη.

∫
(
G2

v(t, β, y, η)〈v̂2(η)〉 + G2
w(t, β, y, η)〈ŵ2(η)〉

)
dη → max

is equivalent to solving (*) using (**) but without continuity

imposed on v, w.



Numerical experiment-I revisited

∂c

∂t
+ ~u · ∇c = S(y) +

1

Re
∇2c, ∇ · ~u = 0, 〈c〉 = U(y)

Velocity streaks in turbulent

flow.

∂~u

∂t
+~u·∇~u = −∇p+

1

Re
∇2~u

Scalar streaks in the flow

with ~u = ~U(y) + ∇φ, where

φ(t, x, y, z) is random and

isotropic in planes parallel to

the wall.



Simplified GOP (with J.Weller).

∂c′

∂t
+ v′ dC

dy
−

1

Re
∇2c′ = 0 ,

∂v′

∂y
+

∂w′

∂z
= 0,

v′, w′, c′ ∼ exp(iωt)

||c′||yVP
→ max,

||v′||i =

∫ (
v′2

〈v̂2〉
+

w′2

〈ŵ2〉

)

dx dy dz dt = 1



Two GOPs results
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GOP: approximate simplified solution – 2 revisited.

In Fourier space u′ = iuβeiβz, v′ = ivβeiβz and w′ = wβeiβz.

uβ(t, y)=

∫

(Gv(t, β, y, η)vβ0(η)+Gw(t, β, y, η)wβ0(η)) dη (∗∗)

〈u2
β〉 ∼

∫ (

G2
v(t, β, y, η)〈v2

β(η)〉 + G2
w(t, β, y, η)〈w2

β(η)〉
)

dη.

∫
(
G2

v(t, β, y, η)〈v̂2(η)〉 + G2
w(t, β, y, η)〈ŵ2(η)〉

)
dη → max

is equivalent to solving (*) using (**) but without continuity

imposed on v, w.



The difficulty:

ũ = Lṽ, ṽ = N [ũ]

ũ(z) =
∑

n un exp(inz), ṽ(z) =
∑

n vn exp(inz).

un = λnvn, vn = Nn[ũ]

But! The same system can be rewritten as

un = λnanwn, wn = a−1
n

Nn[ũ]

or ũ = LAw̃A, w̃A = A−1N [ũ]

L is not unique!

The ideas of how to overcome this difficulty are left

to your imagination :-).



Conclusions

• Streak structure is dictated mostly by the

structure-forming properties of the combination

of lift-up of the mean profile, mean shear, and

viscous diffusion and only to a far lesser extent

by the structure of the wall-normal motions.

• The approximate approach (GOP) based on

this idea has a significant predictive ability.

• The new conceptual framework is a wide field

for further research, both for theoretical

justification of the approach and in applying

the approach to other problems.



Extras



GOP selectivity
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The works within the second conceptual framework include:

Rapid Distortion Theory (RDT): Batchelor and Proudman 1954,

Moffat 1965, Hunt 1973, Goldstein and Durbin 1980, Cambon and

Scott 1999, Nazarenko, Kevlahan and Dubrulle 1999 and many more.

Landahl, M. T. 1989 Boundary layer turbulence regarded as a driven

linear system. Physica D 37, 11–19.

Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak

spacing in wall-bounded turbulent shear flows. Phys. of Fluids A 5,

774–777.

Carpenter, P., Ali, R., Davies, C. & Lockerby, D. 2003 A simple

computational model for studying the control of viscous sublayers. In

5th Euromech Fluid Mechanics Conference, Toulouse, 24-28 August, p.

367.
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Spanwise scales comparison
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Is there any relation at all between vortices and streaks?

DNS by Hu and Sandham, with Galilean decomposition and swirling
strength as in Tomkins & Adrian, JFM, 2003, v. 490.

Placebo field=organised streaks + random field, with Galilean
decomposition and swirling strength.

Thanks to A. Iollo (Université Bordeaux 1), G.M.DiCicca (Politecnico di Torino),
Z.W.Hu, N.D. Sandham (University of Southampton), and A.V. Smirnov (West Viriginia
University) who provided codes and data.


