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We derive the time evolution of the two-mode amplitude probability density function. Using this
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two-mode steady-state solution only when an extra condition is satisfied. With this extra condition
assumed, we plot the flux of probability vector on two mode’s plane. It is shown that this flux lines
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1. Introduction

Since Zakharov has introduced Kolmogorv–Zakharov
(KZ) spectra1–3) to the wave turbulence community, many
descending theories have been developed afterwards.4–16)

Wide applications of WT theory based on the KZ spectra
have been found in various branches including oceanogra-
phy, plasma physics, astrophysics and cosmology since then.
Going far beyond the hydrodynamic description based on
Navier–Stokes equation, WT theory based on the KZ spectra
succeeded in explaining many aspects of turbulence phe-
nomena. For example, the stochastic wave fields were found
to be more like Kolmogorov turbulence determined by the
rate at which energy cascades through scales rather than by a
thermodynamic temperature describing the energy equipar-
tition in the scale space.

However, the spectra theory, mainly utilizing the kinetic
equation description, has its own limit on the qualitative
analysis of turbulence. One needs to deal with the proba-
bility density function (PDF) to overcome such problems.
Works along this direction, motivated by the arising interests
on the intermittency phenomena, were restricted on the
consideration of the nonlinear interaction potential as a
coordinate function at the beginning stage.17,18) Recently,
more general description of PDF dealing with three- and
four-wave Hamiltonian systems has been developed.9–13,15,16)

Our work, in this paper, deals with a three-wave
Hamiltonian system. Starting from the time evolution
equation of the full-mode amplitude PDF, we derive the
time evolution of two-mode amplitude PDF Pð2Þ with two
modes sa and sb as variables. The resulting time evolution
equation is of the form of continuity equation as it should be.
This determines the flux vector field of a given two-mode
amplitude PDF. Steady state solutions of two-mode ampli-
tude PDF can be obtained by taking this flux to be
divergence-free. We investigate two types of solutions, one
with zero flux and the other with non-vanishing but
divergence-free flux, so called vortex solution.

It is shown that a zero flux solution is possible only
when interaction coefficients satisfy a set of conditions,
indicating that a generic model may not allow zero flux
steady state solution for the two-mode amplitude PDF.
However, a vortex solution may exist in any model. It
turns out that the equation for a vortex solution is difficult
to solve. So, we try with a product of two one-mode PDF
as a steady state solution and obtain a condition for this
PDF to be a divergence free solution. This condition is
much less strict than that for zero flux solution. With this
solution, we depict the shape of vector lines of the flux of
probability and show that the flux lines are circulation
around a point coordinated by the expectation values of
the two mode variables sa and sb as was conjectured in
ref. 11.

In the following two sections, we give reviews of the
derivation of the time evolution equation of the full-mode
amplitude PDF and some properties of one-mode amplitude
PDF. In §4, we consider the two-mode amplitude PDF and
obtain our main results. In §5, we give some concluding
remarks.

2. Derivation of the Multi-Mode Probability Evolution
Equation in Wave Turbulence

The physical system we deal with in this paper is a
stochastic ensemble of dispersive waves interacting nonlin-
early and weakly. The dynamics of a dispersive wave is
described by a complex field, cðx; tÞ which represents wave
actions in a d-dimensional periodic box with sides L. The
time evolution of the wave is given by

i _ccl ¼
@H
@ �ccl

; ð1Þ

where cl represents the l-th Fourier mode of cðx; tÞ, and
Hamiltonian H is the sum of the free term (H2) and
perturbative terms (H3;H4; . . .),

H ¼ H2 þH3 þH4 þ � � � : ð2Þ

Each term Hj can be represented by the interaction
coefficients T and j amplitudes cl,�E-mail: sgjo@knu.ac.kr
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Hj ¼
X

q1;q2;q3;...;qn;p1;p2;...;pm

ðTq1;q2;...;qn
p1;p2;...;pm

�ccq1
�ccq2
� � � �ccqncp1

cp2
� � � cpm þ c.c.Þ; nþ m ¼ j

where q1; q2; q3; . . . ; qn and p1; p2; . . . ; pm are wavevectors
on a d-dimensional Fourier space lattice. The coefficients
Tq1;q2;...;qn
p1;p2;...;pm

represent the wave-wave interactions where n

waves collide to create m waves or n! m.
The free Hamiltonian H2 is diagonalized. The triple

coupling Hamiltonian H3 and the quadruple coupling
Hamiltionian H4 can be written as

H2 ¼
X
n

!njcnj2;

H3 ¼ �
X
l;m;n

Vl
mn �cclcmcn�

l
mþn þ c.c.

H4 ¼ �2
X1

m;n;�;�¼1

Wlm
�� �ccl �ccmc�c�; ð3Þ

where �� 1 is a smallness parameter of nonlinearity.
If H3 6¼ 0, we usually neglect H4 and the followings

because they are of the higher order in �. However if all the
three-wave processes in H3 happen to be nonresonant, a
suitable redefinition of field variables ck removes H3 and the
leading order perturbative Hamiltonian becomes H4.3) In
this paper, we restrict ourselves to the case whereH4 and the
higher order Hamiltonians can be neglected. The waves
corresponding to this case include water surface capillary
wave, internal waves in the ocean and Rossby waves. Now
our Hamilitonian is simplified as H ¼ H2 þH3 and eq. (1)
becomes

H ¼
X
n

!njcnj2 þ �
X
l;m;n

ðVl
mn �cclcmcn�

l
mþn þ c.c.Þ;

i _aal ¼ �
X
m;n

ðVl
mnamane

i!l
mnt�lmþn þ 2 �VVm

ln �aaname�i!m
ln
t�mlþnÞ; ð4Þ

where aj ¼ cje
i!jt, !l

mn � !kl � !km � !km , and !l ¼ !kl is
the dispersion relation.

Let us write the complex mode al as al ¼ Al l where Al is
a real positive amplitude and  l is a phase factor which takes
values on S1, a unit circle centered at zero in the complex
plane. Let us define the PDF Pfs; �g as the probability
density function for the wave intensities A2

l to be sl and for
the phase factors  l to be �l for all l. With this PDF, we can
define the expectation of f as follows:

h f fA2;  gi ¼
Y
l

Z 1
0

dsl

I
S1

jd�lj
2�

 !
Pfs; �g f fs; �g: ð5Þ

We also introduce the generating functional Zf�; �g as
follows:

Zf�; �g ¼
Y
l

e�lA
2
l �l

l

* +
: ð6Þ

Here �l 2 R and �l 2 Z. We can show that11,12)

Pfs; �g ¼
X
�l2Z

Y
l

�ðsl � A2
l Þ 

�l

l �
��l

l

* +
: ð7Þ

The relation between the generating functional and PDF
can be shown to be

Pfs; �g ¼ L̂L�1
�

X
f�g

Zf�; �g
Y
l

���l

l

 !
; ð8Þ

where L̂L�1
� stands for the inverse Laplace transform with

respect to all �l and f�g are the angular harmonics indices.
To filter out fast oscillations, we will seek for the solution

at time T such that 2�=!� T � 	nl. Here 	nl is the
characteristic time of nonlinear evolution, which is �1=!�2

for the three-wave systems. Solution at this time t ¼ T can
be expressed as series expansion in small nonlinearity
parameter �,

alðTÞ ¼ að0Þl þ �a
ð1Þ
l þ �

2að2Þl : ð9Þ

Substituting this in eq. (4), we get

að0Þl ðTÞ ¼ alð0Þ � al;

að1Þl ðTÞ ¼ �i
X
m;n

½Vl
mnaman�ð!

l
mnÞ�

l
mþn

þ 2 �VVm
lnam �aan ���ð!m

lnÞ�
m
lþn�; ð10Þ

and

að2Þl ðTÞ ¼
X

m;n;�;�

½2Vl
mnð�V

m
��ana�a�E½!

l
n��; !

l
mn��

m
�þ�

� 2 �VV�m�ana� �aa� �EE½!l�
n�; !

l
mn��

�
mþ�Þ�lmþn

þ 2 �VVm
lnð�V

m
�� �aana�a�E½!

ln
��;�!

m
ln��

m
�þ�

� 2 �VV�m� �aana� �aa�E½�!�n�l;�!
m
ln��

�
mþ�Þ�mlþn

þ 2 �VVm
lnð �VV

n
��am �aa� �aa��

n
�þ�E½�!

m
l��;�!

m
ln�

þ 2V�n�am �aa�a�E½!�l�m;�!
m
ln��

�
nþ�Þ�mlþn�: ð11Þ

where �ðxÞ ¼
R T
0

eixt dt and Eðx; yÞ ¼
R T
0

�ðx� yÞeiyt dt.
We now expand ZðTÞ in the power series of � using

A2
l ðTÞ ¼ alðTÞ �aalðTÞ and  lðTÞ ¼ ½alðTÞ= �aalðTÞ�1=2. Taking the

limit T !1 with the condition 2�=!� T � 	nl, we
obtain

ZðTÞ ¼ Zð0Þ þ Tðpower series in �Þ:

It turns out that the term coupled to T begins with �2 order.
Note that if � ¼ 0, then ZðTÞ ¼ Zð0Þ as it should be. Taking
only the leading order term, we finally get

_ZZ ¼ 4��2
X
j;m;n

�
�j þ �2

j

@

@�j

� �
½jV j

mnj
2�ð! j

mnÞ�
j
mþn

þ 2jVm
jn j

2�ð!m
jnÞ�

m
jþn�

@2Z

@�m@�n

þ 2�j

�
�jV j

mnj
2�ð! j

mnÞ�
j
mþn

@

@�n

þ jVm
jn j

2�ð!m
jnÞ�

m
jþn

@

@�m
�

@

@�n

� ��
@Z

@�j

þ 2�j�m½�2jV j
mnj

2� jmþn�ð! j
mnÞ

þ jVn
jmj

2�njþm�ð!
n
jmÞ�

@3Z

@�j@�n@�m

�
: ð12Þ

Note that the derivative _ZZ is not taken with respect to
the usual time t, but T which is big enough to produce the
frequency delta functions owing to the condition 2�=!�
T � 	nl. Here we notice that _ZZ does not depend on � at all.
Therefore, up to �2 order approximation we can assume the
random phase approximation and eq. (8) becomes
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Pfsg ¼ L̂L�1
� ðZf�gÞ: ð13Þ

Applying the inverse Laplace transformation to eq. (12),
we get

_PP þ
X
j

@F j

@sj
¼ 0; ð14Þ

where F j is a flux of probability in the space of the
amplitude sj,

�
F j

4��2sj
¼
X
m;n

�
ðjV j

mnj
2�ð! j

mnÞ�
j
mþn

þ 2jVn
jmj

2�ð!n
jmÞ�

n
jþmÞsnsm

@P
@sj

þ 2PðjVn
jmj

2�ð!n
jmÞ�

n
jþm � jV

j
mnj

2�ð! j
mnÞ�

j
mþnÞsm

þ 2ðjVn
jmj

2�ð!n
jmÞ�

n
jþm

� 2jV j
mnj

2�ð! j
mnÞ�

j
mþnÞsnsm

@P
@sm

�
: ð15Þ

Our _PP does not depend on �, which indicate that if
PðT ¼ 0Þ is independent of �, then PðTÞ is independent of �
for all T .

Before finishing this section, we define M-mode ampli-
tude PDF,

PðMÞj1; j2;...; jM
¼

Y
l 6¼j1; j2;...; jM

Z
Rþ

dsl

 !
Pfsg: ð16Þ

In the following sections, we consider the cases for M ¼ 1

and 2.

3. Review of One-Mode Amplitude PDF

One-mode amplitude PDF Pð1ÞðsjÞ is obtained from
Pfsg by integrating over all the modes except the
mode kj,

Pð1ÞðsjÞ ¼
Y
l 6¼j

Z
dsl

 !
Pfsg: ð17Þ

Note here that j stands for the momentum kj. The time
evolution of the one-mode PDF Pð1ÞðsjÞ can be derived from
eqs. (14) and (15) by integrating over all the other modes,
and we get

_PPð1ÞðsjÞ þ
@FðsjÞ
@sj
¼ 0: ð18Þ

When we integrate the right hand side of eq. (14), all of
those terms involving @F l=@sl with l 6¼ j vanish and the
remaining term is @FðsjÞ=@sj with F given by

�
FðsjÞ
4��2sj

¼
Y
l 6¼j

Z
dsl

 !X
m;n

�
½jV j

mnj
2�ð! j

mnÞ�
j
mþn

þ 2jVn
jmj

2�ð!n
jmÞ�

n
jþm�snsm

@P
@sj

þ 2P½jVn
jmj

2�ð!n
jmÞ�

n
jþm � jV

j
mnj

2�ð! j
mnÞ�

j
mþn�sm

þ 2½jVn
jmj

2�ð!n
jmÞ�

n
jþm

� 2jV j
mnj

2�ð! j
mnÞ�

j
mþn�snsm

@P
@sm

�
: ð19Þ

When M ¼ 1, there is only one component for the flux of
probability and we suppress the index j on F.

After integration, we obtain

FðsjÞ ¼ �
jsjPð1Þ � �jsj
@Pð1Þ

@sj
; ð20Þ

with


j ¼ 8��2
X
m;n

f½jV j
mnj

2�ð! j
mnÞ�

j
mþnnm

þ jVn
jmj

2�ð!n
jmÞ�

n
jþm�ðnm � nnÞg

�j ¼ 4��2
X
n;m

nmnnf½jV j
mnj

2�ð! j
mnÞ�

j
mþn

þ 2jVn
jmj

2�ð!n
jmÞ�

n
jþm�g: ð21Þ

In the derivation, we have used the fact that Vl
ln ¼ 0 and

nm is the mean value of sm. This result in eqs. (20) and (21)
is exactly the same as the formula derived from the moments
of the j-th mode in refs. 9, 12, 13.

A steady state solution can be obtained from the
divergence free condition;

@FðsjÞ
@sj
¼ 0: ð22Þ

A special solution, the zero flux solution, can be obtained
by equating FðsjÞ to zero


jP
ð1Þ þ �j

@Pð1Þ

@sj
¼ 0; ð23Þ

and we get

Pð1ÞðsjÞ ¼
1

nj
exp �

sj

nj

� �
; ð24Þ

where nj ¼ �j=
j. Note here that for a steady state solution

j, �j and nj are all constants. Further analysis on one mode
steady solution can be found in refs. 10–13, 15.

4. Consideration of Two-Mode Amplitude PDF

When M ¼ 2, the corresponding PDF is the two-mode
amplitude PDF Pð2Þðsa; sbÞ which is obtained from Pfsg by
integrating over all the modes except the two modes ka

and kb

Pð2Þðsa; sbÞ ¼
Y
l6¼a;b

Z
dsl

 !
Pfsg: ð25Þ

The time evolution of Pð2Þðsa; sbÞ can be obtained similarly
as the case M ¼ 1, and we get

_PPð2Þðsa; sbÞ þ
@Fa

@sa
þ
@Fb

@sb
¼ 0: ð26Þ

with

�
Fa

4��2sa
¼ ðAa þ BasbÞPð2Þ þ ðCa þ DasbÞ

@Pð2Þ

@sa

þ Easb
@Pð2Þ

@sb
; ð27Þ

�
Fb

4��2sb
¼ ðAb þ BbsaÞPð2Þ þ ðCb þ DbsaÞ

@Pð2Þ

@sb

þ Ebsa
@Pð2Þ

@sa
; ð28Þ

where

Aa ¼ 2
X
m;n

0
vna;mðnm � nnÞ þ 2

X
m

0
vba;mnm
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þ 2
X
m;n

0
vam;nnn � 2

X
m

0
vam;bnm; ð29Þ

Ba ¼ 2
X
m

0
vma;b þ

X
m

0
vam;b �

X
m

0
vba;m

 !
; ð30Þ

Ca ¼
X
m;n

0
vam;nnmnn þ 2

X
m;n

0
vna;mnmnn; ð31Þ

Da ¼ 2
X
m

0
vab;mnm þ

X
m

0
vba;mnm þ

X
m

0
vma;bnm

 !
; ð32Þ

Ea ¼ 2
X
m

0
vma;bnm � 2

X
m

0
vab;mnm

 !
; ð33Þ

and Ab;Bb;Cb;Db;Eb can be obtained by exchanging a

and b. In this expression two modes a and b are excluded in
the summation

P0 and we use the abbreviation vj
m;n ¼

jV j
mnj

2�ð! j
mnÞ�

j
mþn for simplicity.

Note here that 
a and �a in eq. (21) can be written in
terms of

P0 and they become


a ¼ Aa þ Banb � Ea;

�a ¼ Ca þ Danb: ð34Þ
These relations can also be derived directly from eq. (27).

After integration of Fa over sb we should get FðsaÞ in
eq. (20). Comparing the coefficients of Pð1Þ and @Pð1Þ=@sa we
get the above relations.

4.1 Zero flux solution of two-mode amplitude PDF
It is natural to seek for a solution of two-mode

amplitude PDF which gives zero flux of probability as
we did in one-mode case. If there exists such a solution,
then the solution will give us a steady state two-
mode amplitude PDF. The corresponding equations look
like

ðAa þ BasbÞPð2Þ þ ðCa þ DasbÞ
@Pð2Þ

@sa
þ Easb

@Pð2Þ

@sb
¼ 0; ð35Þ

ðAb þ BbsaÞPð2Þ þ ðCb þ DbsaÞ
@Pð2Þ

@sb
þ Ebsa

@Pð2Þ

@sa
¼ 0: ð36Þ

Solving these equations for @Pð2Þ=@sa and @Pð2Þ=@sb, we
get

@Pð2Þ

@sa
¼ �
ðCb þ DbsaÞðAa þ BasbÞ � ðAb þ BbsaÞEasb

ðCa þ DasbÞðCb þ DbsaÞ � EaEbsasb
Pð2Þ;

ð37Þ
@Pð2Þ

@sb
¼ �
ðCa þ DasbÞðAb þ BbsaÞ � ðAa þ BasbÞEbsa

ðCa þ DasbÞðCb þ DbsaÞ � EaEbsasb
Pð2Þ:

ð38Þ

Putting Pð2Þ ¼ const expð�KÞ, we get

@K

@sa
¼ fa; ð39Þ

@K

@sb
¼ fb; ð40Þ

where

fa ¼
ðCb þ DbsaÞðAa þ BasbÞ � ðAb þ BbsaÞEasb

ðCa þ DasbÞðCb þ DbsaÞ � EaEbsasb
; ð41Þ

fb ¼
ðCa þ DasbÞðAb þ BbsaÞ � ðAa þ BasbÞEbsa

ðCa þ DasbÞðCb þ DbsaÞ � EaEbsasb
: ð42Þ

The existence of a solution for K is guaranteed if the
above two equations satisfy the integrability condition
expressed as

@ fa

@sb
¼
@ fb

@sa
; ð43Þ

which, after a little work, becomes

g1 þ g2sa þ g3sb þ g4s
2
a þ g5s

2
b ¼ 0; ð44Þ

with

g1 ¼ CaCbðBaCb þ AaEb � BbCa � AbEaÞ
þ AbDbC

2
a � AaDaC

2
b ;

g2 ¼ 2BaCaCbDb � BbCaCbEa

� AbCaDbEa � 2AaCbDaDb þ AaCbEaEb;

g3 ¼ �ð2BbCaCbDa � BaCaCbEb

� AaCbDaEb � 2AbCaDaDb þ AbCaEaEbÞ;
g4 ¼ ðBaDb � BbEaÞCaDb � AaDbðDaDb � EaEbÞ;
g5 ¼ �½ðBbDa � BaEbÞCbDa � AbDaðDaDb � EaEbÞ�: ð45Þ

The integrability condition should be satisfied as an
identity. In other words, eq. (44) should hold for all values
of sa and sb. Therefore, in order to have a flux zero solution
we have to require

gi ¼ 0 ð46Þ

for all i. It seems to be implausible for a given model with a
three-wave interaction potential to satisfy all of these
conditions.

If this integrability condition is satisfied, the solution for
K is given by

K ¼
Z sa

0

faðsa; sbÞ dsa þ
Z sb

fbð0; sbÞ dsb: ð47Þ

4.2 Comments on vortex solution
More interesting and plausible solution for the steady state

two-mode amplitude PDF would be a vortex solution which
is described by

F ¼ r	 Q; ð48Þ

where F is two component vector of the flux of probability
and Q is some function of sa and sb. Using the component
notation this becomes

Fi ¼ �ij
@

@sj
Q: ð49Þ

The equation for Pð2Þ comes from r � F ¼ 0 and we get

h1P
ð2Þ þ h2

@Pð2Þ

@sa
þ h3

@Pð2Þ

@sb
þ h4

@2Pð2Þ

@sa2

þ h5

@2Pð2Þ

@sb2
þ h6

@2Pð2Þ

@sa@sb
¼ 0; ð50Þ

with

h1 ¼ Aa þ Basb þ Ab þ Bbsa;

h2 ¼ Ca þ Dasb þ EbSa þ Aasa þ Basasb;

h3 ¼ Easb þ Cb þ Dbsa þ Absb þ Bbsasb;

h4 ¼ Casa þ Dasasb;
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h5 ¼ �Cbsb þ Dbsasb;

h6 ¼ ðEa þ EbÞsasb: ð51Þ
As we did in zero flux case, we put Pð2Þ ¼ const expð�KÞ,

and we get

h4

@2K

@sa2
�

@K

@sa

� �2
" #

þ h5

@2K

@sb2
�

@K

@sb

� �2
" #

þ h6

@2K

@sa@sb
�
@K

@sa

@K

@sb

� �

¼ h1 � h2

@K

@sa
� h3

@K

@sb
: ð52Þ

This equation is a nonlinear second order differential
equation and very hard to handle.

Instead of solving this equation explicitly, we investigate
the pattern of the flux vector F. For that matter we take our
two-mode amplitude PDF Pð2Þðsa; sbÞ to be ~PPð2Þ, the product
of two one-mode amplitude PDF’s Pð1ÞðsaÞ and Pð1ÞðsbÞ
defined as

~PPð2Þðsa; sbÞ ¼ Pð1ÞðsaÞPð1ÞðsbÞ: ð53Þ

With this ansatz, the divergence of flux becomes

r � F ¼ �4��2 Aa þ Ab �
Ca

na
�

Cb

nb

� �

	 1�
sa

na

� �
1�

sb

nb

� �
~PPð2Þ: ð54Þ

To derive this result we have used eq. (34). If we take the
integral of the above equation over any one of the two modes
sa and sb, we get zero becauseZ 1

0

si ~PP
ð2Þðsi; sjÞ dsi ¼ niP

ð1ÞðsjÞ:

This is what we expect, because the remaining PDF
Pð1ÞðsjÞ is the one-mode steady state amplitude PDF which
gives divergence free flux.

Unfortunately, in a generic situation our ansatz, eq. (53),
does not guarantee a divergence free flux. Consequently, ~PPð2Þ

is a steady state PDF only when the following condition is
satisfied

Aa þ Ab �
Ca

na
�

Cb

nb
¼ 0: ð55Þ

When this condition holds, the divergence vanishes and
we get a vortex solution with the corresponding scalar
function Q given by

Q ¼ �4��2 Aa �
Ca

na

� �
sasb ~PPð2Þ:

We now assume that the condition in eq. (55) is satisfied
for any choice of two modes a and b. Putting Ab �
Cb=nb ¼ �, the two components of the flux in eqs. (27)
and (28) become

Fa ¼ 4��2�sa 1�
sb

nb

� �
~PPð2Þ;

Fb ¼ �4��2�sb 1�
sa

na

� �
~PPð2Þ: ð56Þ

To visualize the pattern of the flux vector, we assume
that � is positive. Then, for sa > na Fb is positive, and for

sa < na, Fb is negative. Similarly, for sb > nb, Fa is
negative, and for sb < nb, Fb is positive. Therefore, the flux
lines circulate around the point ðna; nbÞ counterclockwise
when we take sa-axis to be horizontal (Fig. 1). This pattern
of flux lines has already been conjectured in ref. 11.

5. Conclusions and Discussion

In this paper we have derived the time evolution of the
two-mode amplitude PDF from the time evolution equation
of the full-mode amplitude PDF. We have also derived
conditions to have a zero flux solution and an equation for a
vortex solution, both of which define steady state two-mode
amplitude PDF’s.

The conditions for a zero flux solution are given in
eqs. (44)–(46). When these conditions are satisfied, we can
have Pð2Þðsa; sbÞ ¼ constant	 e�K with K in eq. (47).

If the condition in eq. (55) is satisfied, we can have a
steady state vortex solution

Pð2Þðsa; sbÞ ¼ const	 exp �
sa

na
þ

sb

nb

� �� �
: ð57Þ

The corresponding flux components are given in eq. (56)
and plotted in Fig. 1. This solution is the solution conjec-
tured in ref. 11. Non-vanishing flux indicates that the values
of ðsa; sbÞ change continuously in such a way that the two-
mode PDF is unaltered. Integrating over either sa or sb, we
get the known zero-flux one-mode PDF. The corresponding
flux vanishes because the average of s is n. Note that
the condition in eq. (55) for any pair of modes is a big
assumption. This assumption may not apply to a generic
system. However, the argument given in the previous section
applies to a generic system where the condition does not
hold for all pairs of modes. In this case, we use eq. (55) to
select a pair of modes a and b. Considering the fact that the
total number of modes is infinite, we can expect that for a
given mode a there exists another mode b which together
with the mode a satisfies the condition. For this selected pair
of modes, our ansatz in eq. (53) defines a steady state PDF
with a non-vanishing flux.

More general vortex solutions, which cannot be expressed
as the product of two one-mode PDF’s, may exist as

20 40 60 80 1000

0

20

40
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80

100

sa

s
b

Fig. 1. Two-mode probability flux circulation. This figure shows flow

patterns of the two-mode probability flux, i.e., vortex solution. We

assume that 4��2� is about 0.01, ðna; nbÞ ¼ ð40; 40Þ and the total grid size

of the frequency space is 100	 100.
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solutions of eqs. (50)–(52). However, the equation is non-
linear and very hard to handle analytically. It requires
numerical analysis which we are working on.
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