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1 Introduction

Let’s begin with a little vector analysis (also known as “Physics”).
Consider a point source of fluid, such as a burst water-main, on a perfectly uniform plane.

The water spreads out uniformly from the source, with a uniform depth, and so we can measure
the fuid flowing out from the source in units of area per second. The flow is regulated so that
2πK units of area flow out each second. Once a steady state has been reached, then if the
source of the flow is taken as origin of coordinates, at the point with coordinates (x, y) the
velocity vector v(x, y) of the flow is

K
(x, y)
‖(x, y)‖2

.

This is easy to see — by symmetry the flow is radial, and, assuming that a steady state has
been reached, the amount of water crossing the circle of radius R centred at 0 is independent
of R. This quantity is equal to the circumference 2πR times the norm of the velocity vector,
and thus this norm is inversely proportional to R; to give 2πK, the constant of proportionality
must be K.

We can use this flow to derive a formula for the number of times a closed curve C in
R2 \ {(0, 0)} winds around (0, 0). Suppose first that C is simple, i.e. does not cross itself.
Then (0, 0) is either outside C, or inside. In the first case, the net amount of water crossing
the curve from inside to outside per second is 2πK; in the second case, it is 0 (see the diagram).
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The amount crossing C per second can also be calculated by an integral, namely the
integral, along C, of the component of the flow normal to C, with respect to arc length (see
Figure 2).

Figure 2

If γ : [0, `] → R2 is a parametrisation of C by arc-length, then (γ′1(t), γ
′
2(t)) is a unit tangent,

and so (γ′2(t),−γ′1(t)) is a unit vector normal to C. This vector is obtained from the tangent
vector by rotating it by π/2 in a clockwise direction. If the area inside C is on the left, with
respect to the sense in which the curve is parametrised, then this unit vector points outwards
from this region. Thus, providing C is parametrised by arc length, the total flow out of the
region is given by ∫ `

0
v(γ(t)) · n(t) dt. (1)

Again provided C is parametrised by arc length, this is equal to

K

∫ `

0

(x, y) · (−γ′2(t), γ′1(t))
‖(x, y)‖2

dt, (2)

which can be re-written as

K

∫ `

0
(
−y

x2 + y2
,

x

x2 + y2
) · γ′(t)dt. (3)

Note that even if we remove the requirement that C be parametrised by arc-length, (3) (but
not (1)) still gives the right answer. Intuitively, if we go round C at twice the speed then γ′,
and hence the integrand, is multiplied by 2, but the domain of integration has half the length
it had before, so the integral is unchanged.

Let us now fix the value of K to be 1/2π. Then we have an operator on the set of simple
closed curves in R2 \ {(0, 0)}, which gives the answer 0, 1 or −1. If we now allow the curve
C to cross itself, then the range of possible answers becomes all of Z; one can see this by de-
composing an arbitrary closed curve C into a sequence of simple closed curves, and observing
that the integral is additive over disjoint domains. Whereas previously the integral gave ±1 if
the origin was inside the curve C and 0 if it is outside, now it is better simply to say that the
integral measures the number of times C winds around the origin in an anticlockwise direction.
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Exercise 1.1 Show that the integral really is unchanged under a reparametrisation

Exercise 1.2 Generalise this construction to 3 dimensions. That is, use a similar physical
argument to devise an integral formula which, given a parametrisation of a closed surface in
3-space, gives the value ±1 if the origin is in the region enclosed by the surface, and 0 if it is not.

Exercise 1.3 How can we prove that these formulae really do what we claim?

2 The first “C”: Cohomology

I assume you have met the definitions of smooth manifold, differential form, the exterior
derivative of a differential form, and the integral of a (compactly supported) differential form
on an oriented manifold.

Given a smooth manifold M we denote by Ωk(M) the space of smooth (C∞) k-forms, and
by Ω•(M) the complex

0 → Ω0(M) d−→ Ω1(M) d−→ Ω2(M) d−→ · · · d−→ Ωn(M) → 0,

where n = dim M and d is the exterior derivative. “Complex” here means that d2 = 0, and so

im{d : Ωk−1(M) → Ωk(M)} ⊆ ker{d : Ωk(M) → Ωk+1(M)};

the quotient of kernel by image is the k’th de Rham cohomology group, Hk
DR(M). The subscript

DR indicates de Rham, and when G. de Rham first studied this construction he thought he
had a new invariant of smooth manifolds. This was not quite so: it turns out that de Rham
cohomology coincides with cohomology defined by other means (e.g. singular cohomology)
(with coefficients in R), so we will drop the subscript.

Example 2.1 The differential form

−ydx
x2 + y2

+
xdy

x2 + y2

on R2 \ {(0, 0)} is known as dθ. This is because in any region of the plane in which the polar
coordinate θ (see the diagram below) is smooth and well-defined, then this form is indeed
equal to the exterior derivative of θ, as you should check (perhaps by writing θ = arctan(y/x)
— some such expression is valid in a neighbourhood of each point in R2 \ {(0, 0)}, and any
two determinations of θ differ by a multiple of 2π (i.e. a constant), and thus have the same
exterior derivative.)
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Figure 3

The name dθ is deliberately ironical (one might say, deliberately confusing), since the polar
coordinate θ is not a smooth and single-valued function on all of R2 \ {(0, 0)}. However, since
dθ is at least locally the exterior derivative of a function, it is closed, given that d2 = 0. On
the other hand despite its name it is not exact: there can be no smooth function defined on
all of R2 \ {(0, 0)} of which dθ is the exterior derivative. This follows, by Stokes’s Theorem
(2.9 below), from

Exercise 2.2 The integral in formula (3) of the Introduction is just
∫
C dθ.

If dθ were the exterior derivative of a function defined on all of R2 \ {(0, 0)}, then by Stokes’s
theorem its integral over any simple closed curve in R2 \ {(0, 0)} would be zero, which, by the
discussion in the Introduction, we know not to be the case for dθ. The fact that dθ is closed
but not exact means that its class in H1(R2 \ {(0, 0)}) is not 0. We shall see later that the
class of dθ generates (is a basis of) H1(R2 \ {(0, 0)}).

We shall also see (in 2.20 below) that every closed k-form ω on a smooth manifold is, in
some neighbourhood Ux of every point x, the exterior derivative of some (k − 1)-form σx,
so that our form dθ is not special in this regard. The point is whether or not these local
(k − 1)-forms piece together to form a global (k − 1)-form σ such that ω = dσ.

Example 2.1 continued In fact, if we break up C into pieces Ci, each one contained in some
region in which θ can be represented as a smooth, single- valued function θi, then∫

C
dθ =

∑
i

∫
Ci

dθ =
∑
i

∫
Ci

dθi.

By Stokes’s theorem (which in the case of curves is just the fundamental theorem of calculus),
if Pi−1 and Pi are the end-points of Ci, so that ∂Ci = Pi − Pi−1, then∫

Ci

dθi = θi(Pi)− θi(Pi−1).

Note that each function θi really is well defined and single-valued (unlike θ), and so we really
can apply Stokes’s theorem after we have broken up the curve into bits. The choice of definition
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of θi makes no difference, of course, since any two distinct versions differ by a constant. In the
curve shown here, we might define the functions

θ1 : R2 \ Ray 1 → (−π/4, 7π/4)
θ2 : R2 \ Ray 2 → (−3π/4, 5π/4)
θ3 : R2 \ Ray 3 → (−3π/2, π/2).

Figure 4

Observe that Ci is contained in the domain of θi for i = 1, 2, 3. We have∫
C
dθ =

∫
C1

dθ1 +
∫
C2

dθ2 +
∫
C3

dθ3

= (θ1(P1)− θ1(P0)) + (θ2(P2)− θ2(P1)) + (θ3(P3)− θ3(P2))

= (3π/2− 0) + (π − (−π/2)) + (0− (−π)) = 4π.

Exercise 2.3 Calculate H0(R) and H1(R). This is easy to do directly from the definition.

De Rham cohomology is functorial: if f : M → N is a smooth map, then pull-back of forms
gives a map f∗ : Ωk(N) → Ωk(M) for each k, which commutes with the exterior derivative d;
it follows that f∗ passes to the quotient to give a map Hk(N) → Hk(M), also denoted f∗, or
Hk(f) is you are punctilious. We have (g ◦ f)∗ = f∗ ◦ g∗, and (idM )∗ is the identity, so Hk is
a contravariant functor.

The wedge product of forms, Ωj(M) × Ωk(M) → Ωj+k(M), also passes to the quotient
(because d(ω ∧ ρ) = dω ∧ ρ+ (−1)kω ∧ dρ) to give a product Hj(M)×Hk(M) → Hj+k(M),
and this gives the direct sum ⊕kHk(M) a ring structure, which is also functorial.
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Exercise 2.4 Show that the wedge product of forms passes to the quotient to define a product
Hj(M)×Hk(M) → Hj+k(M)

But what is a differential form? I assume you know the definition, but is this an adequate
peg on which to hang a concept? Here are some more examples.

Example 2.5 1. Suppose that M is an n-dimensional oriented manifold equipped with a
Riemannian metric (an inner product on each tangent space TpM , varying smoothly with p).
Then we have the notion of orthonormal basis for TpM . An n-form which takes the value 1
on any (and therefore every) positively oriented orthonormal basis is called a volume form.
Indeed, if U ⊂M is a region with compact closure then the integral

∫
U volM is the (oriented)

volume of M .

Exercise 2.6 If M ⊂ R2 or R3, we have a pre-existing notion of “volume” (called “length”
if M is 1-dimensional and “area” if M is 2-dimensional). Give a heuristic argument that if
we give M the Riemann metric it inherits naturally from Rn, then

∫
U volM agrees with this

pre-existing notion.

Exercise 2.7 Suppose that M ⊂ Rn+1 is a smooth oriented hypersurface, with positively
oriented unit normal vector field u(x) = (u1(x), . . . , un+1(x)) (i.e. for each x ∈M , a basis for
TxM is positive if this basis, preceded by n(x), is a positive basis for Rn+1). Show that∑

i

(−1)i−1ui(x)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1

is the volume form. Hint: A positive orthonormal basis v1, . . . , vn of TxM gives rise to a
positive orthonormal basis u(x), v1, . . . , vn for Rn+1.
In particular, write down an explicit volume form on the n-sphere Sn.

Exercise 2.8 Show that if M is a compact oriented manifold (without boundary) and volM
its volume form, then volM 6= 0 in Hn(M).

2. If Mn ⊂ Rn+1 is an oriented hypersurface, there is a Gauss map γ : M → Sn, γ(x) = the
positively oriented unit normal to M at x. Gauss used this to define a the curvature κ(x) of
M at x:

κ(x) = lim
U↘{x}

volume(γ(U))
volume(U)

.

Make a drawing to see that this is reasonable! With a bit of extra effort this can be given a
sign: +1 if locally γ preserves orientation, −1 if it reverses it. If γ is not a local diffeomorphism
at x, then κ(x) = 0. Can you find a heuristic argument for this? It is closely related to the
proof of Sard’s theorem, that the set of critical values of a smooth map has measure zero.

In fact, if volM and volSn are volume forms, then because the space of alternating n-tensors
on an n-dimensional vector-space is 1-dimensional, γ∗(volSn) must at each point on M be a
scalar multiple of volM ; and of course by continuity we find that the scalar in question is
precisely the Gauss curvature κ of M .
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3. Let X be a vector field on R3, and imagine that it is the velocity field of a fluid flow. For
each point x ∈ R3, each pair of vectors v1, v2, and each positive real ε, imagine a parallelogram
Pε based at x and spanned by εv1 and εv2. Note that the area of Pε, divided by ε2, is
independent of ε. Let

ω(v1, v2) = limε → 0
fluid flow through Pε per unit time

ε2
.

We can give this a sign: flow through Pε is positive if its projection to the normal direction
agrees with v1 × v2, and negative if it disagrees. Then ω is a smooth 2-form on R3.

When is ω closed?

4. The vector field X also defines a 1-form ρ: ρ(v) = v ·X (where the dot means ordinary
scalar product). What is dρ?

What are forms for? One should, of course, ask this kind of question about every new
object one meets in mathematics. Asking it and trying to answer helps to free up intellectual
energy to devote to the topic in question, even when one does not find a clear answer at first.

Example 2.9 Stokes’s Theorem says that for an oriented manifold Mn with boundary ∂M ,
and for any compactly supported form ω ∈ Ωn−1(M),∫

M
dω =

∫
∂M

ω.

This is also valid on a manifold with corners, such as a k-simplex, and leads to an interesting
pairing between de Rham cohomology and singular homology, which I now describe.

A singular k-simplex in M is a smooth map to M from the standard k-simplex ∆k, defined
by

∆k = {(x1, . . . , xk+1) ∈ Rk+1
+ :

∑
i

xi = 1}.

If s is a singular k-simplex and ω ∈ Ωk(M), we can integrate ω over s — that is, the integral∫
∆k
s∗(ω) is defined.
A singular k-chain is a “formal sum”

∑
i nisi, where the ni are integers and si is a singular

k-simplex. “Formal” means you don’t have to worry about what it is, only about what it does.
And what is does, is that you can integrate a k-form over it: if c is the k-chain

∑
i nisi, then

we define ∫
c
ω =

∑
i

ni

∫
si

ω.

The collection of all singular k-chains forms a Z-module, Ck(M). If s is a singular k-simplex,
one can think of the singular chain −1 · s (or −s) simply as s with the opposite orientation.
Certainly, that is how it behaves in integration: by definition of the integral over a k-chain,∫

−s
ω = −

∫
s
w.
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There are inclusions ij : ∆k−1 ↪→ ∆k for j = 1, . . . , k + 1: ij(x1, . . . , xk) = (x1, . . . , 0, . . . , xk)
with the zero in the j-th position. Using these we define a boundary operator Ck(M) → Ck−1(M),
by setting

δ(s) =
∑
j

(−1)j−1(s ◦ ij)

on a singular k-simplex s and extending linearly to formal sums of k-simplices. The coefficient
(−1)j−1 guarantees that the k − 1-simplex s ◦ ij appears with the correct orientation (i.e. as
part of the boundary of s).

Figure 5: The diffeomorphism i2 gives the second edge of ∆2 the opposite orientation to its
boundary orientation

Abusing our notation slightly and denoting by δ∆k the singular (k − 1)-chain in ∆k equal to∑
(−1)j−1ij , it follows that for any k − 1-form defined on the standard k-simplex ∆k,∫

∂∆k

ω =
∫
δ∆k

ω (4)

From this and Stoke’s theorem we get the following “simplicial” version of Stokes’s Theorem:

Theorem 2.10 If c =
∑

imiσi is a singular k-chain in the smooth manifold M , and ω ∈
Ωk−1(M), then ∫

c
dω =

∫
δc
ω.

2

Exercise 2.11 Prove this.

We find that δ2 = 0 (Exercise). Note that this doesn’t mean that the double boundary is
empty, merely that in its expression as formal sum, all the coefficients are 0. We define the
k-th homology group Hk(M) to be

ker{δ : Ck(M) → Ck−1(M)}
im{δ : Ck+1(M) → Ck(M)}

.1

1Every continuous singular k-simplex in a smooth manifold can be well-enough approximated by a smooth
singular k-simplex, so this group coincides with the group defined in terms of continuous singular k-simplices
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Every compact smooth manifold M can be finitely triangulated; that is, can be subdivided
into a finite number of simplices. Any such triangulation ∆ gives rise to a singular chain
σ∆ ∈ Ck(M), and in Ck(N) if M is a smooth submanifold of N . If M is a manifold without
boundary, then δ(σ∆) = 0.

Figure 6

Exercise 2.12 Check that in each of these two cases, the boundary of the singular 1-chain
σ∆ is equal to 0.

Two k-chains which differ by a boundary are said to be homologous. Stokes’s theorem tells
us that for any ω ∈ Ωk(M),

∫
δc ω =

∫
c dω, and therefore

1. if dω = 0 then
∫
δc ω = 0. and

2. if δc = 0 then
∫
c(dω) = 0,

As a consequence, if ω is closed and c1 and c2 are homologous then
∫
c1
ω =

∫
c2
ω, and if δc = 0

and ω1 and ω2 are cohomologous (i.e. differ by dρ for some ρ) then
∫
c ω1 =

∫
c ω2. Thus,

integration descends to a pairing

Hk(M)×Hk(M) → R, ([c], [ω]) 7→
∫
c
ω.

The de Rham Theorem (which we will not prove directly) says that by means of this pairing

Hk(M) = HomZ(Hk(M),R)

and
Hk(M)⊗Z R = HomR(Hk(M),R).

Note that if our singular chains have coefficients in R instead of in Z, these two formulae
simplify slightly.
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Remark 2.13 If ∆1 and ∆2 are any two triangulations of a manifold Mn, then the two n-
chains σ∆1 and σ∆2 are homologous. Thus they represent the same homology class in Hn(M)
(and in Hn(N) if M ⊂ N), the fundamental class of M .

Exercise 2.14 The integral of a holomorphic function along a closed curve in C can be viewed,
in real terms (i.e. interpreting C as R2) as the integral of a pair of 1-forms along the curve.
Use Stokes’s Theorem, and the Cauchy-Riemann equations, to show that
(i) if C is a simple closed curve enclosing a domain U ⊂ C in which the function f is holomor-
phic, then

∫
C f(z)dz = 0;

(ii) if C1 and C2 are simple closed curves which together make up the boundary of a region
within which f is holomorphic, then∫

C1

f(z)dz =
∫
C2

f(z)dz.

What is the most general statement of this type that you can make, using Stokes’s Theorem
and the Cauchy-Riemann equations?

The Poincaré Lemma

We now veer from the impressionistic to the technical, and prove a result which turns out to
explain, in some sense, why de Rham cohomology is the same as other standard cohomology
theories, such as singular cohomology.

Theorem 2.15 (The Poincaré Lemma) For all n ≥ 0

Hk(Rn) =
{R if k = 0

0 otherwise

Proof We use a lemma:

Lemma 2.16 Let π : Rn × R → Rn be projection, and let s : Rn → Rn × R be the inclusion
s(x) = (x, 0). Then for each k, s∗ : Hk(Rn × R) → Hk(Rn) and π∗ : Hk(Rn) → Hk(Rn × R)
are mutually inverse isomorphisms.

Proof Since π ◦ s = idRn , it follows from functoriality that s∗ ◦ π∗ is the identity on
Hk(Rn). The other equality, π∗ ◦ s∗ = id∗Rn×R is not obvious. To prove it, we construct
a chain homotopy between the maps (of complexes) π∗ ◦ s∗ : Ω•(Rn × R) → Ω•(Rn × R)
and the identity map on the same complex. That is, we construct a family of maps K :
Ωk(Rn × R) → Ωk−1(Rn × R) such that

1− π∗ ◦ s∗ = ±(dK ±Kd)

(here “1” means the identity map on Ωk(Rn×R)). For in that case, if ω ∈ Ωk(Rn×R) is closed
then (1 − π∗ ◦ s∗)(ω) = ±d(K(ω)) and so is zero in cohomology, and thus 1 − π∗ ◦ s∗ is the
zero map on Hk(Rn × R).

To construct K, note that every form on Rn × R is a linear combination (over R) of forms
of the following two kinds:
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(1) π∗(φ)f(x, t)
(2) π∗(φ)f(x, t) ∧ dt
where φ is a form on Rn and f is a function on Rn × R. We define K by
(1) K(ω) = 0 if ω is of type (1), and
(2) if ω = π∗(φ)f(x, t) ∧ dt is a form of type (2), then K(ω) = π ∗ (φ)

∫ t
0 f(x, u)du

and extending by R-linearity.

If ω is a q-form of type (1), we have (1− π∗ ◦ s∗)(ω) = π∗(φ)f(x, t)− π∗(φ)f(x, 0), while

(dK −Kd)(ω) = −Kdω = −K

{
dπ∗(φ)f(x, t) + (−1)qπ∗(φ) ∧

{∑
i

∂f

∂xi
dxi +

∂f

∂t
dt

}}

= −K

{
π∗(dφ)f(x, t) + (−1)q

∑
i

π∗(φ ∧ dxi)
∂f

∂xi
+ (−1)qπ∗(φ)

∂f

∂t
∧ dt

}

= (−1)qπ∗(φ)
∫ t

0

∂f

∂u
du

= (−1)qπ∗(φ){f(x, t)− f(x, 0)}.

Thus, up to sign, dK −Kd and 1− π∗ ◦ s∗ agree on forms of type (1).
An equally straightforward calculation (Exercise) proves the result also for forms of type

(2). 2

The Poincaré Lemma now follows by induction, from e.g. a calculation of H∗(R). 2

The same method of proof shows

Corollary 2.17 For any manifold M , the projection π : M × R → M and the zero-section
M → M × R induce mutually inverse isomorphisms on cohomology. 2

Corollary 2.18 (Homotopy invariance of de Rham cohomology) If f and g are smoothly
homotopic smooth maps from M to N , then f∗ and g∗ agree on cohomology.

Proof Given a smooth homotopy F : M × R → N , with f(x) = F (x, 0) and g(x) =
F (x, 1), it follows that f∗ = s∗0 ◦ F ∗ and g∗ = s∗1 ◦ F ∗, where s0(x) = (x, 0) and s1(x) = (x, 1).
Both s∗0 and s∗1 are inverse isomorphisms to π∗, and thus coincide. Hence f∗ = g∗. 2

Corollary 2.19 If f : M → N is a smooth homotopy equivalence, then f∗ is an isomorphism
on cohomology. 2

Remark 2.20 By functoriality, de Rham cohomology is a diffeomorphism- invariant. Every
point on an n-manifold M has arbitrarily small neighbourhoods U diffeomorphic to Rn. It
follows from the Poincaré Lemma that inside such a neighbourhood, every closed form is exact,
or, in other words, the complex

0 → R → Ω0(U) → Ω1(U) → · · · → Ωn(U) → 0
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is exact. In case you are familiar with sheaf theory, this means that the complex of sheaves of
germs of differential forms on M , Ω•M , is a resolution of the sheaf RM :

0 → RM → Ω0
M → Ω1

M → · · · → Ωn
M → 0

is an exact sequence of sheaves.

The Mayer Vietoris Sequence

Every n-manifold can be put together from pieces diffeomorphic to Rn. Where the number
of these pieces is finite, the Mayer-Vietoris sequence in principle gives a way of calculating
H∗(M). To obtain it, we begin by constructing a short exact sequence of complexes.

Suppose that U1 and U2 are open subsets of the n-manifold M . We have a commutative
diagram

U1

i1 ↗ ↘ j1
U1 ∩ U2 U1 ∪ U2

i2 ↘ ↗ j2
U2

from which we derive an evidently exact sequence

0 → Ωk(U1 ∪ U2)
(j∗1 ,j

∗
2 )

−→ Ωk(U1)⊕ Ωk(U2)
i∗1−i∗2−→ Ωk(U1 ∩ U2).

Lemma 2.21 i∗1 − i∗2 is surjective.

Proof Choose a partition of unity subordinate to the open cover {U1, U2} of U1 ∪ U2.
That is, choose φ1 and φ2, smooth functions on U1 ∪ U2, such that supp φi ⊂ Ui for i = 1, 2,
and such that φ1 + φ2 is identically equal to 1 on U1 ∪ U2. Given a form ω ∈ Ωk(U1 ∩ U2),
the form φ1ω can be smoothly extended to give a form on all of U2 by declaring it equal to 0
on U2 \ U1 ∩ U2, and similarly φ2ω extends to a form on U1. Regarding φ1ω and φ2ω in this
way as forms on U2 and U1, we have ω = φ1ω + φ2ω = i∗1(φ2ω) − i∗2(−φ1ω), and this proves
surjectivity. 2

So the exact sequence can be augmented by adding a → 0 on the right. We thus have a
short exact sequence for each k; as is easily seen, these piece together to give a short exact
sequence of complexes

0 → Ω•(U1 ∪ U2)
(j∗1 ,j

∗
2 )

−→ Ω•(U1)⊕ Ω•(U2)
i∗1−i∗2−→ Ω•(U1 ∩ U2) → 0

(that is, the morphisms shown commute with the exterior derivatives in the complexes).

Proposition 2.22 A short exact sequence 0 → A• → B• → C• → 0 of complexes gives rise
to a long exact sequence of cohomology

· · · → Hk(A•) → Hk(B•) → Hk(C•) d∗−→ Hk+1(A•) → · · · .
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Proof The morphisms Ak → Bk and Bk → Ck descend to morphisms of cohomology
Hk(A•) → Hk(B•) and Hk(B•) → Hk(C•) because they commute with the differentials in
the three complexes. And exactness at Hk(B) is easy to prove.

The only mystery is the definition of d∗, which is constructed by a diagram chase. Be-
gin with an element of Hk(C•), which you can represent by an element ck of Ck such that
dC(ck) = 0. By the surjectivity of the map Bk → Ck, there is a bk ∈ Bk mapping to ck. By
commutativity, the image in Ck+1 of dB(bk) is 0; by exactness of the sequence of complexes,
there exists ak+1 ∈ Ak+1 mapping to dB(bk). One proves:

• dA(ak+1) = 0, so ak+1 defines a cohomology class in Hk+1(A•), and

• this class is independent of all of the choices made in its construction, so we have a
well-defined map d∗ : Hk(C•) → Hk+1(A•).

• d∗ is linear, because the choices made in the construction of ak+1 can be made linearly.

The proof of exactness at the other spots in the sequence is then straightforward, and fun. 2

The long exact sequence arising from the short exact sequence of complexes

0 → Ω•(U1 ∪ U2)
(j∗1 ,j

∗
2 )

−→ Ω•(U1)⊕ Ω•(U2)
i∗1−i∗2−→ Ω•(U1 ∩ U2) → 0

is called the Mayer-Vietoris sequence.

Exercise 2.23 Go through the construction of d∗ in the Mayer-Vietoris sequence.

Exercise 2.24 Prove the rank theorem: if 0 → A → B → C → 0 is an exact sequence of
finite dimensional vector spaces and linear maps, then dim B = dim A+ dim C. Hint: choose
bases a1, . . . , an for A and c1, . . . , cm for C. Use them to get a basis for B.

Exercise 2.25 Show that if 0 → A1 → · · · → An → 0 is an exact sequence of finite-dimensional
vector spaces and linear maps, then

∑
i(−1)idim Ai = 0. Hint: break the long exact sequence

up into a collection of short exact sequences, and apply the rank theorem.

Exercise 2.26 Use the Mayer-Vietoris sequence to calculate the cohomology of the circle
S1 (Hint: Cover S1 with open sets U1 and U2 each diffeomorphic to R). By following the
construction of d∗ in Mayer- Vietoris, give as precise a description as you can of a non-zero
element of H1(S1).

Exercise 2.27 Use the Mayer-Vietoris sequence, and the previous exercise, to calculate the
cohomology of the sphere S2, and, inductively, of the sphere Sn.

Exercise 2.28 Show that the inclusion Sn ↪→ Rn \{0} is a homotopy-equivalence and deduce
that it induces an isomorphism in cohomology.

Exercise 2.29 Calculate the cohomology of Rn\{P1, P2}, where P1 and P2 are any two points.
Generalise to k points.
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Exercise 2.30 For future use we need the following statement, the Five Lemma: suppose
that in the following diagram of abelian groups and homomorphisms, the rows are exact and
all the vertical maps except possibly for φk are isomorphisms.

· · · → Ak−2 → Ak−1 → Ak → Ak+1 → Ak+2 → · · ·
↑ φk−2 ↑ φk−1 ↑ φk ↑ φk+1 ↑ φk+2

· · · → Bk−2 → Bk−1 → Bk → Bk+1 → Bk+2 → · · ·

Then φk also is an isomorphism.

Two Applications

Theorem 2.31 On the sphere Sn there is a nowhere-vanishing vector field if and only if n is
odd.

Proof of “only if”:
Step 1: If v is a nowhere vanishing vector field on Sn then after dividing by its length, we can
assume ‖v(x)‖ = 1 for all x. The map

F (x, t) = cos(πt)x+ sin(πt)v(x)

is then a homotopy between the identity map and the antipodal map a(x) = −x.
Step 2: In Hn(Sn), the class of the volume form is not zero, by Stokes’s Theorem (Exercise).
But if n is even, a∗(volSn) = −volSn (Exercise). This means that a cannot be homotopic to
the identity, since homotopic maps induce the same morphism on cohomology. 2

Exercise Prove “if” in the theorem by contructing a nowhere-vanishing vector field on S1,
then generalising to S2n+1.

Theorem 2.32 Brouwer’s Fixed Point Theorem: Any continuous map of the unit ball Dn+1 ⊂
Rn+1 to itself has a fixed point.

Proof First assume f : Dn+1 → Dn+1 is smooth, and has no fixed point. Define a
smooth map r : Dn+1 → Sn by mapping each x to the point where the line-segment f(x) to
x, continued, meets the boundary, Sn. Clearly r is the identity map on Sn; in other words, if
i : Sn → Dn+1 is inclusion, we have r ◦ i = idSn . It follows that the composite

Hn(Sn) r∗−→ Hn(Dn+1) i∗−→ Hn(Sn)

is the identity on Hn(Sn). But Hn(Rn+1) = 0 and Hn(Sn) 6= 0 so this is impossible.
If we assume that the continuous map f : Dn+1 → Dn+1 has no fixed point, then by

compactness there exists ε > 0 such that for all x ∈ Dn+1, ‖f(x)−x‖ ≥ ε. We can approximate
f by a smooth map g : Dn+1 → Dn+1 such that ‖f(x)− g(x)‖ < ε for all x (how?); it follows
that g also has no fixed point, a contradiction. 2
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3 Compactly Supported Cohomology and Poincaré Duality

Heuristic Introduction
If C1 and C2 are two oriented closed curves on the oriented 2-torus T 2, we can assign them
an intersection index C1 · C2 ∈ Z (after slightly shifting one to make them transverse to one
another, if they are not transverse to start with), and then counting their intersection points,
with sign, as follows: let ĉi be a positive basis for TxCi, i = 1, 2; then

(C1 · C2)x =
{

1 if ĉ1, ĉ2 is a positive basis for TxT 2

−1 if ĉ1, ĉ2 is a negative basis for TxT 2

(This “slight shifting” needs some justification: we really mean a homotopy of the embedding
Ci ↪→ T 2. Any two “slight shiftings” of the same curve Ci are homotopic to one another, and
thus have the same intersection index with any curve they are both transverse to.)

The set of all oriented closed curves can be made into an abelian group C(T 2) by taking
formal sums with integer coefficients. The pairing on curves extends to a pairing on formal
sums of curves, in the obvious way:∑

i

niCi ·
∑
j

mjDj =
∑
i,j

nimjCi ·Dj .

One checks that it is skew-symmetric.
Like any bilinear pairing, this pairing gives rise to a duality map

C(T 2) → HomZ(C(T 2),Z),

sending C to C· and
∑

iCi to
∑

iCi·. This map is not injective, however. Exercise Find a
closed curve C ⊂ T 2 such that for every closed curve C ′ ⊂ T 2, C · C ′ = 0

In order to get an injective duality map, we have to kill elements of C(T 2) whose intersection
index with every curve is 0. We can do this by imposing an equivalence relation on formal
sums of closed curves: for example, homotopy. However, we get a better result if we impose a
still weaker equivalence relation, that of homology. We may as well go straight to the point:
instead of C(T 2) we consider the group H1(T 2; Z).

Poincaré observed that the duality map

H1(T 2; Z) → HomZ(H1(T 2; Z),Z)

induced by the intersection pairing is an isomorphism, and for that reason it, and its gener-
alisation to other compact manifolds and other dimensions (i.e. not just curves), is known as
Poincaré duality.

If M is a compact n-dimensional manifold, there is a well-defined intersection pairing

Hk(M ; Z)×Hn−k(M ; Z) → Z;

given homology classes [ck] and [cn−k] it is possible to represent them by chains ck and cn−k
which are in “general position” with respect to one another, and then count intersection points,
with sign, much as we did for closed curves on the torus. This pairing induces a duality map

Hk(M ; Z) → HomZ(Hn−k(M ; Z),Z);
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but in general this is not an isomorphism. The problem is the existence of torsion elements
in homology. A torsion element is a non-zero homology class [c] such that for some integer
m 6= 0, m[c] = 0. Exercise Suppose that [c] ∈ Hk(M) is a torsion element. Show that for any
[cn−k] ∈ Hn−k(M ; Z), we have [ck] · [cn−k] = 0.

A familiar example of torsion element can be found in H1(RP2; Z); if we think of RP2 as the
quotient of the 2-sphere S2 by the equivalence relation identifying antipodal points, then we
can represent a non-zero element of H1(RP2; Z) by a half-circle in S2 joining a pair of antipodal
points (so that it becomes a closed curve in RP2). One can think of this curve as the central
circle of the Möbius strip; it is well known that cutting the strip along its central circle does
not disconnect it, but that cutting it along a curve which winds twice around the strip does
disconnect it. This means that this twice-winding curve is the boundary of a 2-chain — either
one of the two halves into which it disconnects the Möbius strip will do.

Figure 7: The image of the shaded band in RP2 is a Mobius strip; its central circle (the
image of the thick black curve) is non-zero in H1(RP2; Z) - in fact it’s a generator.

In order for the duality map to be an isomorphism, it turns out to be necessary to kill torsion,
by taking coefficients in Q rather than in Z, or, equivalently, by tensoring the homology groups
H∗(M ; Z) with Q.

Theorem 3.1 Homological Poincaré Duality: if Mn is a compact oriented manifold then the
intersection pairing Hk(M ; Q)×Hn−k(M ; Q) → Q gives rise to an isomorphism

Hk(M ; Q) ' Hom(Hn−k(M ; Q),Q).

2
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Poincaré Duality in de Rham Cohomology

An apparently quite different duality arises from the wedge product of differential forms: if
Mn is compact and oriented, we get a pairing

Hk(M)×Hn−k(M) → R

([ω1], [ω2]) 7→
∫
M
ω1 ∧ ω2.

Exercise Show that this pairing is well-defined.
It turns out that this is closely related to the intersection form in homology. It is this version
of Poincaré Duality that we will study in detail. Later we will see how it corresponds to
homological Poincaré duality.

Our proof of (cohomological) Poincaré duality for compact manifolds will go by induction
on the number of contractible open sets necessary to cover the manifold, using the Mayer
Vietoris sequence. However, in the course of assembling a compact manifold from open sets,
one has a non-compact manifold until the final step. In order for an inductive proof to be
possible, we therefore need a version of Poincaré duality which holds on non-compact manifolds.
The key is to consider a special class of differential forms, the class of compactly supported
differential forms. A form ω ∈ Ωk(M) is compactly supported if outside some compact set
X ⊂ M it is identically zero. Even if M is not compact, one can integrate a compactly
supported form over it; thus there is a pairing

Ωk(M)× Ωn−k
c (M) → R

(ω1, ω2) 7→
∫
M
ω1 ∧ ω2.

Here Ωn−k
c (M) denotes the vector space of all compactly supported n− k-forms.

If ω ∈ Ωj
c(M) then dω ∈ Ωj+1

c (M), and thus (Ω•c(M), d), is a subcomplex of the de Rham
complex (Ω•(M), d). Its cohomology groups are the compactly supported cohomology groups of
M , and are denoted Hk

c (M). Note that although (Ω•c(M), d) is a subcomplex of (Ω•(M), d), it
is not in general the case that the compactly supported cohomology space Hk

c (M) is a subspace
of Hk(M).

Exercise Why not?

Exercise Compute H0
c (R) and H1

c (R)

Of course, if M is compact then every form is compactly supported, so the rings H∗
c (M)

and H∗(M) coincide.

Theorem 3.2 Poincaré Duality in de Rham Cohomology. The integration pairing Hk(M)×
Hn−k
c (M) → R induces an isomorphism Hk(M) → (Hn−k

c (M))∗. 2

Warning: the pairing also induces a map Hn−k
c (M) → (Hk(M))∗; however, this is not neces-

sarily an isomorphism.
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Exercise (i) Show that if a bilinear pairing V1 × V2 → R of finite dimensional vector-spaces
induces an isomorphism V1 → V ∗2 then it also induces an isomorphism V2 → V ∗1
(ii) Conclude that if Hk(M) is finite dimensional then the integration pairing induces an iso-
morphism Hn−k

c (M) → (Hk(M))∗.
(iii) Give an example of vector spaces and a pairing V1 × V2 → R inducing one isomorphism
but not the other. Hint: take V1 to be a suitable infinite dimensional vector space and V2 to
be V ∗1 .
(iv) Give an example of a manifold M such that Hn−k

c (M) → Hk(M)∗ is not an isomorphism.

Before beginning the proof of 3.2, we note an important consequence:

Corollary 3.3 If M is a connected oriented n-manifold, then Hn
c (M) ' R. If M is also

compact, then Hn(M) ' R.

Proof H0(M) = R. 2

Exercise 3.4 Show that if M is connected, oriented and n-dimensional but is not compact
then Hn(M) = 0.

Compactly Supported Forms and Cohomology

Our proof of Theorem 3.2 will be by induction on the number of open sets in a cover, using the
Mayer-Vietoris sequence in the inductive step. Our first step will be to prove it for M = Rn.
This is another reason why it is useful to introduce compactly supported cohomology: if we
were trying to prove an assertion valid only for compact manifolds, we couldn’t use induction
beginning with something non-compact like Rn.

Exercise 3.5 Suppose that M is an oriented n-dimensional manifold without boundary and
let ω ∈ Ωn

c (M) be a compactly supported n-form on M , such that
∫
M ω 6= 0. Show that

[ω] 6= 0 in Hn
c (M).

Since Hk(Rn) = R if k = 0 and is 0 otherwise, we have to prove that Hk
c (Rn) = R if k = n

and is 0 otherwise. Not surprisingly, we need a version of the Poincaré Lemma for compactly
supported cohomology. This will be somewhat different from the previous version. For a start,
the dimension in which the compactly supported cohomology of Rn is non-zero changes with n
(it is n) and so in place of the isomorphism H∗(Rn) ' H∗(Rn×R), we look for an isomorphism
H∗
c (Rn) ' H∗+1

c (Rn × R). In fact at no extra cost we can prove this for an arbitrary oriented
manifold M .

We construct a map Hk−1
c (M) → Hk

c (M × R) as follows: let e be a compactly supported
1-form on R such that

∫
R e = 1. By the exercise above, [e] 6= 0 in H1

c (R) (and in fact
it generates H1

c (R)). Let π : M × R → M and ρ : M × R → R be projections; we define
e∗ : Ωk−1

c (M) → Ωk
c (M × R) by

e∗(ω) = π∗(ω) ∧ ρ∗(e)
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(which we will write simply as e∗(ω) = ω ∧ e.) This map descends to a map on cohomology
(Exercise), which we also denote e∗, Hk−1

c (M) → Hk
c (M × R). We will show that it is an

isomorphism.

Exercise Show, using iterated integration, that if
∫
M ω 6= 0 then

∫
M×R e∗(ω) 6= 0.

In fact we will not need to use the result of this exercise in our proof.
We construct the cohomological inverse to e∗ by integration along the fibre. For each k

define
π∗ : Ωk

c (M × R) → Ωk−1
c (M)

by :

(1) if ω = π∗(φ)f(x, t) we set π∗(ω) = 0,
(2) if ω = π∗(φ)f(x, t) ∧ dt, then π∗(ω) = φ

∫∞
−∞ f(x, t)dt.

Every form is a sum of forms of these two types; we extend π∗ linearly. Note that in Ω0
c(M×R)

there are only forms of type (1), and so here π∗ = 0.

Exercise 3.6 Show that dπ∗ = π∗d (so that π∗ induces a morphism Hk
c (M×R) → Hk−1

c (M)).

It is easy to see that π∗ ◦ e∗ = 1 on Hk−1
c (M). To show that e∗ ◦ π∗ = 1 on Hk

c (M ×R), as
in the proof of the previous version of the Poincaré Lemma we construct a homotopy operator,
K : Ω•c(M × R) → Ω•−1

c (M).

It is defined as follows:

(1) If ω = π∗(φ)f(x, t) then K(ω) = 0
(2) If ω = π∗(φ)f(x, t) ∧ dt then

K(ω) = π∗(φ)
{∫ t

−∞
f(x, u)du−A(t)

∫ ∞

−∞
f(x, u)du

}
where A(t) =

∫ t
−∞ e.

Lemma 3.7 1− e∗ ◦ π∗ = (−1)k−1(dK −Kd) on Ωk
c (M × R).

Proof Exercise (see Bott and Tu pages 38-39). 2

Proposition 3.8 The maps π∗ : Hk
c (M × R) → Hk−1

c (M) and e∗ : Hk−1
c (M) → Hk

c (M × R)
are mutually inverse isomorphisms. 2

Corollary 3.9

Hk
c (Rn) =

{
R if k = n
0 otherwise

2
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Exercise (i) Find a generator for Hn
c (Rn).

(ii) Show that if U ⊂ Rn is any open set, it is possible to choose a generator ω for Hn
c (Rn)

with supp(ω) ⊂ U .

Exercise Prove Poincaré Duality (3.2) for Rn.

Good Covers

An open cover {Uα}α∈A of the n-manifold M is good if for every choice α0, . . . , αk ∈ A,
Uα0 ∩ · · · ∩ Uαk

is diffeomorphic to Rn. Such covers are also sometimes called acyclic covers.
They are important in all cohomology theories; one can think of them as a way of assembling
M out of cohomologically trivial pieces, so that in computing the cohomology of M , only the
combinatorics of the cover (i.e. which open sets intersect which) intervenes.

Lemma 3.10 If {Vβ}β∈B is any open cover of M , there is a good cover {Uα}α∈A such that
each Uα is contained in some Vβ.

The cover {Uα}α∈A is a refinement of the cover {Vβ}β∈B if every Uα is contained in some Vβ;
so the lemma says that every cover has a good refinement. This property of open covers is
described by saying that they are cofinal in the set of all open covers of M , partially ordered
by refinement.
Proof of 3.10 If M = Rn, any cover all of whose members is convex is good since the inter-
section of an arbitrary family of convex open sets is a convex open set, and hence diffeomorphic
to Rn; such covers are evidently cofinal in the set of all covers. Convexity is a metric property
— it involves the notion of straight line — and to use the same idea on a manifold, we endow
it with a Riemannian metric, which allows us to speak of geodesics, the Riemannian equivalent
of straight lines. A set U in a Riemannian manifold is geodesically convex if for every two
points in U there is a unique geodesic in M of minimal length joining them, and moreover this
geodesic is entirely contained in U .

The intersection of any collection of geodesically convex sets is also geodesically convex. So
to obtain a good refinement of an open cover {Vβ}β∈B, it is enough to choose, for every point
in M , some geodesically convex neighbourhood, small enough to be contained in one of the Vβ.
A theorem of Riemannian geometry assures us that this can be done: if x ∈ M is any point
and V is any open neighbourhood of x, there is a geodesically convex open neighbourhood U
of x contained in V . 2

Note that any sub-cover of a good cover is also good. Thus, every compact manifold has
a finite good cover.

From 3.10 we easily deduce (by way of practice in the technique):

Theorem 3.11 If the manifold M has a finite good cover, then its de Rham cohomology spaces
are all finite dimensional.

Proof Induction, using Mayer Vietoris: let U1, . . . , Um be a finite good cover of M ,
and for each k = 1, . . . ,m let Mk = U1 ∪ · · · ∪ Uk. Clearly the de Rham cohomology of any
manifold diffeomorphic to Rn is finite dimensional; this is the start of our induction.
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Suppose that the de Rham cohomology of Mk is finite dimensional; we now compare it
with the de Rham cohomology of Mk+1 = Mk ∪ Uk+1 using the Mayer-Vietoris long exact
sequence. This made up of 3-term segments

Hq(Mk ∩ Uk+1)
d∗−→ Hq+1(Mk+1)

(j∗1 ,j
∗
2 )

−→ Hq+1(Mk)⊕Hq+1(Uk+1).

From this we obtain the short exact sequence

0 → im d∗ → Hq+1(Mk+1) → im(j∗1 + j∗2) → 0.

In a short exact sequence, finite dimensionality of any two of the three non-trivial spaces implies
finite dimensionality of the third. Besides Mk+1, the short exact sequence here involves the
three spaces Mk, Uk+1 and Mk ∩Uk+1. Do we know enough about the cohomology of all three
to conclude that the middle term is finite dimensional? In order to reach this conclusion, we
must be careful to choose the right inductive hypothesis: it is not simply that the de Rham
cohomology of Mk is finite dimensional, but that every manifold having a good cover consisting
of no more than k open sets has finite dimensional de Rham cohomology, since this implies
that the cohomology of Mk and of Mk∩Uk+1 is finite-dimensional. This is evidently true when
k = 1; in view of the short exact sequence we derived from Mayer Vietoris, if true for k it is
true for k + 1. So the proof is complete. 2

Now we proceed with the proof of Poincaré duality, for manifolds having a finite good cover.
This involves comparing two Mayer-Vietoris sequences, one for ordinary de Rham cohomology
and one for compactly supported cohomology.

First we develop the Mayer-Vietoris sequence for compactly supported cohomology. Recall
the commutative diagram

U1

i1 ↗ ↘ j1
U1 ∩ U2 U1 ∪ U2

i2 ↘ ↗ j2
U2

Inclusion of open sets makes possible a new morphism: push-forward. If i : U → V is inclusion,
define i∗ : Ωk

c (U) → Ωk
c (V ) (note: this is covariant, not contravariant) by “extending by zero”.

That is, if ω ∈ Ωk
c (U) then outside some compact K ⊂ U , ω is identically zero. Thus we can

define a form i∗(ω) on the bigger open set V by setting i∗(ω) to be 0 at every point in V \ U .
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Figure 8

It is now easy to see, as in the case of non-compactly supported forms, that the following
sequence is exact:

0 → Ωk
c (U1 ∩ U2)

(−i1∗,i2∗)−→ Ωk
c (U1)⊕ Ωk

c (U2)
j1∗+j2∗−→ Ωk

c (U1 ∪ U2) → 0.

The last arrow needs a little clarification: if ω ∈ Ωk
c (U1 ∪ U2), choose φ1 ∈ Ω0

c(U1) and
φ2 ∈ Ω0

c(U2) such that (if we extend each of them by 0 to functions on all of U1 ∪ U2))
φ1 + φ2 = 1 everywhere on U1 ∪ U2. Then φiω ∈ Ωk

c (Ui) for i = 1, 2 and

ω = j1∗(φ1ω) + j2∗(φ2ω)

As before, the maps in this short exact sequence commute with the exterior derivatives,
and thus we get a short exact sequence of complexes, and hence a long exact sequence of
cohomology, the Mayer-Vietoris sequence for compactly supported cohomology.

0 → H0
c (U1 ∩ U2) → H0

c (U1)⊕H0
c (U2) → H0

c (U1 ∪ U2)
d∗−→

→ H1
c (U1 ∩ U2) → H1

c (U1)⊕H1
c (U2) → H1

c (U1 ∪ U2)
d∗−→ · · ·

· · · → Hn
c (U1 ∩ U2) → Hn

c (U1)⊕Hn
c (U2) → Hn

c (U1 ∪ U2) → 0

Exercise Use Mayer Vietoris for compactly supported cohomology to compute the compactly
supported cohomology of the circle S1, and, inductively, of the sphere Sn.

Now suppose that M is a manifold with a finite good cover U1, . . . , Ur, and write Mk = U1∪
· · ·∪Uk. By an earlier exercise, we know that the Poincaré Duality morphismHk(M1) → Hn−k

c (M1)∗

is an isomorphism; as inductive hypothesis we assume that it is an isomorphism for all mani-
folds having a good cover consisting of no more than k open sets (and in particular for Mk and
Mk ∩ Uk+1). If we dualise the Mayer-Vietoris sequence for compactly supported cohomology,
it remains exact.
(Exercise: (i) Prove that if

· · · → Ak−1 φk−1−→ Ak
φk−→ Ak+1 → · · ·

is an exact sequence of vector spaces and linear maps then so is

· · · ← Ak−1
φ∗k−1←− Ak

φ∗k←− Ak+1 ← · · ·

(ii) Give an example of a short exact sequence of Abelian groups where the corresponding
statement (in which A∗ is replaced by HomZ(A,Z)) fails. (Hint: try practically any s.e.s.))

The dualised Mayer-Vietoris for compactly supported cohomology plays to just the right
rhythm for us to compare it with Mayer-Vietoris for ordinary cohomlogy via the Poincaré
duality morphism, and we get a large (and hard to typeset) diagram:

→ Hq(Mk+1) → Hq(Mk)⊕Hq(Uk+1) → Hq(Mk ∩ Uk+1)
d∗−→ Hq+1(Mk+1) → · · ·

↓ ↓ ↓ ↓
→ Hn−q

c (Mk+1)∗ → Hn−q
c (Mk)∗ ⊕Hn−q

c (Uk+1)∗ → Hn−q
c (Mk ∩ Uk+1)∗

(d∗)∗−→ Hn−q−1
c (Mk+1)∗ → · · ·
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in which the vertical maps are Poincaré duality morphisms. The induction step uses the
5-lemma (cf. Exercise at the foot of page 8) to deduce the statement for Mk+1 from the state-
ments for Mk, Uk+1 and Mk ∩ Uk+1. After all, the vertical map Hq(Mk+1) → Hn−q

c (Mk+1)∗

is flanked by two maps on each side, each one of which is an isomorphism, by the induction
hypothesis. However, despite its naturality, the diagram is not obviously commutative, and
we need to check that in fact it is. Well, in fact it’s not: it’s only sign commutative. That
is, any two compositions of arrows starting at the same point and finishing at the same point
agree up to multiplication by −1. We establish this below. Fortunately, the proof of the
5-Lemma survives this slight weakening of its hypotheses, and so the induction is complete.
This completes the proof of 3.2, except for

Lemma 3.12 The above diagram is sign-commutative.

Proof The diagram shows three squares. The left-most one, in more detail, is

Hq(Mk+1)
j∗1+j∗2−→ Hq(Mk)⊕Hq(Uk+1)

↓ ↓
Hn−q
c (Mk+1)∗

(j1∗)∗+(j2∗)∗−→ Hn−q
c (Mk)∗ ⊕Hn−q

c (Uk+1)∗

Checking that this is commutative is easy, provided you don’t lose your grip of what the
bottom arrow is. In what follows we denote both vertical maps by PD.

Let [ω] ∈ Hq(Mk+1); then PD◦ (j∗1 + j∗2)(ω) is a linear map from Hn−q(Mk)⊕Hn−q(Uk+1)
to R; it takes ([ρ], [σ]) to

(
∫
Mk

j∗1(ω) ∧ ρ,
∫
Uk+1

j∗2(ω) ∧ σ).

Meanwhile, (j1∗)∗ + (j2∗)∗ ◦ PD([ω]) is also a pair consisting of a linear map from Hn−q(Mk)
to R and a linear map from Hn−q(Uk+1) to R; it takes ([ρ], [σ]) to

(
∫
Mk

ω ∧ j1∗(ρ),
∫
Uk+1

ω ∧ −j2∗(σ)).

It is straightforward to see that the two pairs of integrals are equal.
Commutativity of the middle square is equally straightforward, and you should check it

yourself. The only difficulty comes with two square involving d∗ and (d∗)∗,

Hq(Mk ∩ Uk+1)
d∗−→ Hq+1(Mk+1)

↓ ↓
Hn−q
c (Mk ∩ Uk+1)∗

(d∗)∗−→ Hn−q−1
c (Mk+1)∗

Recall the definition of d∗: choose functions φ1, φ2 such that supp(φ1) ⊂Mk, supp(φ2) ⊂ Uk+1

and φ1 + φ2 = 1 on Mk+1. Then given [ω] ∈ Hq(Mk ∩ Uk+1), d∗[ω] is the cohomology class of
any form d∗ω ∈ Ωq+1(Mk ∪ Uk+1) such that

d∗ω =
{
−d(φ2ω) on Mk

d(φ1ω) on Uk+1.

Note that supp(d∗ω) ⊂Mk ∩ Uk+1.
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Similarly, for [σ] ∈ Hn−q−1
c (Mk+1), d∗([σ]) is the cohomology class of any form d∗σ ∈

Ωn−q
c (Mk ∩ Uk+1) such that

−i1∗(d∗σ) = d(φ1σ) on Mk

i2∗(d∗σ) = d(φ2σ) on Uk+1

Thus, for [ω] ∈ Hq(Mk ∩ Uk+1) and [σ] ∈ Hn−q−1
c (Mk+1),

PD ◦ d∗([ω])([σ]) =
∫
Mk+1

d∗ω ∧ σ =
∫
Mk∩Uk+1

d∗ω ∧ σ

(as supp(d∗ω) ⊂Mk ∩ Uk+1)

=
∫
Mk∩Uk+1

d(φ1ω) ∧ σ =
∫
Mk∩Uk+1

(dφ1) ∧ ω ∧ σ

as ω is closed.
Meanwhile,

(d∗)∗ ◦ PD([ω])([σ]) =
∫
Mk∩Uk+1

ω ∧ d∗σ

=
∫
Mk∩Uk+1

ω ∧ −d(φ1σ) = −
∫
Mk∩Uk+1

ω ∧ dφ1 ∧ σ,

as σ is closed. It follows that up to sign, the two integrals coincide. 2

Our proof of Cohomological Poincaré Duality, Theorem 3.2, is now complete, at least, that
is, for manifolds having a finite good cover. In fact it’s true even without the hypothesis on
the existence of a finite good cover - a careful proof can be found in Madsen and Tornehave,
Chapter 13. Their proof contains just one extra step, the following theorem on “induction on
open sets”:

Theorem 3.13 Let Mn be a smooth n-manifold with an open cover {Uα}α∈A. Suppose that
there is a collection C of open sets of M such that
(1) ∅ ∈ C.
(2) Any open set V diffeomorphic to Rn and contained in some open set Uα of the cover belongs
to C.
(3) If V1, V2 and V1 ∩ V2 belong to C then so does V1 ∪ V2.
(4) If V1, V2, . . . is a sequence of pairwise disjoint open sets all belonging to C then their union
∪iVi belongs to C.

Then M ∈ C. 2

Exercise Assuming this theorem, prove 3.2 for an arbitrary smooth oriented manifold without
boundary.

Recall that the Euler Characteristic of a topological space X, χ(X), is defined to be∑
k

(−1)kdim Hk(X; R).
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Exercise 3.14 Suppose that M is a compact oriented manifold without boundary, of dimen-
sion n.
(i) Prove that if n is odd then χ(M) = 0;
(ii) Prove that if n is of the form 4k + 2 then χ(M) is even. (Hint: the intersection form on
H2k+1(M) must be symplectic, i.e. non-degenerate and skew-symmetric.)

3.1 The Poincaré dual of a submanifold

Suppose that M is an oriented n-dimensional manifold. If Y is an oriented (n−k)-dimensional
submanifold (without boundary) integration over Y defines a linear map Ωn−k

c (M) → R send-
ing ω to

∫
Y ω: ∫

Y
: Ωn−k

c (M) → R, ω 7→
∫
Y
ω.

(We ought to be writing the integral as
∫
Y i

∗(ω), where i : Y → M is inclusion, but will usually
omit the i∗ in this context.) This map passes to the quotient in the usual way, to define a map∫

Y
: Hn−k

c (M) → R;

for if ω = dσ then ∫
Y
ω =

∫
∂Y
σ =

∫
∅
σ = 0.

The map
∫
Y : Hn−k

c (M) → R is clearly linear. In other words, it belongs to Hn−k
c (M)∗.

Poincaré duality 3.2 tells us that the map

Hk(M) → Hn−k
c (M)∗

sending [ω1] to the linear map∫
M
ω1∧ , [ω] 7→

∫
M
ω1 ∧ ω

is an isomorphism. Unwinding the definitions, this means that there exists a closed k-form
ωY ∈ Ωk(M) such that for all closed compactly supported forms ω ∈ Ωn−k

c (M),∫
Y
ω =

∫
M
ωY ∧ ω.

Also, although this form ωY is not unique, its cohomology class is unique; in other words any
two such forms ωY and ω′Y differ by an exact form dσ. The cohomology class of ωY is called the
Poincaré dual of the submanifold Y . By abuse of notation the form ωY itself is also sometimes
called the Poincaré dual of Y . It is also useful sometimes to denote the cohomology class dual
to the submanifold Y by PD(Y ).

Exercise 3.15 Suppose that Y0 and Y1 are k-dimensional oriented submanifolds of M , and
that Y0 is homotopic to Y1 in the sense that there is an oriented manifold Y and a map
F : Y × [0, 1] → M such that F (Y × {0}) = Y, F (Y × {1}) = Y1, and F0 : Y → Y0 and
F1 : Y → Y1 are orientation-preserving diffeomorphisms.
(i) Show that for every closed form ω ∈ Ωk

c (M),
∫
Y0
ω =

∫
Y1
ω.

(ii) Deduce that PD(Y0) = PD(Y1).
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How can we construct such a form ωY ? In some cases it is clear. Suppose that Y = {y0} is
a single point. Here an orientation is just a sign, +1 or −1. Then

∫
Y : H0

c (M) → R. If M is
not compact then H0

c (M) = 0 = Hn(M), so PD(Y ) = 0. On the other hand, if M is compact
then H0

c (M) ' R (we assume M connected). The closed 0-forms are just constant functions.
For any function f ∈ Ω0

c(M) we have
∫
Y f = ±f(y0), where the sign is the orientation of Y . In

order that
∫
Y f =

∫
M ωY ∧f for all constant functions f , as required for ωY to be the Poincaré

dual of Y , we must thus have

±f(y0) =
∫
M
ωY ∧ f = f(y0)

∫
M
ωY

(recall that f is constant). Hence ωY must be an n-form whose integral over M is either 1 (if
the orientation of Y is +1) or −1, if the orientation of Y is −1.

Exercise 3.16 What is the Poincaré dual of M itself?

The relation between cohomological Poincaré duality and the intersection of submanifolds is
neatly expressed by the following theorem.

Theorem 3.17 If Xk and Y n−k are compact oriented submanifolds of the compact oriented
manifold Mn, then ∫

M
PD(X) ∧ PD(Y ) = (X · Y )M .

This is really a special case of the following “naturality” property of Poincaré duality.

Theorem 3.18 Suppose that Xk and Mn are smooth oriented manifolds and that f : X → M
is a smooth map. Let Y ` be an oriented submanifold of M with f transverse to Y , and give
f−1(Y ) the transverse preimage orientation. Then

f∗(PDM (Y )) = PDX(f−1(Y )).

(Here we use subscripts to distinguish between Poincaré duality on M and on X.)
Proof of 3.17 from 3.18 Assume first that X and Y are transverse, and denote the inclusion
of X in M by i. Give i−1(Y ) = X ∩ Y its transverse preimage orientation. Note that

(X · Y )M =
∑

x∈i−1(Y )

sign(x).

By what we observed before concerning the Poincaré dual of a point, we have

PDX(i−1(Y )) =
∑

x∈X∩Y
sign(x)ω0, (5)

where ω0 is a k-form on X such that
∫
X ω0 = 1. By 3.18,

i∗(PDM (Y )) = PDX(i−1(Y )). (6)

26



By definition of PD, we have∫
M

PDM (X) ∧ PDM (Y ) =
∫
X
i∗(PDM (Y ))

and by (6) this is equal to ∫
X

PDX(i−1(Y ))

which, by (5), is equal to ∫
X

∑
x∈X∩Y

sign(x)ω0.

The right hand side evaluates to
∑

x∈X∩Y sign(x), i.e. to (X · Y )M .

If X and Y are not transverse, we can nevertheless deform the embedding of X in M in
a homotopy, so that it becomes transverse to Y . Denote the deformed X by X ′. By Exercise
3.15, PDM (X ′) = PDM (X). Hence∫

M
PDM (X) ∧ PDM (Y ) =

∫
M

PDM (X ′) ∧ PDM (Y ),

and this is equal to (X ′ · Y )M by what we have proved for the transverse case. Finally,
(X · Y )M = (X ′ · Y )M ; indeed, we define (X · Y )M by perturbing X so that it becomes
transverse to Y and then counting intersection points with their signs. 2

We will not give a complete proof of 3.18, but instead consider some special cases and give
an overview of the proof, which can be found e.g. in Bott and Tu, pages 65-67. Consider first
the very simple case of a cylinder M = R × S1 and let Y = S1 × {0}. Locally we can take
coordinates t, θ on M , although of course θ is not well-defined globally. Since different branches
of θ differ by a constant, their exterior derivatives coincide, and define a (global) 1-form dθ.
If ω = fdθ ∈ Ω1(M), then dω = 0 if and only if ∂f/∂t = 0, i.e. if f = f(θ) is independent of
t. For such a form ω there is no mystery in finding a form ωY such that

∫
Y ω =

∫
M ωY ∧ ω:

simply take any smooth compactly supported function c(t) such that
∫
R c(t)dt = 1, and let

ωY = c(t)dt. Then∫
M
ωY ∧ ω =

∫
M
f(θ)c(t)dt ∧ dθ =

∫
R
c(t)dt

∫
Y
f(θ)dθ =

∫
Y
ω.

The second equality here is obtained simply by expressing the integral over M as an iterated
integral. 2

If ω = f(θ, t) dθ+g(θ, t)dt is a more general closed form, the situation is scarcely more difficult:
if i : S1 → M is the inclusion θ 7→ (θ, 0) and p : M → S1 is projection, then we know by 2.17

2This may seem more familiar if we parametrise M by the obvious map [0, 2π] × R → M , which is a
diffeomorphism off a set of measure 0. ThenZ

M

c(t)dt ∧ f(θ)dθ =

Z
R×[0,2π]

c(t)f(θ)dθdt =

Z 2π

0

Z
R

c(t)f(θ)dt dθ.
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that p∗ : H1(Y ) → H1(M) and i∗ : H1(M) → H1(Y ) are mutually inverse. That is, ω and
p∗i∗ω differ by an exact form dσ. Now p∗i∗ω is a 1-form of the type we considered in the
previous paragraph. It follows that with the same ωY as before, we have∫

M
ωY ∧ ω =

∫
M
ωY ∧ p∗i∗ω =

∫
Y
p∗i∗ω =

∫
Y
ω

(note that on Y , ω is equal to p∗i∗ω).

Now suppose Y0 is any oriented manifold and M = Rk × Y0, and let Y = {0} × Y0 ⊂ M .
Esssentially the same argument as above, using Fubini’s Theorem (evaluation of a multiple
integral by iterated integration) shows that we can take, as ωY , the pull-back to M of a k form
c = c(t)dt1 ∧ · · · ∧ dtk on Rk such that

∫
Rk c = 1. For∫

M
c ∧ ω =

∫
M
c ∧ p∗i∗ω =

∫
Rk
c(t)dt1 ∧ · · · ∧ dtk

∫
Y0

p∗i∗ω =
∫
Y0

ω.

The proof of 3.18 consists of two steps. Both involve vector bundles, and if you are not familiar
with them it may be best to postpone reading the remainder of this subsection until you have
gained some familiarity with them (Chapter 15 of Madsen and Tornehave, which you will read
later in the course, is concerned with vector bundles).

The first step is to generalise the previous observation to the situation where E is the
total space of an oriented vector bundle of rank k and Y is its zero section (in the previous
paragraph, M = Rk×Y is the total space of a trivial vector bundle). Since now E is no longer
globally a product, we have to work a little to recreate in this new situation the form ωY we
used in the previous paragraphs. In fact it is not hard, by piecing together local constructions,
to find a form ωY ∈ Ωk(E) such that the integral of ωY over each fibre of the vector bundle
E → Y is equal to 1. It is a little harder to translate to this new context the property of being
“independent of the Y -variables” which we used to reduce the integral of ωY ∧ ω over M to
an iterated integral. To do this, we make use of the idea of “integration in the fibre direction”
which appeared briefly in the proof of the Poincaré Lemma. This is a well-defined morphism
I : Ω•(E) → Ω•−k(Y ) defined simply by integrating out the fibre variables.

Definition 3.19 The Thom class of the oriented vector bundle E → Y is (the cohomology
class of) a k-form ΦE ∈ Ωk

cv(E) such that I(ΦE) = 1M , where 1M is the function on M with
contant value 1.

Here the subscript cv means compactly supported in the vertical (i.e. fibre) direction.

Lemma 3.20 (i) The Thom class exists — that is, there always is a form ΦY with the property
described in Definition 3.19.
(ii) If E is an oriented vector bundle over the oriented manifold Y , and we identify Y with
the zero section of E, then the Poincaré dual ωY of Y is equal to ΦE . 2

I omit the proof, though it amounts to little more than using a partition of unity to piece
together local constructions like those in the special case dealt with above where M was a
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trivial vector bundle.

The second step uses the fact that an oriented submanifold Y of the oriented manifold M
has a neighbourhood V0 in M which is diffeomorphic to the total space of its normal bundle
ν(Y,M) in M . The standard proof of the tubular neighbourhood theorem (see e.g. Guillemin
and Pollack, or my Manifolds lecture notes, page 34) can easily be adapted to show this.
The tubular neighbourhood theorem is proved in the simplest case where Y ⊂ RN = M by
considering the map

F : ν(Y,RN ) → RN

defined by F (y, v) = y + v, and showing that there is a neighbourhood U of the zero section
of ν(Y,RN ) on which F is a diffeomorphism onto a neighbourhood V of Y in RN . It is easy to
see that U contains a neighbourhood U0 of the zero section which is diffeomorphic to the total
space ν(Y,RN ); it follows that V also contains a neighbourhoood of Y also diffeomorphic to
ν(Y,RN ).

We obtain the Poincaré dual ωY of Y by identifying this neighbourhood V0 of Y in M with
ν(Y,M) and pushing forward the Thom class of ν(Y,M) to all of M by extending it by zero
(as described on page 21). It follows easily from Lemma 3.20 that the cohomology class of this
extension of the Thom class of ν(Y,M) is the Poincaré dual of Y .

Now that we have an effective construction of ωY , we can easily prove 3.18.

Proposition 3.21 (i) If f : X → M is transverse to the submanifold Y of M then the normal
bundle of f−1(Y ) in X is isomorphic to the pull-back by f of the normal bundle of Y in M :

ν(f−1(Y ), X) ' f∗ν(Y,M).

(ii) If E → M is a vector bundle and f : X → M is a smooth map, then the Thom class of
the vector bundle f∗(E) over X is equal to the pull-back by f of the Thom class of E:

Φf∗(E)) = f∗(ΦE).

2

The proofs of both parts of the proposition are straightforward. The proof of 3.18 follows.

3.2 The degree of a smooth map

An immediate consequence of Poincaré Duality is that for any oriented n-manifold M without
boundary, Hn

c (M) ' R, with the isomorphism given by integration over M .
Let M and N be smooth connected boundaryless oriented n-manifolds, and let f : M → N

be a proper map (that is, the preimage in M of every compact set in N is compact). Then
f induces a pull-back map on compactly supported cohomology, f∗ : Hn

c (N) → Hn
c (M). The

degree of f , deg(f) is defined by the commutative diagram

Hn
c (N)

f∗−→ Hn
c (M)∫

N ↓
∫
M ↓

R
deg(f)−→ R
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Proposition 3.22 If y ∈ N is a regular value of f then

deg(f) =
∑

x∈f−1(y)

signx(f),

where signx(f) is +1 if f preserves orientation at x and −1 if it reverses it.

Proof We need the “stack of records lemma”:

Lemma 3.23 If y ∈ N is a regular value of the proper map f : Mn → Nn, there is a neigh-
bourhood V of y in N such that f−1(y) = ∪riUi, such that Ui∩Uj = ∅ for i 6= j and f| : Ui → V
is a diffeomorphism for all i.

Proof See e.g. Madesen and Tornehave, Lemma 11.8 page 100, or Guillemin and
Pollack page ??. 2

Exercise Prove 3.22 from the stack of records lemma. 2

Corollary 3.24 deg(f) is an integer.

If M is compact, every map f : M → N is of course proper.

Exercise Show that if f : M → N is not surjective then deg(f) = 0.

Exercise Suppose that W is an oriented n + 1-manifold, N is an oriented boundaryless n-
manifold, and F : W → N is a proper map. Let f : ∂W → N be the restriction of F . Show
that deg(f) = 0.

Given disjoint oriented simple closed curves C1, C2 ⊂ R3, define the linking number `(C1, C2)
as follows: `(C1, C2) is the degree of the smooth map f : C1 × C2 → S2 sending (x1, x2) to
(x1 − x2)/‖x1 − x2‖. Here C1 × C2 is given the product orientation.

Exercise Show that if we deform C1 to C ′1 in a family C1,t of closed curves such that C1,t and
C2 are always disjoint, then `(C1, C2) = `(C ′1, C2).

Exercise Show that if C1 and C2 can be “untangled from one another” — i.e. if it is possible
to deform them to new curves C ′1, C

′
2 lying on opposite sides of some hyperplane H ⊂ R3 (with

the two curves disjoint from one another at all times in the deformation), then `(C1, C2) = 0.

Exercise Find the linking numbers of the pairs of curves shown:
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Figure 9

Hint: count preimages (under f : C1 × C2 → S2) of the unit vector in S2 pointing out of
the plane of the paper towards you.

Mayer-Vietoris for Singular Homology∗ 3

If X is any topological space and U1, U2 are open subsets, there is a Mayer-Vietoris long exact
sequence

· · · → Hk(U1∩U2)
(i1∗,−i2∗)−→ Hk(U1)⊕Hk(U2)

j1∗+j2∗−→ Hk(U1∪U2)
∂∗−→ Hk−1(U1∩U2) → · · · .

Here the morphisms i∗, j∗ are induced by the inclusions in the obvious way: if U i−→ V is any
continuous map and s : ∆k → U is a singular k-simplex, i∗(s) = i ◦ s is a singular k simplex
in V .

This long exact sequence can be constructed by almost the same procedure used for the
Mayer Vietoris sequence of cohomology. As before, there is an exact sequence of complexes

0 → C•(U1 ∩ U2)
(i1∗,i2∗)−→ C•(U1)⊕ C•(U2)

j1∗−j2∗−→ C•(U1 ∪ U2);

however this time the the arrow Ck(U1)⊕ Ck(U2) → Ck(U1 ∪ U2) is plainly not surjective for
k > 0 (see for example the diagram below). However, this lack of surjectivity can easily be
remedied by subdivision: any singular k-chain in U1 ∪ U2 can be subdivided into a singular
chain of the form j1∗(c1) + j2∗(c2), where c1 ∈ Ck(U1) and c2 ∈ Ck(U2). This is schematically
shown in the diagram on the right, where the 2-simplex c is subdivided into c1 ⊂ U1 and
c2 ⊂ U2.

Figure 10
3This and anything else with a star is here for entertainment only, and is not examinable
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Building on this idea, it is possible to prove the following Subdivision Lemma:

Lemma 3.25 Suppose that U1 and U2 are open sets in the toplogical space X. If c ∈ Ck(U1 ∪
U2) is a k-cycle then there is a k-chain c′ ∈ Ck(U1 ∪ U2) such that
(i) c− c′ ∈ δ(Ck+1(U1 ∪ U2))
(ii) every one of the singular simplices s making up c′ lies either in U1 or in U2; thus

c′ ∈ j1∗(Ck(U1)) + j2∗(Ck(U2)).

2

Exercise Using the Subdivision Lemma to make up for the failure of surjectivity of j1∗+ j2∗ :
Ck(U1)⊕ Ck(U2) → Ck(U1 ∪ U2), prove Mayer-Vietoris for singular homology

Exercise* Can you find an inductive proof of the de Rham theorem using Mayer-Vietoris for
homology and cohomology?

The Künneth Formula for de Rham Cohomology

The Künneth Formula gives us a way of computing the cohomolgy of a product M × N in
terms of the cohomology of the two factors M and N :

Theorem 3.26 H∗(M ×N) ' H∗(M)⊗R H∗(N)

This means the following:
(1) For each q,

Hq(M ×N) '
⊕
i+j=q

H i(M)⊗Hj(N)

(2) Something about the ring structure, which as yet I do not attempt to state.

In fact, where finite-dimensional vector-spaces are concerned, the mere existence of an iso-
morphism is a pretty feeble statement; it is equivalent to their having the same dimension.
Much more interesting is a statement describing the isomorphism in concrete terms. Here it is:

For each q, the projections πM : M ×N → M and πN : M ×N → N induce linear maps
π∗M : Ωq(M) → Ωq(M ×N) and π∗N : Ωq(N) → Ωq(M ×N) , and hence a bilinear map

π∗ : Ωp(M)× Ωq(N) → Ωp+q(M ×N)

given by
(ωp, τq) 7→ π∗M (ωp) ∧ π∗N (τq).

This passes to the quotient to give a bilinear map Hp(M) × Hq(N) → Hp+q(M × N). By
definition of tensor product, there is a unique linear map Hp(M)⊗Hq(N) → Hp+q(M ×N)
making the diagram

Hp(M)×Hq(N)
↓ ↘

Hp(M)⊗Hq(N) → Hp+q(M ×N)
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(in which the vertical map is the canonical projection (u, v) 7→ u ⊗ v) commutative. The
Künneth theorem asserts that for each q the sum⊕

i+j=q

H i(M)⊗Hj(N) → Hq(M ×N)

of all these maps is an isomorphism.

Example 3.27 The torus T 2 is diffeomorphic to S1 × S1; so H1(T 2) ' H0(S1) ⊗H1(S1) ⊕
H1(S1)⊗H0(S1), and thus is 2-dimensional, and H2(T 2) = H1(S1)⊗H1(S1).

I leave you to decide what the natural (and correct) statement about multiplication is.
To prove the Künneth Theorem, we use Mayer Vietoris and induction on the number of

open sets in a good cover of M ; (we prove it only when either M or N has a finite good cover).
Let {U1, . . . , UN} be a good cover of M , and write U1 ∪ · · · ∪ Uk = Mk.

Step 1 It’s true if M itself is diffeomorphic to Rn for some n, for then M×N ' Rn×N , and
π∗N : Hq(N) → Hq(Rn×N) is an isomorphism, so that π∗M⊗π∗N : H0(Rn)×Hq(N) → Hq(Rn×
N) is also an isomorphism.
Step 2: the induction step Assume the theorem is true whenever M is any manifold
having a good cover consisting of no more than k open sets. We use Mayer Vietoris for the
pair Mk, Uk+1 of open sets.

One of the good things about exact sequences of vector spaces (as opposed to exact se-
quences of abelian groups, or of modules over a more general ring) is that their exactness is
extremely robust. Not only does dualising leave them exact, as we saw in the proof of Poincaré
Duality, but so does tensoring with another vector space: if A•,

· · · → Ak−1 ψk−1

−→ Ak
ψk

−→ Ak+1 → · · ·

is an exact sequence of vector spaces and linear maps, and V is any other vector space, then

· · · → Ak−1 ⊗ V ψk−1⊗1V−→ Ak ⊗ V ψk⊗1V−→ Ak+1 ⊗ V → · · · ,

which we denote by A• ⊗ V , is exact too. Here ψk ⊗ 1V is the linear map sending ak ⊗ v to
ψk(ak)⊗ v.

Exercise (i) Prove this.
(ii) What happens when you tensor the short exact sequence

0 → Z ×2−→ Z → Z2 → 0

of abelian groups, with the abelian group Z2? Here tensor product is over Z, of course - we’re
looking at abelian groups (i.e. Z-modules) instead of vector spaces (i.e. k-modules, where k is
a field).
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Remark 3.28 It may be that at this point in your studies you haven’t really used tensor
products before. Tensor product is one of those notions which it is best simply to use without
worrying too much, at first, about what it means. You have to remember only that if V and
W are vector spaces over the field k then V ⊗k W is the vector space generated by elements
v ⊗ w, where v ∈ V,w ∈W , subject only to the rules

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw).

It is “being able to pass scalars across from one factor in the tensor product to the other” (the
third rule) that makes this the tensor product over k rather than over anything else. If, for
example, k is a subfield of K, then any K-vector space is also a k-vector space; and if V and
W are two such, then

V ⊗K W and V ⊗k W

are different spaces. Which one is bigger?

Denote by MV•
k the Mayer-Vietoris long exact sequence of the pair Mk, Uk+1 of open sets.

Tensoring with Hj(N) we get the exact sequence MV •k ⊗Hj(N).
The direct sum of any number of exact sequences is also exact. However one needs to be

a little careful to interpret this statement correctly. For example, if

0 → A1 → A2 → A3 → A4 → 0

and
0 → B1 → B2 → B3 → 0

are both exact, then so are

0 → A1 ⊕B1 → A2 ⊕B2 → A3 ⊕B3 → A4 → 0

and
0 → A1 → A2 ⊕B1 → A3 ⊕B2 → A4 ⊕B3 → 0.

(Check it!). We want to sum the exact sequences MV•
k⊗Hj(N) over j, but in such a way that

each spot in the resulting exact sequence, the sum i+ j of the indices on the tensor products
H i(something) ⊗ Hj(N) are all the same. To make clear how to do this, imagine extending
each sequence MV•

k ⊗ Hj(N) by an infinite sequence of zeros on each end. Place them in
vertical array, with MV•

k ⊗H0(N) at the top and MV•
k ⊗Hn(N) (where n = dim N) at the

bottom, and then slide each row three spots to the right with respect to the one above it. This
is indicated schematically in the following diagram:

H0 ⊗H0→(H0 ⊕H0)⊗H0→H0 ⊗H0→H1 ⊗H0→(H1 ⊕H1)⊗H0→H1 ⊗H0→H2 ⊗H0

0 → 0 → 0 →H0 ⊗H1→(H0 ⊕H0)⊗H1→H0 ⊗H1→H1 ⊗H1

0 → 0 → 0 → 0 → 0 → 0 →H0 ⊗H2
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Now consider the “grand total ” exact sequence you get by summing over columns. This has
the form

· · · →
q⊕
i=0

H i(Mk+1)⊗Hq−i(N)

→
q⊕
i=0

(H i(Mk)⊕H i(Uk+1))⊗Hq−i(N)

→
q⊕
i=0

H i(Mk ∩ Uk+1)⊗Hq−i(N) → · · ·

Each of the sums of spaces here is precisely what is called for in the Künneth Formula, and
maps, via π∗M∧π∗N , toHq(Mk+1×N), toHq(Mk×N)⊕Hq(Uk+1×N) or toHq(Mk∩Uk+1 ×N),
respectively. Thus, from the grand total exact sequence we have a sequence of Künneth maps
to the Mayer Vietoris sequence for the pair Mk × N,Uk+1 × N of open sets in M × N . By
induction, we can assume that those mapping to Hq(Mk × N), to Hq(Uk+1 × N) and to
Hq(Mk ∩ Uk+1) ×N are all isomorphisms. It will follow from the 5-Lemma that the same is
true for the map

q⊕
i=0

H i(Mk+1)⊗Hq−i(N) → Hq(Mk+1 ×N),

provided we can show that the diagram is commutative. This I leave to you as an Exercise.2

Exercise Devise a form of notation which makes it possible to describe the argument involving
“sliding the exact sequences 3 spots to the right” without drawing such large diagrams. (I am
serious).

Exercise Formulate and prove the correct statement of the Künneth formula for the multi-
plicative operation (i.e. wedge product) on cohomology.

Exercise Can you use Induction on Open Sets (3.13) to prove the Künneth Theorem without
the hypothesis that M or N has a finite good cover?

The Leray-Hirsch Theorem

The map π : E → M of smooth manifolds is a locally trivial fibre bundle with fibre F if every
point x ∈M has a neighbourhood U such that there is a commutative diagram

π−1(U)
φU−→ U × F

π ↘ ↙ πU
U

in which φU is a diffeomorphism and πU : U × F → U is simply projection. Commutativity
of the diagram means that φU restricts to give a map (also a diffeomorphism, of course) from
π−1(y) to {y} × F (which we identify with F ) for each y ∈ U .

The diffeomorphism φU is a local trivialisation of π : E → M over U .
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Example 3.29 1. If E = M × F then the projection π : E → M is a locally trivial fibre
bundle. Indeed, it is globally trivial.

2. If M is a smooth n-dimensional manifold, its tangent bundle is a locally trivial fibre
bundle with fibre Rn. Of course, it has additional structure: it is possible to choose the
diffeomorphisms φU so that their restriction to the fibre, TyM = π−1(y) → F = Rn is a
linear isomorphism for every y ∈ U .

3. If π : E → M is a locally trivial fibre bundle then π is evidently a submersion. Not every
submersion is a locally trivial fibre bundle, but we have

Theorem 3.30 The Ehresmann Fibration Theorem: If π : E → M is a proper submer-
sion, then it is a locally trivial fibre bundle.

4. Exercise The map S1×S1 → S1 sending (z1, z2) to z1z2 is a locally trivial fibre bundle.
What is its fibre? What about S1 × S1 × S1 → S1 defined by (z1, z2, z3) 7→ z1z2z3?

5. Exercise Find an example of a submersion π : E → M which is not a locally trivial
fibre bundle. Hint: cut a hole in the source of a locally trivial fibre bundle.

Suppose that f : E → M is any smooth map (not necessarily a locally trivial fibre bundle).
The morphism f∗ : H∗(M) → H∗(E) of cohomology rings makes H∗(E) into a module over
the ring H∗(M): if [ω] ∈ Hq(M) and [σ] ∈ Hp(E) then we can wedge f∗(ω) with σ and get
a new cohomology class on E. This extends linearly in an obvious way, and gives a pairing
H∗(M)×H∗(E) → H∗(E).

The structure of H∗(E) as a module over H∗(M) can reflect the differential topology of
the map f in an interesting way.

The most uninteresting modules are the free modules: theirs is the most transparent of
structures.

Definition 3.31 Let R be a ring and M an R-module: M is a free R-module if there exists
some collection mλ{λ∈Λ} of elements of M such that every m ∈M can be written uniquely as
a linear combination m =

∑
λ rλmλ, with all except finitely many of the rλ equal to 0. In this

case mλ{λ∈Λ} is called a free basis, or free R-basis to be more precise, for M .

Every vector space is a free k-module, where k is the field of scalars; this freeness reflects the
fact that as a ring, k is pretty uninteresting.

On the other hand, an abelian group with torsion elements is not a free Z-module. Nor, in
fact, is Q, even though it has no torsion (Exercise, if you enjoy this kind of thing).

If E = M × N then H∗(E) is a free module over H∗(M): for suppose that c1, . . . , cr ∈
H∗(N) form an R-basis. Let e1, . . . , er be the cohomology classes on M×N obtained by pulling
back the ci, ei = π∗N (ci) for i = 1, . . . , r. Then I claim that the ei form a free H∗(M)-basis for
H∗(M ×N).

In fact this is simply another way of stating the Künneth Theorem, and I leave it to you
to prove it - it amounts to no more than unravelling definitions.

Now let π : E → M be a locally trivial fibre bundle, and suppose that there are cohomology
classes e1, . . . , em ∈ H∗(E) whose restriction to each fibre generates the cohomology of the fibre
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(as vector space over R) (note that this is certainly the case if E = M × N ; the classes ei
described two paragraphs above have this property). Then we can define a map

ψ : H∗(M)⊗⊕ri=1R · ei → H∗(E)

by
(
∑
j

ωj)⊗ (
∑
i

αiei) 7→
∑
i,j

αiωj ∧ ei.

Here ⊕ri=1R · ei means the vector space of formal linear combinations
∑

i αiei with real coeffi-
cients (i.e. α1e1 + · · · + αrer = β1e1 + · · · + βrer if and only if αi = βi for each i). It should
be distinguished from the subspace of H∗(E) generated over R by the cohomology classes
e1, . . . , er, which we denote R{e1, . . . , er}. In this space, two disctinct linear combinations of
the ei may be equal.

There is an obvious map
r⊕
i=1

R · ei → R{e1, . . . , er}

sending a formal linear combination λ1e1 + · · · + λrer to the informal linear combination
λ1e1 + · · ·+ λrer ∈ H∗(E).

Theorem 3.32 Let π : E → M be a locally trivial fibre bundle with fibre F . If there are coho-
mology classes e1, . . . , er on E whose restriction to each fibre is an R-basis for its cohomology,
then H∗(E) is a free module over H∗(M) with free basis e1, . . . , er. Thus,

H∗(E) ' H∗(M)⊗ R{e1, ..., er} ' H∗(M)⊗H∗(F ).

Proof The hypothesis is preserved “under restriction of the base”: that is, if U ⊂
M and we write EU for π−1(U), and denote by i the inclusion EU ↪→ E, then the classes
i∗(e1), . . . , i∗(er) in H∗(EU ) have the same property as the ei: their restrictions to each fibre
of π : EU → U form a basis for its cohomology. If U ⊂ M is an open set over which E is
trivial, then the Künneth Theorem tells us that the map

H∗(U)⊗ R{i∗(e1), . . . , i∗(er)} → H∗(EU )

is an isomorphism.

Exercise Complete the proof, using Mayer Vietoris. 2

4 Morse Theory

We begin with a proof of the Ehresmann Fibration Theorem. Recall that we are assuming
f : E → M is a proper submersion; for the moment, we assume also that E and M are mani-
folds without boundary, and that M is connected.

Step 1 At each point e ∈ E, choose a complement He in TeE to ker def , in such a way that
the He “vary smoothly” with e. This can be done, for example, by giving E a Riemann metric
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and setting He = (ker def)⊥. As f is a submersion, the restriction of def gives an isomorphism
He → Tf(e)M . The “H” in He stands for “horizontal”, of course; in pictures of fibre bundles
one usually shows the fibre as arrayed vertically above the base M , which is drawn horizontal.
The choice of this field of horizontal subspaces He is called an Ehresmann connection.

Step 2 Suppose that p and q are two points in M , and are joined by a simple smooth curve C
parametrised by γ : [0, a] → M . We use an Ehresmann connection to define a diffeomorphism
Ep → Eq as follows: first, γ′ defines a vector field on C, which we denote by ∂/∂t. We lift this
to a smooth vector field X on f−1(C) by setting

X(e) = unique v in He such that def(v) = ∂/∂t.

The theory of ODE’s assures us that for every point e ∈ f−1(C), there is an integral curve
of X passing through e. Note that if γe is an integral curve of X, then for all t ∈ [0, a] and
e ∈ f−1(γ(t)),

def(γ′e(t)) = γ′(t).

Because f is proper, for each t ∈ [0, a] there exists εt > 0 such that for all e ∈ f−1(γ(t)) there is
an integral curve γe through e satisfying γe(t) = e and defined on the interval [t−εt, t+εt]∩[0, a].

Figure 11

By compactness, a finite number of the intervals [t− εt, t+ εt] cover [a, b], and it follows that
any integral curve through a point e ∈ f−1(p) can be extended (by integral curves) to a curve
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defined on all of [0, a]. Let e ∈ f−1(p) and let γe : [0, a] → f−1(C) be the (unique) integral
curves of X satisfying γe(0) = e. Then we define a map ψp,q : Ep → Eq by e 7→ γe(a). General
theory of ODE’s tells us that ψp,q is smooth – varying e ∈ f−1(p) corresponds to varying the
intial values of the solution of an ODE, and the solution of an ODE depends smoothly on the
initial conditions. Moreover, ψp,q is a diffeomorphism: its inverse is ψq,p.

Step 3 Given p ∈ M , choose a coordinate chart centred on p and by means of the chart
identify some neighbourhood U of p with the open unit ball in Rn. Each point q ∈ U is then
joined to p by a unique radial segment. These segments will play the role of the curve C in
the previous step. The maps ψp,q fit together to give a diffeomorphism ψU : Ep×U → f−1(U)
sending (e, q) to ψp,q(e), and clearly the diagram

f−1(U)
ψU←− U × Ep

f ↘ ↙ πU
U

is commutative.
The inverse of ψU is the diffeomorphism φU required by the definition of “local trivialisa-

tion”.
If M is connected then it is path-connected (Exercise) and it follows from Step 2 that all

of the fibres Ep are diffeomorphic to one another. If we call any one of them F , then it follows
from what we have just done that f : E → M is a locally trivial fibre bundle with fibre F . 2

Remark 4.1 If we allow E to have boundary, then we must insist that not only f but also
its restriction to ∂E be proper submersions. Assuming this is the case, we take care to choose
our Ehresmann connection so that at each point e ∈ ∂E, He ⊂ Te∂E. Once this is done,
the integral curve γe through any point e ∈ ∂E remains in ∂E at all times, and thus the
diffeomorphism ψp,q : Ep → Eq maps ∂(Ep) = Ep ∩ ∂E to ∂(Eq) = Eq ∩ ∂E.

Example 4.2 The argument used in the proof of the Ehresmann fibration theorem can easily
be used to define the monodromy associated to a loop in the target of a proper submersion
f : E → B. That is, if p ∈ B and γ is a loop based at p (i.e. a smooth map γ : [0, 1] → B
with γ(0) = γ(1) = p), then our construction gives us a diffeomorphism

ψp,p : Ep → Ep,

the geometric monodromy associated to γ. To emphasize its dependence on the choice of γ,
we denote it by ψγ . Of course, ψγ depends on the choice of Ehresmann connection, but it can
quite easily be shown that any two different Ehresmann connections give rise to homotopic,
indeed isotopic, diffeomorphisms. Thus, for example, the induced morphism of cohomology

ψ∗γ : Hk(Ep) → Hk(Ep)

(the cohomologoical monodromy) is independent of the choice of connection. Indeed, it is also
easy to show that the homotopy class of ψγ depends only on the homotopy class of γ (as a
loop based at p).
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Exercise (i) Let E be the Möbius strip, which you can think of as the rectangle [−R,R]×[−1, 1]
subject to the equivalence relation

(−R, t) ∼ (R,−t).

There is an obvious map from E to its central circle B=[−R,R]× {0}, in which each fibre is
the interval [−1, 1]. Let γ : [0, 1] → B be a parametrisation of the central circle. Find the ge-
ometric monodromy diffeomorphism determined by a sensible choice of Ehresmann connection.

Exercise If p : E → B is a locally trivial fibre bundle, and if f : S → B is any smooth map,
then there is a locally trivial fibre bundle f∗(E → B) over S with total space S ×B E :=
{(s, e) ∈ S × E : f(s) = p(e)} and projection (s, e) 7→ s.

1. Prove local triviality of f∗(E → B).

2. Given a horizontal distribution {He} on E (as in the proof of the Ehresmann fibration
theorem), construct a pull-back horizontal distribution on S ×B E.

Although locally trivial fibre bundles are extremely important, maps from manifolds to R are
rarely submersions. In particular, if M is compact then any smooth map f : M → R must
have a global maximum and a global minimum, and these are of necessity critical points.
Morse Theory is concerned with what happens for “generic” smooth maps f : M → R where
M is compact; that is, with how the presence of critical points of the simplest sort alters the
description of the map.

Definition 4.3 Suppose that x ∈ M is a critical point of the smooth map f : M → R, and
let φ : U → V ⊂ Rn be a chart arround x. The Hessian matrix of f at x, with respect to φ, is
the matrix of second order partial derivatives

[∂2(f ◦ φ−1)/∂xi∂xj ].

evaluated at φ(x).

Lemma 4.4 The following properties of the Hessian matrix of the function f at a critical
point are independent of the choice of chart: its rank, the number of negative eigenvalues, the
number of positive eigenvalues.

Proof Exercise. Note that as the Hessian is a symmetric matrix, all of its eigenvalues
are real. 2

Definition 4.5 (1) The critical point x of f : M → R is non-degenerate, or a Morse critical
point, if the Hessian at x is a non-singular matrix. In this case the index of the critical point
is the number of negative eigenvalues it has.

(2) The function f : M → R is a Morse function if all of its critical points are non-degenerate,
and if for no two distinct critical points p1, p2 are the critical values f(p1), f(p2) equal.
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We remark that the condition that x be a non-degenerate critical point is a “transversality
condition” on f ◦ φ−1: it is equivalent to the map d(f ◦ φ−1) : V → M1,n(R) (sending x to
the 1 × n real matrix [dx(f ◦ φ−1]) being transverse to 0. With a bit of effort, this condition
can be rephrased without reference to charts, as a property of f , and it is a general fact
(the Thom Transversality Theorem) that “most” maps will satisfy any given transversality
condition. The rephrasing is as follows: any function f : M → R defines a section of the
cotangent bundle T ∗M , the vector bundle whose fibre over x ∈M is T ∗xM := (TxM)∗, simply
sending x to dxf ∈ T ∗xM . A critical point of f is a point x such that dxf lies in the zero
section M × {0} ⊂ T ∗M ; then

Lemma 4.6 The critical point x of f : M → R is non-degenerate if and only if df : M → T ∗M
is transverse to the zero-section at x.

Proof The association M 7→ T ∗M is a functor on the category of smooth manifolds and
diffeomorphisms, in the sense that a diffeomorphism φ : M → N induces a diffeomorphism
T ∗(φ) : T ∗M → T ∗N by (x, α) 7→ (φ(x), α◦(dxφ)−1). In fact, of course, this is how one proves
in the first place that T ∗M is a manifold (and a vector bundle over M). The diffeomorphism
T ∗(φ) maps zero section to zero-section; it follows that to prove the lemma, it is enough to
use a chart φ : U → Rn, where U is a chart on M around x. For the diagram

T ∗U
T ∗(φ)−→ T ∗Rn

df ↑ ↑ d(f ◦ φ−1)

U
φ−→ Rn

commutes, and thus dft M×{0} if and only if d(f ◦φ−1)t Rn×{0}. To lighten notation, write
f ◦φ−1 simply as h : Rn → R. The map dh : Rn → T ∗(Rn) = Rn×Rn maps x to (x,

∑
∂h/∂xi)

(derivatives evaluated at x). It is transverse to Rn×{0} if and only the projection to the second
copy of Rn is a submersion — i.e. if and only if the matrix [∂2h/∂xi∂xj ] is non-singular. This
proves the lemma. 2

Morse functions are in fact open and dense (i.e. form an open and dense set) in the space
of all smooth functions M → R, equipped with a sensible topology (e.g. the Whitney C∞

topology). We do not show that here, but we will show the following simpler result:

Theorem 4.7 Suppose that M ⊂ RN is a smooth submanifold, and let f : M → R be any
smooth map. Then for almost all a ∈ RN , the function fa : M → R defined by fa(x) =
f(x) + a · x has only non-degenerate critical points.

Proof Consider the map F : M × RN → R defined by F (x, a) = f(x) + a · x. I claim
that its differential with respect to x ∈M , i.e. the map dMF : M ×RN → T ∗M sending (x, a)
to (x, dxfa), is transverse to the zero section of T ∗M . The point is that dxfa(x̂) = dfx(x̂)+a·x̂;
this can better be written as dxfa = dxf + a·. Now every linear map TxM → R is equal to a·
for suitable a ∈ RN — indeed, for suitable a ∈ TxM if so desired. The map{

{x} × RN → T ∗xM
(x, a) 7→ dxf + a·
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is just a translate of the linear epimorphism{
RN → T ∗xM
a 7→ a·

and the derivative of this last map is the map itself, and thus an epimorphism; it follows that the
derivative of the preceding map is also an epimorphism. And this implies that dMFt M×{0},
as claimed.

Now we use a well-known elementary lemma due to René Thom:

Lemma 4.8 Suppose that X,Y and Z are smooth manifolds and that W is a submanifold of
Z. If G : X × Y → Z is transverse to W , then for almost all y ∈ Y , the map Gy : X → Z
defined by Gy(x) = G(x, y), is transverse to W .

Proof One checks (Exercise) that

fyt W if and only if y is a regular value of π : F−1(W ) → Y

and then applies Sard’s Theorem. 2

We now use the lemma, taking X = M,Y = RN , Z = T ∗M and W = the zero section of
T ∗M . The map G, of course, is dMF : M × RN → T ∗M .

Applying the lemma, we deduce that for almost all a ∈ Rn, the map (dMF )a : M → T ∗M
is transverse to the zero section. But (dMF )a is just the derivative of fa; thus, we have shown
that for almost all a ∈ RN , dfa : M → T ∗M is transverse to M × {0} in T ∗M , and thus that
fa has only non-degenerate critical points. 2

We will refer to a function with only non-degenerate critical points as locally Morse.

Exercise Suppose that in the previous theorem M is compact. Show that
(i) If fa has only non-degenerate critical points then there are only finitely many of them.
(ii) The set {a ∈ RN : fa is locally Morse} is open and dense in RN ; indeed, if fa is locally
Morse and b is close enough to a then fb has the same number of critical points as fa.
(iii) If fa is locally Morse, there exist b arbitrarily close to a in RN such that fb is (globally)
Morse (i.e. such that fb is locally Morse and has all its critical values distinct).
(iv) Is the set of such b open and dense in RN?

One way of viewing this result is that any smooth function f : M → R can be perturbed
an arbitrarily small amount and become a Morse function. This is in fact the key step in
showing that “Morse functions are dense”.

Exercise If a ∈ RN is a unit vector, the function ha : M → R defined simply by x 7→ a · x is
called a height function. Show that for almost all unit vectors the height function ha is locally
Morse.

Example 4.9 1. If Sn ⊂ Rn+1 then every height function is Morse, having just two critical
points.
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2. If T 2 ⊂ R3 is the standard picture of a 2-torus (i.e. a doughnut lying on a table) then
the height function he3 is not locally Morse, but he1 and he2 are Morse.

Figure 12: Over each interval (ci, ci+1) the height function on the torus is a locally
trivial fibre bundle. As t passes through a critical value ci, the fibre f−1(t) changes.

3. If M ⊂ RN is a smooth submanifold and p ∈ RN , the function{
fp : M → R
x 7→ ‖p− x‖2

is a called a “distance squared” function. Madsen and Tornehave show in Theorem 12.4
on page 114 that for almost all p ∈ RN , fp is a locally Morse function. In fact a great
deal of information about the differential geometry of the embedding M ↪→ RN can be
obtained from a study of the critical points of the distance squared functions (Morse and
non-Morse).

Suppose that f : M → R is a Morse function. Morse theory is concerned with how the fibre
f−1(t) and the “sub-level set” — the manifold with boundary f−1((−∞, t]) — change as t
passes through a critical value. A first step is to describe them in the neighbourhood of the
critical point.

Theorem 4.10 The Morse Lemma: Suppose that the function f : M → R has a non-degenerate
critical point of index k at the point p ∈ M . Then there is a chart φ on M around p, with
φ(p) = 0, such that f ◦ φ−1 takes the form

f ◦ φ−1(x1, . . . , xn) = f(p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n.
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Proof A detailed proof can be found in e.g. Madsen and Tornehave, pages 117-118.
However, it is complicated and in my opinion not very illuminating.

Singularity Theory provides a much more interesting approach to this kind of question. It
falls into two parts, one of which is easy:
Step 1 A suitable chart can be found in which f ◦ φ−1 has the required form modulo a re-
mainder term of order 3.

This is just the classification of quadratic forms: by means of any chart mapping x to 0,
we can identify some neighbourhood of x in M with Rn, so forget M and think of f as being
defined on some neighbourhood of 0 in Rn. Let H be the Hessian matrix of f at 0.

If L : Rn → Rn is a linear isomorphism, then the Hessian matrix of f ◦ L at 0 is just

LtHL

(we are assuming that f has a critical point at 0). The theory of real quadratic forms assures
us that we can choose appropriate L so that LtHL is a diagonal matrix with each diagonal
entry equal to 1, to zero or to −1. As f has a non-degenerate critical point, there can be no
zeros. Now re-order the coordinates to get all the −1’s at the start. This proves Step 1.

Step 2 I claim that any function with a non-degenerate critical point is 2-determined: that
is, if I add to it any function g with vanishing first and second order partials at 0, then there
exists a diffeomorphism φ, defined on some neighbourhood of 0 in Rn and mapping 0 to 0,
such that (f + g) ◦ φ = f . The way to prove this, due to John Mather, is to show that in fact
there is a family of diffeomorphisms, φt, depending smoothly on t, such that (f + tg) ◦φt = f ,
with φ0 = idRn . To construct such a family of diffeomorphisms, we integrate a certain vector
field X constructed on a neighbourhood of (0, 0) in Rn × R.

Think of the functions ft = f + tg, as t varies, as together making a function F : Rn ×
R → R, F (x, t) = f(x) + tg(x). We have

∂F/∂t = g;

thus, if we can find X1, . . . , Xn (functions of x and t) such that

g = X1∂F/∂x1 + · · ·+Xn∂F/∂xn

and we define a vector field X by

X = ∂/∂t−X1∂/∂x1 − · · · − Xn∂/∂xn

then X · F = 0. This means that F is constant along the integral curves of X. Let
Γx : R → Rn × R be the integral curve of X satisfying Γx(0) = (x, 0). Because the component
of X in the t direction has constant length 1, Γx(t) has the form

Γx(t) = (γx(t), t)

for some smooth curve γx. By what we have just said,

F (Γx(t)) = F (Γx(0)) = F (x, 0) = f(x).
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Moreover
F (Γx(t)) = F (γx(t), t) = f(γx(t)) + tg(γx(t)) = (f + tg)(γx(t)).

As in the proof of the Ehresmann fibration theorem, the map

φt : x 7→ γx(t)

is a diffeomorphism; the previous two equations show that

(f + tg) ◦ φt = f

as required.

Figure 13

In order to guarantee that φt(0) = 0, we make the additional requirement on X that it be
tangent to the t-axis; that is, that Xi(0, t) = 0 for i = 1, . . . , n.

We have yet to describe the construction of the vector field X. I will only give a sketch. It
begins with the observation that invertibility of the Hessian matrix H(f)(0) is equivalent to
the solvability of the system of linear equations in unknown functions ai,j(x)

x1 = a1,1
∂f
∂x1

+ · · ·+ a1,n
∂f
∂xn

· · · · · · · · ·
xn = an,1

∂f
∂x1

+ · · ·+ a1,n
∂f
∂xn

(7)

in some neighbourhood of 0 in Rn (by Cramer’s rule). For by Taylor’s Theorem, modulo terms
of order ≥ 2 we have  ∂f

∂x1

· · ·
∂f
∂xn

 = H(f)(0)

 x1

· · ·
xn
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where H(f)(0) is the Hessian matrix of f at 0; since H(f)(0) is invertible, we get

(H(f)(0))−1

 ∂f
∂x1

· · ·
∂f
∂xn

 =

 x1

· · ·
xn


(again modulo terms of order ≥ 2). That is, we can take the ai,j in the system of equations (7)
to be the entries of (H(f)(0)−1. A result from elementary commutative algebra (Nakayama’s
lemma) shows that this is good enough: if we can solve the equation (1) to first order (i.e.
ignoring terms of order 2 and higher), then we can solve it precisely.

Techniques from elementary commutative algebra (in particular Nakayama’s Lemma), plus
a patching argument (for (3)) show that this implies that

1. any function g, all of whose first and second order partials vanish at 0, can be written
as a linear combination

g = a1
∂f

∂x1
+ · · ·+ an

∂f

∂xn
,

where the ai are functions of x, vanishing at 0, and defined on some neighbourhood of 0;

2. the same is true if f is replaced by f + tg;

3. the same function g can be written as a linear combination

g = A1
∂F

∂x1
+ · · ·+An

∂F

∂xn
,

where now the Ai are functions of x and t, defined on some neighbourhood of {0}× [0, 1]
in Rn × R and vanishing when x = 0.

Note that (3) is, more or less, the construction of the vector field X (just take Xi = −Ai for
i = 1, . . . , n).

Step 3 By Step 1, we have brought f to the form

f(p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n + h

where h has order ≥ 3 at 0. Now apply Step 2, taking g = −h. 2

Remark 4.11 The same method of proof gives a criterion for a function f to be k-determined
in some neighbourhood of a critical point: if every equation

xi11 · · ·x
in
n = a1

∂f

∂x1
+ · · ·+ an

∂f

∂xn

in which i1+· · ·+in = k−1 can be solved for the unknown functions ai in some neighbourhood
of 0, then for every function g of order k+ 1 at 0, f + g can be transformed to f by a suitable
change of coordinates.

The definition of k-determinacy, and this criterion for it, are expressed more succinctly in
the language of germs:
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(i) two functions or maps f1, f2 defined in some neighbourhoods of 0 ∈ Rn “have the same
germ” at 0 if there is a neighbourhood of 0 on which both are defined and on which they
coincide. This is clearly an equivalence relation, and a germ is an equivalence class.
(ii) The set of germs at 0 ∈ Rn of smooth functions is a ring, under the obvious operations of
pointwise addition and multiplication; it is denoted En.
(iii) En has a unique maximal ideal, mn, consisting of all germs whose value at 0 is 0. It
is generated by the germs of the coordinate functions x1, . . . , xn. The j-th power mj

n of mn

consists of all germs of functions f such that f and all partials of order less than j vanish at
0.
(iv) The ideal in En generated by the first order partial derivatives of f is denoted Jf .
(v) The set of germs at 0 of diffeomorphisms of Rn mapping 0 to 0 is a group under composition,
and is denoted (in this context) by R. It acts on En by composition on the right 4 : (f, φ) 7→
f ◦ φ. If f1 and f2 are in the same orbit, we say they are right equivalent.

Then by definition, f ∈ En is k-determined if, for all g ∈ mk+1
n , f + g is right-equivalent to

f . The criterion quoted above becomes

Theorem 4.12 (John Mather, 1968) If mk−1
n ⊂ Jf then f is k-determined. 2

This theorem is proved by exactly the same argument we used for the Morse Lemma, which
of course is just a special case.

The point of having a “normal form” for a non-degenerate critical point is that it allows
us to describe the change in the topology of the level set f−1(a) and the sub-level set M(−∞,a]

as a passes through a critical value. First, we note

Proposition 4.13 Suppose that M is a compact manifold without boundary and that f :
M → R is a smooth function. If the interval [a1, a2] contains no critical value of f then the
manifolds with boundary M(−∞,a1] and M(−∞,a2] are diffeomorphic.

Proof The hypothesis implies that there is an open interval (b1, b2) containing [a1, a2]
and containing no critical value of f . For any set X ⊂ R, denote f−1(X) by MX . By the
Ehresmann fibration theorem, f| : M(b1,b2) → (b1, b2) is a locally trivial fibre bundle. Indeed,
it is trivial: in the argument we gave in the proof of the fibration theorem, we can take U to
be all of (b1, b2). Thus M[b1,a1] is diffeomorphic to M[b1,a2] (simply stretch the interval). This
diffeomorphism gives rise to a diffeomorphism M(−∞,a1] = M(−∞,b1] ∪M[b1,a1] to M(−∞,a2] =
M(−∞,b1] ∪ M[b1,a2]. We have to be a little careful, though: in order to piece together the
identity diffeomorphism on M(−∞,b1] and the stretching diffeomorphism M[b1,a1] → M[b1,a2],
we have to start the stretching very slowly in the vicinity of a1. In other words, we replace
the linear stretch sending b1 + t in [b1, a1] to b1 +αt in [b1, a2] (where α = (a2− b1)/(a1− b1))
by a slow-starting stretch b1 + t 7→ b1 + ρ(t)t, where ρ is a smooth function equal to 1 on a
neighbourhood of 0 and equal to α in a neighbourhood of a1 − b1. 2

The value of 4.10 becomes clear with the following result:
4Strictly speaking, in order to comply with the definition of group action, this should be (f, φ) 7→ f ◦ φ−1;

but we’re only interested in the orbits, so we ignore this difference
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Lemma 4.14 Let f : M → R be a Morse function, with M compact, and suppose that a is a
critical value of f , with the (unique) critical point p ∈ f−1(a) having index k. Then if ε > 0
is so small that a is the only critical point in [a− ε, a+ ε], there is a closed neighbourhood Ū
of p such that

1. Ū is homeomorphic to Dk ×Dn−k;

2. Ū ∩M(−∞,a−ε] is contained in the level set Ma = f−1(a) and is homeomorphic to Sk−1×
Dn−k,

3. M(−∞,a+ε] is homeomorphic to M(−∞,a−ε] ∪ Ū . 2

This lemma is often stated as
“M(−∞,a+ε] is homeomorphic to the space obtained from M(−∞,a−ε] by gluing Dk ×Dn−k to
Ma along (∂Dk)×Dn−k”.

Example 4.15 1. If k = 0 (i.e. if p is a local minimum of f) then U ∩M(−∞,a−ε] = ∅
(since Sk−1 = ∅): M(−∞,a+ε] is diffeomorphic to the disjoint union of M(−∞,a−ε] and an
n-ball. Compare the picture of the torus on page 43.

2. Let f : R3 → R be f(x, y, z) = x2 + y2 − z2. Here the index is 1. The following figure
shows R3

(−∞,−1], R3
(−∞,0] and R3

(−∞,1].

Figure 14

It is clear that R3
(−∞,1] is homeomorphic to R3

(−∞,−1] with a cylinder D1 ×D2 glued in
along its top and bottom — i.e., along (∂D1)×D2:

Figure 15
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3. Let f : R3 → R be f(x, y, z) = −x2 − y2 + z2. Here the index is 2. The following figure
shows R3

(−∞,−1], R3
(−∞,0] and R3

(−∞,1] (in each case the complement of the solid shown).

Figure 16

It is clear that R3
(−∞,1] is diffeomorphic to R3

(−∞,−1] with a cylinder D2 × D1 glued in,
but this time along (∂D2)×D1:

Figure 17

4. Exercise In the picture of the Morse function on the torus on page 43,
(i) Find the index of each of the critical points by choosing suitable local coordinates;
(ii) For each critical point ci, make a drawing showing that T 2

(−∞,ci+ε]
is homeomorphic

to T 2
(−∞,ci−ε] with Dki ×D2−ki glued in along (∂Dki)×D2−ki , where ki is the index of

the critical point lying over ci.

Up to now our information about how M(−∞,a] changes as a passes through a critical point,
has been in terms of homeomorphisms. This can be improved to statement in terms of diffeo-
morphisms, at a slight cost in terms of precision:

Lemma 4.16 Let f : M → R be a Morse function, with M compact, and suppose that a is a
critical value of f , with the (unique) critical point p ∈ f−1(a) having index k. Then if ε > 0
is so small that a is the only critical point in [a− ε, a+ ε], there is an open neighbourhood U
of p such that

1. U is diffeomorphic to a contractible open set in Rn;

2. U ∩M(−∞,a−ε) is diffeomorphic to Sk−1×Bn−k+1 (where Bj is the open unit ball in Rj);

3. M(−∞,a+ε) is diffeomorphic to M(−∞,a−ε) ∪ U . 2
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Note the difference between (ii) here and in 4.14: here we consider the M(−∞,a±ε), which are
open subsets of M , in place of the manifolds with boundary M(−∞,a±ε]; the intersection of U
and M(−∞,a−ε) is an open set, and thus of dimension n; it is diffeomorphic to Sk−1×Bn−k+1,
which one should think of as a the product of a thickened sphere Sk−1× (−1, 1) with an open
ball Bn−k. It is worth trying to understand how the pictures in Example 4.15 change in this
version of the lemma: the intersection Ū ∩M(−∞,a−ε], which lay in the level set f−1(a) in 4.14,
is now thickened to an open set in M(−∞,a−ε].

I will not prove either 4.14 or 4.16; a careful proof of the latter can be found in Appendix
C of Madsen and Tornehave. It will not figure in the exam!

We go on to consider the consequences of 4.16 for cohomology. The first concerns the
Euler characteristic. Recall that if M is a manifold then the Euler characteristic χ(M) is, by
definition, equal to ∑

q

(−1)qdim Hq(M).

Exercise (Subadditivity of the Euler characteristic) Suppose that U1 and U2 are open subsets
of the manifold M . Show, using Mayer Vietoris, that

χ(U1 ∪ U2) = χ(U1) + χ(U2)− χ(U1 ∩ U2).

Proposition 4.17 In the situation of 4.16, suppose that M(−∞,a−ε) has finite dimensional
cohomology. Then so does M(−∞,a+ε), and

χ(M(−∞,a+ε)) = χ(M(−∞,a−ε)) + (−1)k.

Proof The open set U of 4.16 is contractible, so H0(U) = R and Hq(U) = 0 for q > 0.
Hence χ(U) = 1. Now apply subadditivity of the Euler characteristic:

χ(M(−∞,a+ε)) = χ(M(−∞,a−ε)) + χ(U)− χ(M(−∞,a−ε) ∩ U).

Since M(−∞,a+ε) ∩U is diffeomorphic to Sk−1×Bn−k+1it is homotopy-equivalent to Sk−1 and
its Euler characteristic is 1 + (−1)k−1. The proposition follows. 2

Corollary 4.18 Suppose that f : M → R is a Morse function, with M compact. Let ck be
the number of critical points of f with index k. Then

χ(M) =
∑
k

(−1)kck.

Proof Exercise (use 4.17, and work your way through the critical points of f , ordered
by the size of their critical values). 2

Exercise (The Morse alternative) Suppose that M is compact, the function f : M → R has
a single critical value in the interval [a− ε, a+ ε], and the corresponding critical point is non-
degenerate and has index k. Show that for q 6= k−1, k the inclusion j : M(−∞,a−ε) → M(−∞,a+ε)

induces an isomorphism on q’th cohomology groups, and if k ≥ 2 then either
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1.
j∗ : Hk−1(M(−∞,a+ε)) → Hk−1(M(−∞,a+ε))

is an isomorphism and

j∗ : Hk(M(−∞,a+ε)) → Hk(M(−∞,a+ε))

has 1-dimensional kernel, or

2.
j∗ : Hk−1(M(−∞,a+ε)) → Hk−1(M(−∞,a+ε))

has 1-dimensional cokernel and

j∗ : Hk(M(−∞,a+ε)) → Hk(M(−∞,a+ε))

is an isomorphism.

What happens if k = 0 or 1?

Exercise 4.19 Recall that SO(n) is the group of orientation-preserving linear isometries of
Rn.

1. Show that A ∈ Gl(n,R) is in SO(n) if and only if AtA = In, where In is the identity
matrix, and detA = 1.

2. Let Mn(R) be the space of all n × n real matrices, and let Symn(R) be the subspace
consisting of symmetric matrices. Show that the map Mn(R) → Symn(R) sending A to
AtA has In as a regular value. (By (1), this shows that SO(n) is a manifold of dimension
n(n− 1)/2).

3. Use (2) to show that the Lie algebra TInSO(n) is equal to the space of all skew-symmetric
n× n real matrices, and go on find an expression for TASO(n).

4. Consider the trace function tr : Mn(R) → R, tr(A) = the sum of the diagonal elements
of A. Show that In is a critical point of tr, and go on to show that every diagonal matrix
in SO(n) is a critical point of tr.

5. Are the diagonal matrices non-degenerate critical points of tr?

51



The Poincaré-Hopf Theorem

From Corollary 4.18 one obtains an easy proof of the Poincaré- Hopf theorem on the sum of
the indices of the isolated zeros of a vector field. We now sketch this, leaving out many details
due to lack of time.

Let X be a vector field on the manifold M , and let p ∈ M be an isolated zero of X. We
define the index of X at p, denoted ιp(X), as follows:
choose a chart φ : U → V ⊂ Rn around p, and define a vector field φ∗(X) (the “push-forward
of X by φ“) on V by

φ∗(X)(y) = dxφ(X(x))

where x = φ−1(y). Evidently φ∗(X) has an isolated zero at φ(p). For convenience let us now
assume φ(p) = 0. Choose a closed ball B̄ε with centre 0, so small it contains no other zero of
φ∗(X), and denote its boundary by Sε. Then

ιp(X) = deg
{

φ∗(X)
‖φ∗(X)‖

: Sε → Sn−1

}
.

Lemma 4.20 This is well-defined: it does not depend on the choice of ε, nor on the choice
of chart φ.

Proof The first assertion is easy: for any ε, there is an orientation-preserving diffeo-
morphism gε : Sn−1 → Sε, which we may choose to depend smoothly on ε. Compose this with
the map used to define ιp(X) to get a map Sn−1 → Sn−1. As the degree of gε is 1, this new
map has degree equal to the degree of the map Sε → Sn−1 used to define ιp(v). As ε varies,
we get a smooth homotopy, so the degree does not change.
The second assertion is more difficult; see Madsen and Tornehave, Lemma 11.18 page 107. 2

We say the zero p of X is non-degenerate if the derivative at φ(p) of φ∗X (which we think
of as a smooth map V → Rn) is non-singular.

Lemma 4.21 p is a non-degenerate zero of X if and only if X is transverse to the zero-section
M × {0} of TM at p. In this case

ιp(X) = (X(M) ·M × {0})(p,0)

(Here (X(M) ·M×{0})(p,0 is the (oriented) intersection number at p of the image of X in TM
and the zero section M . It is defined to be +1 if a positive basis for T(p,0)(X(M)), followed
by a positive basis for T(p,0)M , gives a positive basis for T(p,0)(TM), and −1 if they give a
negative basis. Although defined using the orientation of M , it is independent of the choice of
orientation, because the orientation of TM is independent of that of M , and when we reverse
the orientation of M then we also reverse the orientation of the zero section, so the changes
cancel each other out.)
Proof Madsen and Tornehave, in Lemma 11.20 page 109, show that if p is a non-
degenerate zero of X then

ιp(φ∗(X)) =
{

1 if dφ(p)φ∗(X) has positive determinant
−1 if dφ(p)φ∗(X) has negative determinant
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The result follows. 2

The key to the proof of Poincaré-Hopf is the fact that a Morse function f : M → R gives
rise to a vector field onM with only non-degenerate zeros. The idea is to construct a “gradient”
vector field. Recall that the gradient ∇f(x) of a function f : Rn → R is defined by

∇f(x) = (
∂f

∂x1
, . . . ,

∂f

∂xn
).

Since on a manifold M there is in general no canonical system of coordinates it is not imme-
diately clear how to define a gradient vector of a function on M . To make such a definition,
we single out a crucial property of the gradient of a function on Rn: for any vector v,

< ∇f(x), v >= dxf(v).

(the expression on the left is the inner product of ∇f(x) and v). To transfer this definition to
a manifold M , we need a Riemann metric on M . Then with respect to this metric we define
∇f(x) to be the unique vector in TxM such that for all v ∈ TxM ,

< ∇f(x), v >= dxf(v).

Another way of viewing this is to say that the Riemann metric gives rise to a bundle isomor-
phism

g : TM → T ∗M, defined by (x, v) 7→ (x,< v, · >x)

where <,>x is the scalar product in TxM , so that for v ∈ TxM < v, · >: TxM → R is a linear
map. Then

∇f = g−1 ◦ df.

Lemma 4.22 g is an orientation-preserving diffeomorphism.

Proof Exercise You have to supply the (natural) orientations on TM and T ∗M . 2

Lemma 4.23 If f : M → R has a non-degenerate critical point of index k at p, then

(df(M),M × {0})(p,0) = (−1)k.

Proof Exercise 2

Corollary 4.24 If M is compact and f : M → R is a Morse function then∑
p∈M

ιp(∇f) = χ(M).

Proof Exercise (using 3.20 and 3.21). 2

Lemma 4.25 If M is compact and X1 and X2 are any two vector fields with only non-
degenerate zeros, then ∑

p∈M
ιp(X1) =

∑
p∈M

ιp(X2).
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Proof Both sums are equal to the self-intersection number of the diagonal in M ×M .
To understand this, recall that if Z is any compact oriented manifold of even dimension and
W1,W2 are compact oriented submanifold with dim Wi = (1/2)dim Z, then W1 ·W2 is defined
by moving one of them in a homotopy, say W1, until it becomes transverse to W2, and then
counting intersection points with their signs. The usual argument about homotopy-invariance
shows that the intersection number does not depend on the choice of perturbation of W1: any
two are homotopic to one another. This applies in particular if W1 = W2. Thus, if ∆ is the
diagonal in M ×M , then ∆ ·∆ is well-defined. It does not depend on the choice of orientation
of M (indeed, it doesn’t really even require M to be orientable at all — for M ×M is always
orientable).

To show that
∑

p∈M ιp(X1) = ∆ · ∆, we show that there are neighbourhoods U of ∆ in
M×M and V of M×{0} in TM , and a diffeomorphism Ψ : U → V such that Ψ(x, x) = (x, 0)
and such that the diagram

M ×M TM
↑ ↑
U

Ψ−→ V
proj↘ ↙ π

M

(in which the vertical arrows are inclusions and proj is projection to the first factor) commutes.
This is easy: embed M in some RN (so that M ×M and TM are embedded in R2N ), and

define a map Ψ : M ×M → TM by

(x, y) 7→ (x, πx(y − x)),

where for each x ∈M , πx : Rn → TxM is orthogonal projection.
We have

(1) For all x ∈M , Ψ(x, x) = (x, 0), as required, and
(2) At each point (x, x) ∈ ∆, d(x,x)Ψ : T(x,x)M × M → T(x,0)TM is an isomorphism (you
should check this). Thus, at each point of ∆, Ψ is a local diffeomorphism.
It follows that
(3) Ψ is a local diffeomorphism at each point of some neighbourhood of ∆.
As Ψ is injective on ∆, it also follows that
(4) it is also injective on a neighbourhood of ∆ (this uses (3) also - see Guillemin and Pollack
Section 3 Exercise 10 page 19).
Thus,
(5) Ψ maps some neighbourhood U of ∆ inM×M diffeomomorphically to some neighbourhhod
V = Ψ(U) of M × {0}.

This diffeomorphism turns “a small perturbations of ∆” into (the image of) a vector field.
That is, if ∆ is shifted to ∆′, so that ∆′ ⊂ U and ∆′t ∆, then (provided π : Ψ(∆′) → M is a
diffeomorphism), in an obvious way we can define a vector field X on M so that Ψ(∆′) is the
image of X. As π : Ψ(∆) → M is a diffeomorphism, then provided ∆′ is close enough to ∆,
π : Ψ(∆′) → M will indeed be a diffeomorphism. By Lemma 4.21 X has only non-degenerate
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zeros. In fact Ψ preserves intersection numbers (it respects orientations) and thus∑
(x,x)∈∆′∩∆

(∆′ ·∆)(x,x) =
∑
x∈M

(X(M) ·M × {0})(x,0) =
∑
x∈M

ιx(X).

The proof is complete. 2

Before completing the proof of Poincaré Hopf, we need

Lemma 4.26 Suppose that the vector field X has an isolated zero of index k at p ∈M . If U
is a neighbourhood of p in which X has no other zero, then
(i) there exists a vector field Y which coincides with X outside U and has only non-degenerate
zeros in U , and
(ii)

∑
q∈U ιq(Y ) = k.

Proof (i) Choose a chart φ : U1 → V around p, with U1 ⊂ U , and let Z denote φ∗(X).
We can think of Z simply as a map V → Rn. By Sard’s theorem, almost all v ∈ Rn are
regular values of Z, and so it follows that for almost all v ∈ Rn, the map Z + v defined
by (Z + v)(x) = Z(x) + v is transverse to 0 — and thus the vector field Z + v has only
non-degenerate zeros in V .

The basic idea of the proof now is to replace Z by Z + v, for suitable v, in some neigh-
bourhood of φ(p).

Choose radii δ1, δ2 such that 0 < δ1 < δ2 and B(φ(p), δ2) ⊂ V . As Z has no zero in
V \ {p}, there exists ε > 0 such that for all x ∈ B(φ(p), δ2) \B(φ(p), δ1), ‖Z(x)‖ > ε. Choose
a regular value v of Z with ‖v‖ < ε, and choose a non-negative smooth function ρ on V such
that ρ is identically zero outside B(φ(p), δ2) and ρ is identically 1 in B(φ(p), δ1). Then if
Z ′(x) = Z(x)− ρ(x)v, we have

(a) Z ′ = Z outside B(φ(p), δ2)

(b) Z ′ has only non-degenerate zeros in V . (You should check this.)

To construct Y , we simply replace X inside U1 by φ−1
∗ (Z ′).

(ii) It’s clearly enough to show that
∑

q∈B(φ(p),δ2) ιq(Z
′) = k. This follows from the second

exercise after corollary 2.13: inside B(φ(p), δ2) we choose disjoint balls Bi around the zeros of
Z ′, and a ball B0 around φ(p). Apply the exercise first with W = B(φ(p), δ2) \ B0 to deduce
that

ιφ(p)(Z) = deg
{

Z

‖Z‖
: ∂B(φ(p), δ2) → Sn−1

}
,

and then apply it with W = B(φ(p), δ2) \ ∪iBi to deduce that∑
q∈B(φ(p),δ2)

ιq(Z ′) = deg
{

Z ′

‖Z ′‖
: ∂B(φ(p), δ2) → Sn−1

}
.
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Figure 18: The orientation of ∂Bi is reversed when we consider it as part of ∂W

The right hand sides of these two equalities coincide, since Z = Z ′ on ∂B(φ(p), δ2). 2

Corollary 4.27 If X is any vector field with only isolated zeros on the manifold M , there is
a vector field Y on M having only non-degenerate zeros and such that∑

p∈M
ιp(X) =

∑
p∈M

ιp(Y ).

2

The Poincaré-Hopf Theorem now follows:

Theorem 4.28 Let M be a compact oriented manifold without boundary, and let X be a
vector field on M with only isolated zeros. Then∑

p∈M
ιp(X) = χ(M).

Proof Immediate from 4.24,4.25 and 4.27. 2

Note that 4.25 and 4.28 give another interpretation of the Euler characteristic, as the
self-intersection number of the diagonal in M ×M .
Exercise In the proof of Lemma 4.25 we (more or less) proved the following statement:
suppose that f : M → N is a smooth map of smooth manifolds of the same dimension, that
at every point of some compact subset K of M , dxf is an isomorphism, and that f is 1-1 on
K. Then there is a neighbourhood U of K and a neighbourhood V of f(K) in N , such that
f| : U → V is a diffeomorphism. Use this result to prove that if M is a compact submanifold
of RN , then there is a diffeomorphism Ψ from some neighbourhood of the zero section in the
normal bundle 5 NM to some neighbourhood V of M in RN . Using r : πΨ−1 : V → M , where
π : NM → M is the bundle projection, we get a left inverse to the inclusion i : M → V . If we
choose U sensibly, we can ensure that i : M → V is a homotopy-equivalence, with homotopy
inverse r.

5The normal bundle is by definition the set NM = {(x, v) ∈ M × RN : v ∈ (TxM)⊥}. It is a smooth
manifold, and indeed a smooth vector bundle over M .

56



5 The complex projective space CPn

CPn is the space of all complex lines through 0 in Cn+1. Thus, it is equal, as a set, to
the quotient of Cn+1 \ {0} by the equivalence relation which identifies points (z0, . . . , zn)
and (λz0, . . . , λzn) (where λ is any non-zero complex number). We use square brackets to
denote points in CPn by the coordinates of any of their preimages in Cn=1: thus [z0, . . . , zn] =
[λz0, . . . , λzn]. This description also enables us to endow it with the natural quotient topology:
U ⊂ CPn is open if its preimage in Cn+1 is open (in the usual Euclidean topology). Since CPn

is also the image under the quotient map Cn+1 \ {0} → CPn of the unit sphere S2n+1 =
{(z0, . . . , zn) :

∑
i |zi|2 = 1}, it is compact.

CPn is also a complex manifold of complex dimension n. We take

Ui = {[z0, . . . , zn] ∈ CPn : zi 6= 0}

and define φi : Ui → Cn by

φi[z1, . . . , zn] = (z0/zi, . . . , zn/zi)

(leaving out the zi/zi, of course).

Exercise Ui is open and φi is a homeomorphism.

Note that CPn \ Ui is diffeomorphic to CPn−1.

Each change of coordinates φi ◦ φ−1
j is a rational map, and thus holomorphic. This shows

that CPn is a complex manifold. Any holomorphic map on Cn is also a smooth map of the
underlying R2n, so that CPn is also a smooth 2n-dimensional manifold.

Exercise CP1 is diffeomorphic to the 2-sphere S2.

The Hopf fibration

We have observed that the quotient map Cn+1\{0} → CPn restricts to a surjection S2n+1 → CPn.
This map is smooth, and a submersion (Exercise). As it is evidently proper, by the Ehres-
mann fibration theorem it is a locally trivial fibre bundle, the Hopf fibration. Its fibre over
` ∈ CPn is the unit circle in the complex line `. When n = 1, the Hopf fibration is a map
S3 → CP1 ' S2. H. Hopf showed that it is not homotopic to a constant map, and thus
represents a non-trivial element of π3(S2). This was the one of the first examples known of
non-vanishing of a higher homotopy group (i.e. where πk(M) 6= 0 for some k > dim M).

Theorem 5.1

Hq(CPn) =
{

R if q is even
0 if q is odd

Proof The proof is essentially an induction, based on the fact that the open set Ui ⊂
CPn is diffeomorphic to Cn = R2n and has complement in CPn diffeomorphic to CPn−1. To
make use of this decomposition, we need a general cohomological result:
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Proposition 5.2 Suppose that N is a smooth compact manifold and M is a smooth compact
submanifold. Let U = N \M , and let j : M → N and i : U → N denote the inclusions. Then
there is a long exact sequence

· · · → Hq−1(M) δ−→ Hq
c (U) i∗−→ Hq(N)

j∗−→ Hq(M) → · · · .

Proof Here i∗ is the push-forward defined on page 21. We prove first

(1) j∗ : Ωq(N) → Ωq(M) is an epimorphism.

(2) If ω ∈ Ωq(M) is closed, then there exists τ ∈ Ωq(N) such that j∗(τ) = ω and such that dτ
is identically zero on some open set in N containing M .

(3) If τ ∈ Ωq(N) and the support of dτ does not meet M , and if j∗(τ) is exact, then there
exists σ ∈ Ωq−1(N) such that τ−dσ is identically zero on some open neighbourhood of M in N .

We use a tubular neighbourhood of M in N . For the moment, this means just a neigh-
bourhood V of M in N together with a retraction r : V → M such that r ◦ j = idM , and
such that j ◦ r is homotopic to the identity (so that r and j are “homotopy-inverses” to one
another). Choose a smooth function ρ on N such that supp(ρ) ⊂ V and ρ ≡ 1 on a (smaller)
tubular neighbourhood V1 of M .

To prove (1), simply observe that for ω ∈ Ωq(M), the form ρ · r∗(ω) extends to a form
defined on all of N , and restricts to ω on M .

Exactly the same argument proves (2) also.

For (3), we can shrink V so that V ∩supp(dτ) = ∅. Thus, τ| V is closed, and hence represents
a cohomology class inHq(V ). As j : M → V is a homotopy-equivalence, j∗ : Hq(V ) → Hq(M)
is an isomorphism. It follows that (τ| V ) is exact. Let σ ∈ Ωq−1(V ) satisfy dσ = τ| V . Extend
σ to a form defined on all of N by multiplying by the bump function ρ described above. Then
on the neighbourhood V1 of M , τ − dσ ≡ 0.

Now we proceed with the proof of the proposition. Let Ωq(N,M) denote the subset of
Ωq(N) consisting of forms ω such that j∗(ω) = 0. Then by (1) above, we have a short exact
sequence of complexes

0 → Ω•(N,M) ↪→ Ω•(N)
j∗−→ Ω•(M) → 0.

As usual, this gives a long exact sequence of cohomology,

· · · → Hq−1(M) → Hq(N,M) → Hq(N) → Hq(M) → · · · .

To complete the proof, we show that the chain map i∗ : Ω•c(U) → Ω•(N,M) gives rise to an
isomorphism on cohomology. We can then substitute Hq

c (U) for Hq(N,M) in the above long
exact sequence.

To prove that i∗ gives an isomorphism on cohomology, we use (2) and (3) above. First we
show that it is surjective. Let ω ∈ Ωq(N,M) represent a cohomology class. Trivially, j∗(ω) is
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exact on M , and moreover dω = 0 on all of N . Thus by (3) above, there exists σ ∈ Ωq(N)
such that ω − dσ ≡ 0 on some neighbourhood of M . The form ω − dσ is in i∗(Ω

q
c(U)); it

represents the same cohomology class as ω in Hq(N), but unfortunately not in Hq(N,M)
since σ is not necessarily in Ωq−1(N,M). To remedy this, we have to show that we can indeed
modify σ to make it lie in Ωq−1(N,M). For this we use (2): we know that j∗(σ) is closed,
since dj∗(σ) = j∗(ω) = 0. Thus by (2) there exists τ ∈ Ωq−1(N) such that j∗(τ) = j∗(σ) and
such that dτ ≡ 0 on some neighbourhood of M . So we replace ω−dσ by ω−d(σ−τ). For now
σ− τ ∈ Ωq−1(N,M), so that [ω] = [ω− d(σ− τ)] in Hq(N,M); moreover since ω− dσ ≡ 0 on
a neighbourhood of M and dτ ≡ 0 on a neighbourhood of M , it follows that ω− d(σ− τ) ≡ 0
on a neighbourhood of M , and thus lies in the image of i∗ : Ωq

c(U) → Ωq(N,M). This shows
that i∗ is surjective on cohomology.

To see that it is injective, suppose that ω ∈ Ωq
c(U) represents a cohomology class in Hq

c (U),
and suppose that i∗(ω) is exact on N . That is,

i∗(ω) = dτ

for some τ ∈ Ωq−1(M,N). We have to replace τ in this equation by some τ1 ∈ Ωq−1
c (U), in

order to conclude that [ω] = 0 in Hq
c (U). Now j∗(τ) = 0, and supp(dτ)∩M = ∅; it follows by

(3) above that there exists σ ∈ Ωq−1(N) such that τ − dσ ≡ 0 on some neighbourhood of M
in N . This means that τ − dσ ∈ Ωq−1

c (U); and of course d(τ − dσ) = dτ = ω, so that [ω] = 0
in Hq

c (U), as required. 2

Now we continue with the proof of 5.1. We apply the proposition with N = CPn,M =
CPn−1. We assume the result for n = 1, since we know CP1 ' S2. The long exact sequence
from the lemma gives us

· · · → Hq
c (Ui)

i∗−→ Hq(CPn)
j∗−→ Hq(CPn−1) → Hq+1

c (Ui) → · · · ;

as Ui ' Cn = R2n, we know Hq
c (Ui) = 0 if q 6= 2n and H2n

c (Ui) = R. Thus if q < 2n − 1,
j∗ : Hq(CPn) → Hq(CPn−1) is an isomorphism; moreover, Hq(CPn−1) = 0 if q > 2n − 2, and
so the exact sequence gives us H2n−1(CPn) = 0,H2n(CPn) = R, as stated. 2

Theorem 5.3 The cohomology algebra H∗(CPn) is a truncated polynomial algebra

H∗(CPn) = R[c]/(cn+1)

where c is any non-zero cohomology class in H2(CPn) and (cn+1) is the ideal generated by
cn+1.

Proof It’s true for n = 1, so by induction assume it true for n − 1. Let c1 6= 0 in
H2(CPn−1), and let c = j∗(c1) in H2(CPn). By induction hypothesis, cq1 6= 0 in H2q(CPn−1)
for q = 1, . . . , n− 1.

The inclusion CPn−1 ↪→ CPn induces a map

j∗ : Hq(CPn) → Hq(CPn−1),
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which is an isomorphism for q ≤ 2n− 2. Hence cq 6= 0 in H2q(CPn) for q = 1, . . . , n− 1, and
thus cq generates H2q(CPn) for q = 1, . . . , n− 1. It remains only to show that cn 6= 0. But by
Poincaré duality, the wedge pairing

H2n−2(CPn)×H2(CPn) → R

is non-degenerate; since H2n−2(CPn) = R · cn−1 and H2(CPn) = R · c, and the pairing takes
(αcn−1, βc) to ∫

CPn
αcn−1 ∧ βc = αβ

∫
CPn

cn,

we must have cn 6= 0. 2

Like any complex manifold, CPn acquires a canonical orientation coming from the complex
structure on its tangent spaces. This orientation is defined as follows. Suppose that V is a
finite dimensional complex vector space. Then V is also a real vector space. In what follows
it will be convenient to denote V , thought of as a real vector space, by rV , though of a course
as a set it is the same as V . If e1, . . . , en is any basis for V , then e1, ie1, . . . , en, ien is a (real)
basis for rV . Any complex-linear map T : V → V can also be thought of as a real linear map
rV → rV , in which case it will be denoted rT .

Lemma 5.4 det(rT ) = |det(T )|2.

Proof Induction on n = dimCV . If n = 1, then T is just multiplication by a complex
number z = x+ iy. With respect to a basis e, ie of rV , rT has matrix(

x −y
y x

)
and thus det(rT ) = x2 + y2 = |z|2, as claimed.

Now assume the result true for all spaces of dimension n−1, and suppose V has dimension
n. Choose a complex line ` ⊂ V such that T (`) ⊂ ` (` can be any line generated by an
eigenvector). Then T induces C-linear maps T0 : ` → ` and T1 : V/` → V/`. By induction
hypothesis, we can assume det(rT0) = |det(T0)|2 and det(rT1) = |det(T1)|2. Finally, we have

det(T ) = det(T0) det(T1) and det(rT ) = det(rT0) det(rT1),

and thus det(rT ) = |det(T )|2. 2

From the lemma it follows that if u1, . . . , un and v1, . . . , vn are bases for V , then the two
bases u1, iu1, . . . , un, iun and v1, iv1, . . . , vn, ivn for rV are equivalent, i.e., the change of basis
matrix is positive. For this matrix is the same as the matrix of the map rT : rV → rV arising
from the complex linear map T : V → V sending ai to bi for i = 1, . . . , n. By the lemma,
det(rT ) > 0.

Corollary 5.5 (1) If V is a complex vector space of dimension n then rV has a well-defined
orientation in which every basis v1, iv1, . . . , vn, ivn is positive.
(2) If T : V1 → V2 is a complex-linear isomorphism then rT : rV1 → rV2 preserves this orien-
tation.
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Proof (1) is proved in the paragraph preceding the lemma. For (2), just observe that
tT sends a basis of rV1 of the form v1, iv1, . . . , vn, ivn to a basis of rV2 of the same form. 2

Now suppose that M is a complex manifold. That is, it is a 2n-dimensional manifold
with an atlas {Uα, φα}α∈A with the property that if we identify R2n with Cn then each of the
crossover maps φα ◦ φ−β 1 is complex analytic. Write φα ◦ φ−1

β simply as h. Like any smooth
map, h has a derivative dxh at each point; and in fact dxh is not only real linear but complex
linear. It follows that each TpM has a natural complex vector space structure.

It follows from the corollary that the derivative of h preserves the orientation of R2n coming
from Cn; as all the crossover maps preserve this orientation, it thus defines an orientation on
M .

Despite this general fact, we consider the complex structure on CPn from a slightly different
point of view, which enables us also to define a Hermitian metric on each tangent space TpCPn.

Let < , > denote the usual hermitian inner product on Cn+1,

< (w1, . . . , wn+1), (z1, . . . , zn+1) >=
∑
j

wj z̄j .

Then Re < , > is the usual real inner product on the underlying R2n+2 (check this!). For
v ∈ Cn+1 let (Cv)⊥ denote the orthogonal complement of Cv with respect to < , >. It is an
n-dimensional complex subspace of Cn+1. Similarly, let (Rv)⊥ be the orthogonal complement
of Rv with respect to the real inner product Re < , >. Evidently, (Cv)⊥ ⊂ (Rv)⊥.

Lemma 5.6 (1) Let p ∈ CPn and v ∈ π−1(p) ⊂ S2n+1. Then there is an open neighbourhood
U of p in CPn and a smooth map s : U → S2n+1 such that s(p) = v and π ◦ s = idU .

(2) Let v ∈ S2n+1 and p = π(v). The differential dvπ induces an R-linear isomorphism
(Cv)⊥ → Tp(CPn).

(3) TpCPn has a well-defined structure as complex vector space with a Hermitian inner product,
with respect to which the isomorphism of (2) is a C-linear isometry.

Proof Choose U + Uj such that p ∈ Uj . Define sj : Uj → S2n+1 by

sj([z0, . . . , zn]) =

(
n∑
k=0

|zk|2
)−1/2

(z0, . . . , zk)

where homogeneous coordinates are chosen so that zj = 1. In other words, sj(q) is just φj(q),
translated by 1 in the ej direction, and then divided by its norm, to pull it onto the unit
sphere.
(Exercise Show that (thinking of q ∈ CPn as a line through 0 in Cn+1) sj(q) is the unique
point of q ∩ Cj × {1} × Cn−j , divided by its norm.)
Note that π ◦ sj = idU . We then define s by multiplying sj by the unique λ ∈ S1 such that
λsj(p) = v. Clearly π ◦ s = idU . This proves (1). It follows by the chain rule that

dvπ : TvS2n+1 → TpCPn
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is surjective. Its kernel contains iv, for iv spans the tangent space at v to the unit circle
{eitv : 0 ≤ t ≤ 2π} though v in S2n+1, all of which is mapped to p by π. As kerdvπ is
1-dimensional, it is spanned by iv, and thus dvπ is an isomorphism on any complement in
TvS

2n+1 to the linear span of iv. Now (Cv)⊥ ⊂ TvS
2n+1 (since TvS

2n+1 = (Rv)⊥), and
moreover (Cv)⊥ = (Civ)⊥, so (Cv)⊥ is a complement to iv in TvS2n+1. This proves (2).

We use the isomorphism dvπ| : (Cv)⊥ ' TpCPn to give TpCPn a complex structure in the
obvious way : for λ ∈ C and p̂ ∈ TpCPn, λp̂ = d vπ|(λ(dvπ|)−1(p̂)). All this uses is that dvπ|
is a bijection. However, because dvπ is a real linear isomorphism, this complex structure is
compatible with its pre-existing structure as real vector space (remember that R ⊂ C).

By an analagous procedure we transfer to TpCPn the Hermitian metric from (Cv)⊥.
Only one thing remains to check: that the complex structure and Hermitian metric we

have just constructed on TpCPn do not depend on the choice of v in π−1(p). In fact, if v′ is
any other point in S2n+1 mapping to p, then there exists λ ∈ C of unit modulus such that
v′ = λv. The map on Cn+1 defined by multiplying by λ restricts to a map L : S2n+1 → S2n+1,
and we have a commutative diagram

TvS
2n+1 dvL−→ Tv′S

2n+1

dvπ ↘ ↙ dv′π
TpCPn

• dvL = L restricts to a complex linear isomorphism (Cv)⊥ → (Cv′)⊥, and it follows that
the complex structure on TpCPn is independent of choice of v, and thus well defined;

• L is a Hermitian isometry, and it follows that the Hermitian metric on TpCPn is well
defined.

2

Proposition 5.7 Let V be an n-dimensional complex vector space with Hermitian inner prod-
uct < , >. Then

(1) g(v1, v2) = Re < v1, v2 > defines an inner product on rV .

(2) ω(v1, v2) = g(iv1, v2) = −Im < v1, v2 > defines an element of Alt2(rV ).

(3) If vol ∈ Alt2n(rV ) denotes the volume form with respect to the metric g and the orientation
defined in 5.5, then ωn = n!vol.

Proof (1) and (2) I leave as an Exercise. For (3), suppose that v1, . . . , vn is an
orthonormal basis for V with respect to < , >. Then v1, iv1, . . . , vn, ivn is an orthonormal
basis for rV with respect to g (check this!). Let ε1, τ1, . . . , εn, τn denote the dual basis for
(rV )∗ = Alt1(rV ). We have ω(vj , ivj) = −ω(ivj , vj) = 1, and ω vanishes on all other pairs of
bais vectors. Thus,

ω =
n∑
j=1

εj ∧ τj .
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Moreover, vol = ε1 ∧ τ1 ∧ · · · ∧ εn ∧ τn (both sides are 1 on (v1, iv1, . . . , vn, ivn)). The equality
ωn = n!vol can now easily be proved by induction on n. 2

Now recall that on each tangent space TpCPn we have a complex structure and a Hermitian
inner product. We define

• a 2-form ω on CPn by taking the alternating 2-tensor defined in 5.7 on each tangent
space TpCPn, and

• a Riemannian metric (the Fubini-Study metric) on CPn by taking the inner product g
defined in 5.7 on each tangent space TpCPn.

Theorem 5.8 ω and g are, respectively, a smooth 2-form and a Riemannian metric. More-
over, ω is closed, and

ωn = n!volCPn

where volCPn is the volume form determined by g and the orientation coming from the complex
structure.

Proof Smoothness of both ω and g is clear: both come from the Hermitian metric
on the spaces TpCPn which is induced by the R-linear isomorphism dvπ : (Cv)⊥ → TpCPn,
and thus “depends smoothly on p”. To see that ω is closed, we show that in fact it is the
pull-back, via the smooth section s of π that we defined in 5.6, of a closed 2-form on S2n+1.
The 2-form in question is the restriction to S2n+1 of the canonical 2-form ωCn+1 defined by
ωCn+1(x̂1, ẑ2) = −Im < ẑ1, ẑ2 >.

Exercise Show that ωCn+1 =
∑n

j=0 dxj ∧ dyj on Cn+1, where xj and yj are the real and
imaginary parts of the j-th complex coordinate function zj . (This form is obviously closed on
Cn+1 and therefore on S2n+1.)

Suppose that v̂1, v̂2 ∈ (Cv)⊥. Via dvπ they map to p̂1, p̂2 ∈ TpCPn. We have

ω(p̂1, p̂2) = −Im < p̂1, p̂2 >= −Im < v̂1, v̂2 >= ωCn+1(v̂1, v̂2)

This almost shows what we want; the only problem is that although p̂k = dvπ(v̂k) for k = 1, 2,
we don’t know that v̂k = dps(p̂k), which is apparently what we need to conclude that ω =
s∗(ωCn+1). What we do know is that dps(p̂1) = v̂1 + α1iv, dps(p̂2) = v̂2 + α2iv for some real
scalars α1, a2. But now since v̂k ∈ (Civ)⊥, we have

−Im < v̂1 + α1iv, v̂2 + α2iv >= −Im (< v̂1, v̂2 > + < α1iv, α2iv >) = −Im < v̂1, v̂2 >

and we have won.
The fact that ωn = n!vol follows directly from the last part of 5.7. 2

We conclude this section by remarking that the closed 2-form ω we have defined on CPn

generates its cohomology ring. This is now clear: ωn = n!vol and therefore
∫
CPn ωn 6= 0, so

[ωn] 6= 0 in H2n(CPn). It follows that [ω] 6= 0 in H2(CPn).
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Exercise Show that if n is even, there can be no orientation-reversing diffeomorphism CPn → CPn;
show also that if n is odd then the map induced by complex conjugation,

[z0, . . . , zn] 7→ [z̄0, . . . , z̄n],

reverses orientation.

Exercise Show that any smooth map f : CPm → CPn induces the zero map on cohomology if
m > n.(Hint: use the structure of the cohomology algebra described in 5.3).

Note (for the purposes of the next exercise) that any continuous map between manifolds
can be approximated by a smooth map homotopic to it, and that any two smooth approxi-
mations both homotopic to f are therefore homotopic to one another, and hence induce the
same morphism on cohomology. This morphism is therefore determined by f alone. In this
way we can associate to a merely continuous map between manifolds a well-defined morphism
on cohomology. The result of the last exercise still holds, of course, when f : CPm → CPn is a
continuous map.

Exercise∗ Show that the Hopf map S2n+1 → CPn is not homotopic to a constant map. Here
is a sketch of how to do it (taken from Madsen and Tornehave): suppose that F : S2n+1 ×
[0, 1] → CPn is a homotopy from a constant map F0 to the Hopf map π. Then it is possible
to extend π to a continuous map g : D2n+2 → CPn, defined by g(x) = F (x/‖x‖, ‖x‖). Now
define h : D2n+2 → CPn+1 by

h(z0, . . . , zn) = [z0, . . . , zn,

1−
n∑
j=0

|zj |2
1/2

].

Observe that h maps the interior B2n+2 of D2n+2 bijectively onto Un+1 = {[w0, . . . , wn+1] ∈
CPn+1 : wn 6= 0} = CPn+1 \ CPn. Also, h| S2n+1 is the composite of the Hopf map π :
S2n+1 → CPn with the inclusion j : CPn → CPn+1. Now find f : CPn+1 → CPn such that
f ◦ j = idCPn , and pass to de Rham cohomology to obtain a contradiction.

Exercise Show that Hq(S2 × S4) ' Hq(CP3) for every q, but that the cohomology algebras
are not isomorphic.

Exercise (i) Show that any element T ∈ Gl(n + 1,C) passes to the quotient to give a map
T̃ : CPn → CPn.
(ii) Which elements of Gl(n+ 1,C) give rise in this way to isometries of CPn (with respect to
the Fubini-Study metric)?
(iii)∗ If T ∈ Gl(n+ 1,C) and ω is the 2-form of 5.8, what is T̃ ∗(ω)?

Exercise (i) Use the long exact sequence constructed in 5.2 to give another calculation of
H∗(Sn).

(ii) Ditto for the cohomology of the 2-torus.
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Exercise Suppose that Mm is a compact submanifold of Sn, with 0 < m < n, and let
U = Sn \M . Construct isomorphisms

Hq(U) ' Hn−q−1(M)∗

for 1 ≤ q ≤ n− 2. Show that Hn(U) = 0 and find short exact sequences

0 → Hn−1(U) → H0(M)∗ → R → 0

and
0 → R → H0(U) → Hn−1(M)∗ → 0.

Exercise A symplectic manifold is a manifold M equipped with a closed 2-form ω such that
on each tangent space TpM , ω induces a non-degenerate pairing. Show that

1. A symplectic manifold must be even-dimensional (Hint: After choosing a basis for TpM ,
the the pairing on TpM can be written in the form ω(v1, v2) = [v1]tA[v2], where A is
a skew-symmetric matrix and [v1], [v2] are the expressions of v1, v2 in the chosen basis.
Show that detA 6= 0 to conclude that dimM must be even.)

2. Suppose M is a symplectic manifold of dimension 2n. Show that ωn must be a nowhere-
vanishing 2n-form. Deduce that if M is compact then [ω] 6= 0 in H2(M), and that
H∗(M) contains a subalgebra isomorphic to H∗(CPn).

Exercise On the manifold T ∗M there is a canonical 1-form α, defined as follows: a point
x ∈ TM is a linear form on the vector space Tπ(x)M , where π : TM → M is the bundle
projection. If v ∈ TxT ∗M , then dxπ(v) ∈ Tπ(x)M , so we can evaluate x on it. This is how we
define the 1-form α:

α(v) = x(dxπ(v)).

(i) Find coordinate expressions for α and for dα when M = Rn.
(ii) Find an expression for α using local coordinates on a manifold M .
(iii) Show that ω := dα is a symplectic form on M .
(iv) Show that if f : M → R is a smooth function and L = df(M) ⊂ T ∗M then the restriction
of ω to L is zero.

6 Vector Bundles

There are two equivalent definitions:
(1) E π−→ M is a smooth real vector bundle of rank k if each fibre Ep = π−1(p) is a real
vector space of dimension k, and if for all p ∈M there is a neighbourhood U of p in M and a
diffeomorphism φU : π−1(U) → U × Rk such that proj ◦ φU = π and such that the restriction
of φ to each fibre is a linear isomorphism.
(2) E π−→ M is a smooth real vector bundle of rank k if there is an open cover {Uα}α∈A of
M and diffeomorphisms φα : π−1(Uα) → Uα × Rk such that for all α, β ∈ A, the composite

(Uα ∩ Uβ)× Rk
φ−1

a−→ π−1(Uα ∩ Uβ)
φβ−→ (Uα ∩ Uβ)× Rk
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restricts to a linear isomorphism {p} × Rk → {∂} × Rk for all p ∈ Ua ∩ Uβ.
In the second definition, the vector space structure on the fibre Ep is the one pulled back from
{p} × Rk = Rk by φα. The second part of this definition is in order that the structure be
independent of the choice of local trivialisation φα.

The definition for complex vector bundle is analogous.

Example 6.1 1. For any smooth n-manifold M , π : TM → M and its dual T ∗M are real
vector bundles of rank n.

2. If Mm ⊂ Y n and Y has a Riemannian metric then the normal bundle N(M,Y ) =
{(x, v) ∈ M × TY : v ∈ (TxM)⊥} is a smooth vector bundle over M of rank n − m,
with the obvious projection to X. It seems somewhat unsatisfactory to have to use a
Riemann metric on Y to define N(M,Y ). Later we will see how to do it without.

3. There is a canonical complex line bundle (i.e. complex bundle of rank 1) over CPn,
denoted Hn and defined as follows: its total space is

{(`, y) ∈ CPn × Cn+1 : y ∈ `}

and the bundle projection simply maps (`, x) to `. That is, the fibre over ` is the line `.
Exercise Show that Hn is a smooth complex line bundle.

A section of the bundle π : E → M is a map s : M → E such that π ◦ s = idM .

Example 6.2 1. If M ⊂ RN and g is a smooth function vanishing on M and defined on
some neighbourhood V of M in RN , then restriction to M of the vector field grad g
is a section of the normal bundle N(M,RN ). If M ⊂ RN is the preimage of a regular
value of a map g : V → Rk (where V is some neighbourhood of M), then the k sections
grad gi | M of N(M,RN ) are everywhere linearly independent, and can be used to define
a global trivialisation N(M,RN ) → M × Rk of N(M,RN ).

2. Suppose that G is a Lie group with group identity element e, and for each g ∈ G let
`g : G → G denote left-multiplication by g, `g(h) = gh. For any vector v ∈ TeG we use
the maps `g to propagate v to give a vector field χv on G:

χv(g) = de`g(v).

In this way we get n vector fields on G; together they define a global trivialisation of
TG.

At this point these Lecture Notes end: the remainder of the course consists of
1. Morita, Geometry of Differential Forms, Chapter 5.
2. Madsen and Tornehave, From Calculus to Cohomology, Chapters 15, 16, 17 and 18.
Read Morita first: he gives a clearer and more motivated account, occasionally skipping tech-
nical details, which can be found in Madsen and Tornehave. If time runs short, make sure you
understand Morita, and worry less about Madsen and Tornehave. I strongly advise you to do
the relevant exercises in both books.

66


