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1. KELVULENCE: CASCADES AND SPECTRA
Kelvin waves propagating on a thin vortex filament
were proposed by Svistunov to be a vehicle for the tur-
bulent cascades in superfluids near zero temperature
[1]. Presently, this is a widely accepted view well sup-
ported by the theory and numerical simulations; see,
e.g. [2–6]. I will refer to the state characterized by ran-
dom nonlinearly interacting Kelvin waves as “kelvu-
lence” (i.e., Kelvin turbulence). Recently, Kozik and
Svistunov [4] used the weak turbulence approach to
kelvulence and derived a six-wave kinetic equation
(KE) for the spectrum of weakly nonlinear Kelvin
waves. Based on KE, they derived a spectrum of wave
action that corresponds to the constant Kolmogorov-
like cascade of energy from small to large wave num-
bers,

(1)

Because the number of waves in the leading resonant
process is even [6], KE conserves not only the total
energy but also the total wave action of the system. Sys-
tems with two positive conserved quantities are known
in turbulence to possess a dual cascade behavior. For
the Kelvin waves, in addition to the direct energy cas-
cade, there also exists an inverse cascade of wave
action, the spectrum for which was recently found by
Lebedev [7],

(2)

Interestingly, such a –3 spectrum was suggested before
by Vinen based on a dimensional argument not involv-
ing the energy flux [2]. A similar argument in water
wave turbulence gives famous a Phillips spectrum,
which is associated with sharp water crests due to wave
breaking which occurs at large excitation levels. By

 

¶ 

 

The text was submitted by the author in English.

nk k 17/5– .∼

nk k 3– .∼

 

analogy, we could expect that the Vinen –3 spectrum
should be observed in kelvulence at high excitation lev-
els, leading to sharp angles due to reconnections. This
view is supported by recently reported numerics by
Vinen, Tsubota, and Mitani [5], where it was argued
that the –3 exponent arises when the vortex line bend-
ing angle becomes large (of order one). Kozik and Svis-
tunov [6] later reported a result obtained with a refined
numerical method, which gave a spectrum closer to the
–17/5 shape, which is a Kolmogorov-like direct cas-
cade of energy dominating the wave breaking effects at
lower turbulence levels. The inverse cascade spectrum,
although it has the same –3 exponent as the Vinen spec-
trum, is fundamentally different: it corresponds to weak
rather than strong turbulence and is more relevant if the
main source of the Kelvin waves is at small scales. For
example, the smallest scales on the vortex filament
could be generated by reconnections via sharp angles
produced by these processes.

2. DIFFERENTIAL EQUATION MODEL

Differential equation models proved to be very use-
ful for analysis in both weak turbulence [8–11] and
strong turbulence [12–14]. These equations are con-
structed in such a way that they preserve the main scal-
ings of the original closure (KE in the case of weak tur-
bulence), in particular, its nonlinearity degree with
respect to the spectrum and its cascade and thermody-
namic solutions. For the Kelvin wave spectrum, these
requirements yield

(3)
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I present a nonlinear differential equation model (DAM) for the spectrum of Kelvin waves on a thin vortex fil-
ament. This model preserves the original scaling of the six-wave kinetic equation, its direct and inverse cascade
solutions, as well as the thermodynamic equilibrium spectra. Further, I extend DAM to include the effect of
sound radiation by Kelvin waves. I show that, because of the phonon radiation, the turbulence spectrum ends
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 is the speed of
sound, and 
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 is the quantum of circulation.
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frequency (here, we ignore logarithmic factors). This
equation preserves the energy

(4)

and the wave action

(5)

It is an easy calculation to check that Eq. (3) has both
the direct cascade solution (1) and the inverse cascade
solution (2). It also has the same thermodynamic Ray-
leigh–Jeans solutions as the original KE,

(6)

where 

 

T

 

 and 

 

µ

 

 are constants having the meaning of tem-
perature and chemical potential, respectively.

3. KELVULENCE RADIATING SOUND

In contrast with the classical Navier–Stokes flow,
there is no viscosity that could dissipate the superfluid
turbulent cascade at small scales. At low temperatures,
friction with the normal component is also inefficient,
and the only dissipative process which can absorb the
cascade is radiation of sound by moving superfluid vor-
tex filaments [2]. Let us introduce the sound dissipation
effect into the differential equation model (DAM) by
using the classical results of Lighthill about sound pro-
duced by classical turbulence [15]. Namely, we will use
the result that the rate at which the sound energy is gen-
erated is proportional to the fourth power of the Mach
number 
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 is characteristic
velocity in turbulence and 
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 is the speed of sound.
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Further, we will ignore the logarithmic corrections due
to the finite vortex core size 

 

a

 

. In the other words, 

 

a

 

should not enter the expression explicitly but only
implicitly via 
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 (which in turn enters only via 
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).
Then the rest of the sound dissipation term can be com-
pleted uniquely via the dimensional argument; the
result is

(7)

Let us now examine the effect of the sound radiation on
the direct energy cascade. For this purpose, we can con-
sider an even simpler first-order DAM which still
describes the direct cascade but ignores the inverse cas-
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A different (linear) mechanism of sound generation was proposed
by Vinen in [16], but it was also shown in this paper that the net
sound power generated by this mechanism due to a Kelvin wave
is zero due to interference effects. Thus, we assume that the first
nonvanishing contribution comes from the nonlinear terms, the
same as in Lighthill’s theory, and this dictates 
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cade and the thermodynamic solutions. Such a DAM,
including the sound radiation term, reads

(8)
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 are dimensionless constants. The gen-
eral stationary solution of Eq. (8) is

(9)

where

(10)

(11)

and 
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 is the total energy dissipated in the system per
unit time per unit length.

In the absence of sound radiation, 
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 = 0, we recover
the direct cascade spectrum (1). For 
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 > 0, the spectrum
has the direct cascade shape (1) at low frequencies, 
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, and it falls to zero at a finite frequency

(12)

On the other hand, Kelvin waves can only have wave-
lengths greater than the vortex radius 
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sion (9), particularly the finite cutoff at 
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This condition can be formulated in terms of the char-
acteristic bending angle of the vortex line 

 

α

 

 which in
the direct cascade state is related to 
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 as
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where 
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 is characteristic length of the Kelvin waves.
Thus, condition 
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which always holds for 
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 1 because 
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 > a. Therefore,
we conclude that the kelvulence cascade will always
decay to zero before reaching the maximal allowed fre-
quency of the propagating Kelvin waves.

4. CONCLUSIONS
In this Letter, I presented DAM for Kelvin wave tur-

bulence (kelvulence) consistent with the scalings of,
and having the same set of cascade and thermodynamic
solutions as, the original six-wave kinetic equation.
DAM also exists in reduced versions if some of the flux
and thermal solutions are not important for a particular
problem and can be ignored (in this Letter, I presented
three versions given by fourth-, second-, and first-order
equations, respectively).
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Based on Lighthill’s theory of sound produced by
turbulence, I extended DAM to include the effect of
kelvulence dissipation by sound radiation. I obtained a
steady state solution of this model corresponding to the
direct cascade of wave energy gradually dissipated via
radiation and decaying to zero at a finite wave number
ω* given by expression (12). This solution can also be
used to predict the spectrum of the radiated sound,
because the sound energy is just the same as the energy
lost by kelvulence via radiation. One can also extend
this study to scattering of sound by turbulence in sys-
tems where such sound is generated externally.

Finally, in Appendix, I present a “warm cascade”
solution for kelvulence, which is relevant for numerical
simulations with a finite cutoff frequency.

APPENDIX

Warm Cascade Solutions

Above, we ignored the “thermal” component in tur-
bulence, which is totally justified, because this compo-
nent does not show up when turbulence is dissipated
gradually in Fourier space, as is done via the sound
radiation in our case. On the other hand, it is known in
turbulence theory that a sharp dissipation or the pres-
ence of a cutoff frequency lead to reflection of a large
portion of the energy flux from the smallest scale and,
consequently, a pileup of the spectrum near the smallest
scale. This “bottleneck” effect can be described in
terms of “warm cascade” solutions in which both
energy flux and thermal components are present. As I
showed above, the natural cutoff frequency of Kelvin
waves ωc is not going to be reached by the turbulent
cascade, because it will always terminate at a frequency
of ω∗ < ωc due to the sound radiation. However, in
numerical simulations of kelvulence, the cutoff fre-
quency may be less than ω∗ due to the limited numeri-
cal resolution. Thus, the warm cascade solutions could
be relevant for understanding spectra obtained numeri-
cally. Such warm cascade solutions were originally
obtained for classical Navier–Stokes turbulence in [13];
here, we will follow a similar approach to find such
states for kelvulence. To describe both the energy cas-
cade and the thermodynamic component (but still
ignore the inverse cascade solution), we need to use the
second-order version of DAM, namely,
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C

κ10
-------ω 1/2– ∂

∂ω
------- n4ω17/2∂ ωn( )

∂ω
---------------⎝ ⎠

⎛ ⎞ .=

The general steady state solution of this equation is

(17)

where T is an arbitrary constant having the meaning of
“temperature.” This is the “warm cascade” solution,
which has a pure cascade solution and the thermody-
namic energy equipartition as two of its limits. Note
that the thermodynamic part of this solution describes
the spectrum pileup due to the bottleneck phenomenon
in numerical simulations due to the presence of a cutoff
frequency. The relative strength of the cascade and the
thermodynamic components will be determined by the
ratio of the incident and the reflected energy fluxes,
which, in turn, will depend on the particular form of
dissipation at small scales chosen in numerical simula-
tions. The goal of the true numerical simulation is to
choose the dissipation function in such a way that the
bottleneck effect is minimal or absent.

I thank C. Barenghi, V. Lebedev, B. Svistunov,
J. Vinen, and G. Volovik for their helpful comments
about my model.
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