There is a prize of £10 for the best solution to Exercise 11 received (in my
(Jeremy Gray’s) pigeon-hole in the staff/graduate common room) by Friday of
week 7.

Introduction to Geometry Exercises 5
Section A

1. (i) List the isometries of a regular tetrahedron fixing a given vertex.
(ii) Ditto for a cube.

2. Show that in a regular polyhedron with p-gonal faces, in which g edges meet at each vertex,
the number of edges is given by

El=pt4qgt-1)2

3. (i) What are the convex subsets of R called?

(ii) Show that the intersection of any collection (even an infinite number) of convex subsets
of 3-space is itself convex. Deduce that for every subset X of 3-space, there is a (unique) small-
est convex set containing X. It is called the convez hull of X. Hint: consider the collection of
all convex subsets of R? containing X.

(iii) What is the convex hull of X if X consists of 2 points? of three non-collinear points? of
4 non-coplanar points?

(iv) Show that if X is a convex solid in R® then any straight line meeting its interior must
meet its surface at exactly two points. Hint: use (i).

4. Show that if P is a regular polyhedron (Definition 13.6 on page 43 of the Lecture Notes)
and if Fy and Fy are any two edges of P, then there is an isometry of P taking F; to Fs.
Ditto for any two vertices. Hint: use the definition.

Section B

5. The inequality (p — 2)(¢ — 2) < 4 for a regular polyhedron with p-gonal faces and ¢ edges
meeting at each vertex, which we deduced from Euler’s formula F'— E+V = 2 in the lectures,
can also be deduced from a consideration of the angle-sum at each vertex, as follows:

In the picture here, the sum of the angles at the vertex is 27. Now imagine the vertex moving
out of the plane of the page, leaving the other end of each edge resting on the page. Then



each angle #; diminishes. This is exactly the situation at each vertex of a convex polyhedron.
So the angle-sum at that vertex is less than 27. Use this fact to deduce that in a regular poly-
hedron in which each face has p edges, and g edges meet at every vertex, then (p—2)(¢—2) < 4.

6.(i) Draw a regular tetrahedron situated inside a cube so that its vertices are vertices of the
cube.

In the rest of this exercise, you do not have to justify your answers, but you do have to state
them clearly, e.g. by labelling the vertices of the cube.

(ii) Choose two faces of the tetrahedron, and now find an isometry of the cube which maps
the tetrahedron to itself, and which maps one of the chosen faces to the other.

(iii) Choose two edges of one of the faces of the tetrahedron and find an isometry of the cube
which maps the tetrahedron to itself, which maps the chosen face to itself, and which maps
one edge to the other.

(iv) Choose an edge of the tetrahedron, and now find an isometry of the cube which maps the
tetrahedron to itself, maps the chosen edge to itself, and interchanges its two ends.

7. (i) Imagine a plane passing middway between the opposite vertices A and W of a cube,
and at right angles to the line AW. By marking points where this plane cuts the edges of the
cube, or otherwise, make a careful drawing of the intersection of this plane with the surface of
the cube. Now describe this intersection precisely, justifying your assertions.
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(ii) What happens as this plane is moved towards A, remaining at all times parallel to its
original position? Draw a sequence of pictures showing the different shapes of intersection of
the plane with the cube.

8. Let sy : S\ {N} — R%? and s5 : S?\ {S} — R? be stereographic projections, as described
in Section 12 of the Lecture Notes. Careful! — this means, in which we project to the equa-
torial plane, as shown in the diagram on page 39. In my lecture on stereographic projection
I used projection to the horizontal plane tangent to the sphere at the south pole. (In fact, as
far as the proof that stereographic projection is conformal is concerned, it makes no difference
which horizontal plane we project to.)

(i) Show that sgl osy takes P = (z,y,2) € S? to (z,y, —z). Hint: Make a drawing! And note
that ss(P) and sg'(sy(P)) both lie in the vertical plane containing P and the centre of the
sphere.



(ii) Show that sy o 53" is inversion ¢ in the unit circle C (the intersection of the sphere and
the plane). (cf. Example 3.1 (5) in the Lecture Notes). Bear in mind the hint for (i), and
draw a clear diagram.

(iii) Deduce that i¢ is a conformal map.

(iv) Show also that the map on the complex plane f(z) = 1/z is (very nearly) the same thing
as inversion in the unit circle; in fact, find the precise relation between f and i¢, and use it
to deduce from (iii) that f is conformal.

(v) Show that i¢ o sy = sy o u, where u is the map S? — S2 given by u(z,y, z) = (z,y, —2).
(The equality i¢c o sy = sy o u is often expressed by saying that the diagram

S2\{N,5} 2 R2\{0}
(2 l ic
S2\{N,S} X R?\{0O}

is “commutative” — both possible routes (sy o u and i¢ o sy) from the top left corner to the
bottom right corner give the same result.)

Section C

The diagram shows two convex polygons, one contained in
the interior of the region bounded by the other. Show that

the perimeter of the inner polygon is shorter than the perimeter
of the outer polygon.

(However, it is possible for a tetrahedron to be contained inside another, and yet have
longer total edge length. See http://wwwl.ics.uci.edu/ eppstein/junkyard/triangulation.html)

(ii) Let C be a convex plane curve. Show that C is rectifiable.

10. Describe the section of a regular tetrahedron by a plane middway between two opposite
edges (i.e. edges which have no common end-point) and parallel to both of them, justifying
your assertions. Make a clear drawing, clearly showing your answer.

11. Question 7 one dimension up: what is the intersection of the four-dimensional “hypercube”
{(w,z,y,2) € R*: =1 < w,z,y,z < 1} with a 3-dimensional hyperplane midway between its
opposite vertices (—1,—1,—1,—1) and (1,1,1,1)?

12. (i) Let Q2 be the intersection of the plane {z; + z3 + z3 = 1} in R? with the positive
octant {z1 > 0,29 > 0,23 > 0}. Show that Q2 is a regular 3-gon (i.e. an equilateral triangle).



(ii) Let @3 be the intersection of the hyperplane z1 + x2 + x3 + 24 = 1 in R* with the positive
octant {z1 > 0,22 > 0,z3 > 0 z4 > 0}. Show that Q3 is a regular tetrahedron.
Hint: (i) can easily be done by looking at lengths of edges but a more sophisticated method,
and one which is more useful in (ii), is to consider the symmetries (isometries) of Q2. The
isometries of R3

(z1,22,33) = (22,21,73)

(.’L‘l, z9, 1‘3) — (.’L‘l, xs3, .’L‘Q)

(z1,22,73) — (23,22, 71)
map @9 to itself, since they map the plane {1; + z2 + z3 = 0} to itself and also map the
positive octant to itself. Hence, so do their composites. So @2 has a lot of symmetries ....

13. Although a polyhedron cannot be said to be curved in the usual sense of the word, there is
an interesting definition of curvature for polyhedra, closely connected with the observation in
Exercise 4 above. This curvature is concentrated at the vertices; at each vertex, the curvature
is defined to be

21 — the sum of the angles at the vertex.

For example, at a vertex of a cube, three faces meet, each having an angle of 7/2 there. Thus,
the curvature at the vertex of the cube is 2r — 3 x /2 = 7/2.

To do

(i) What is the sum of the curvatures at the vertices of

1. a cube?

2. a tetrahedron?

3. a dodecahedron?

4. a cube-with-a-hole?

(ii) Show that in any polyhedron (not necessarily convex), the sum of the curvatures at all
the vertices is equal to 27 (F — E+ V). (Hint: first prove this when all the faces are triangles,
using the fact that if there are F' triangular faces then the total of all of the angles at all
of the vertices is F'wr. Then do the general case by subdividing any non-triangular faces into
triangles.)

The result proved here is a polyhedral version of the Gauss-Bonnet Theorem of differential
geometry.

14. Let P be a regular polyhedron. Here is a procedure for constructing a new polyhedron.

From each vertex v of P we obtain a plane as follows: on each of the edges ending at v,
mark the midpoint. Because P is regular, all these midpoints are coplanar (i.e. there is a
plane passing through all of them). Call this plane H,. Then the new polyhedron P* is the
polyhedron enclosed by all of the planes H, obtained in this way (one for each vertex). The
polyhedron P* is called the reciprocal, or dual, of P.

To do:
(i) Make a drawing of this construction for a cube. Start by drawing the planes H,
corresponding to the vertices around the top face of the cube.



(ii) What is the dual of each of the regular polyhedra? A good drawing would provide a
satisfactory justification for your answer, but might be hard to do in the case of the icosahedron
or the dodecahedron. For these, some argument is needed. For example, how many faces does
the dual polyhedron have? From your drawing in the case of the cube you can probably guess
the relation between the faces, edges and vertices of the original polyhedron P and the faces,
edges and vertices of P*.

(iii) Show that each isometry of P is also an isometry of P*.

15. If a tetrahedron is drawn inside a cube as described in Exercise 5, where are the vertices
of the dual polyhedron (cf. Exercise 9) situated?

16. The intersection of a regular tetrahedron with a plane which meets its interior is evidently
a convex polygon. How many edges can it have?

17. The n-dimensional hypercube [—1,1]" is the set
{(z1,.-.,zp) ER": =1 <z; <1fori=1,...,n}.

Prove that if L is a 2-dimensional plane passing through two opposite vertices of the hyper-
cube (e.g. (—1,...,—1) and (1,...,1)), then the intersection of P with the hypercube is a
parallelogram (i.e. has 4 edges, with opposite edges parallel).

18. In this exercise we consider the version of stereographic projection, in which we project
to the tangent plane to the sphere at the south pole, rather than to the equatorial plane, as
in exercise 8. We uncover another interesting relation between stereographic projection and
inversion. Denote this variant of stereographic projection by sy : S? \ {N} — R2. For any
sphere S in R?, with centre A and radius r, we define inversion in S, which we denote by ig,
in the same way that we defined inversion in a circle in the plane: we map each point P in
R3\ {A} to the unique point P’ on the half line AP continued, such that AP'- AP = r2.

To do: show that for every point P € 52\ {N},

5n(P) =1is(P),

where S is the sphere with centre N and radius 2.



5n(P) R?

19. Imagine N equally charged particles which are constrained to lie on the unit sphere. Each
pair of particles repel one another with a force inversely proportional to the square of the
distance between them. Thus the force affecting particle P; is

P -P
c i
2 1P; — Bi||3/2

where C' is some constant depending on the charge. When this force points radially in or out,
then particle P; does not move, since it can only move on the surface of the sphere. So if the
force acting on each particle is radial, then the configuration is in equilibrium. Show that if
the P; lie at the vertices of a regular tetrahedron, then the configuration is in equilibrium.
Ditto for a cube. Can you find an argument which proves the corresponding statement for
every regular solid? For this last you will have to make use of the definition of regularity, of
course.

20. The proof of Theorem 12.3, that stereographic projection S? \ {N} — R? is conformal,
can be adapted to prove that stereograpic projection S™ \ {N} — R" is conformal. The only
difficulty is establishing that all of the steps, which are obvious in 2 dimensions because you
can visualize them, are still obvious even though in higher dimensions you can’t visualize
them. For example, in order to emulate the step described in the first paragraph of the proof
of 12.3, you have to show that every line tangent to the sphere S™ at any point P # N is in fact
tangent at P to a (unique) circle, contained in S™, which also passes through N. Generalising a
geometrical theorem out of the range of visibility is a good exercise in transforming geometrical
intuition into formal argument.



