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1 Introduction

The usual geometries of Teichmüller space relate largely to analytic properties
of Riemann surfaces such as quasiconformal maps and quadratic differentials.
Lines of minima were introduced by Kerckhoff [18] as a means of endowing
Teichmüller space with a geometry directly related to the hyperbolic structure
uniformising the surface.

The fundamental observation is the following. Suppose that µ and ν are
measured laminations on a hyperbolic surface S, which fill up S in the sense
that all the complementary components are disks or once punctured disks.
Then the sum of the hyperbolic lengths lµ + lν has a unique minimum M(µ, ν)
on the Teichmüller space T (S) of S. This result is a consequence of Thurston’s
earthquake theorem and the convexity of lamination length along earthquake
paths. The proof is sketched in Section 2.

Now consider convex combinations (1 − t)lµ + tlν . The set of minima
M((1 − t)µ, tν) for t ∈ (0, 1) is a 1-manifold Lµ,ν embedded in T (S), called
the Kerckhoff line of minima of µ and ν. Kerckhoff showed that the lines Lµ,ν

mimic many properties of geodesics in the Poincaré disc model of hyperbolic
space H2. For example, two projective laminations in PML(S), the Thurston
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boundary of T (S), determine a unique line of minima. The lines Lµ,ν for a
fixed measured lamination µ foliate T (S). Any two points in T (S) lie on at
least one line, although whether or not this line is unique, is unknown. Lines of
minima are intimately connected with earthquakes, in particular M(µ, ν) is the
unique point in T (S) at which ∂/∂tµ = −∂/∂tν , where ∂/∂tµ is the tangent
to the earthquake path along µ. More such results are detailed in Section 2.
In Section 3 we discuss various extensions and examples of Kerckhoff’s results,
most of which are extracted from [8, 9, 35].

Thus far, the main application of lines of minima has to been to prob-
lems about small deformations of Fuchsian groups, via a link discovered by
Series [35, 36]. One can deform a Fuchsian group by bending along a lami-
nation µ, a bend or quakebend being the complex analogue of an earthquake,
see Section 4.2. For small values of the bending parameter this gives a quasi-
fuchsian group the boundary of whose convex core on one side is bent along
the lamination µ. It turns out that the bending lamination on the other side
of the convex core is ν, if and only if the initial Fuchsian group lies on Lµ,ν .
Subsequently Bonahon [3] used these ideas partially to prove a conjecture of
Thurston about the uniqueness of groups with given bending data. These
results are explained in Section 4.

It is natural to make a comparison between lines of minima and Teichmüller
geodesics. The minimisation property of the length functions is analogous to an
important minimisation property along Teichmüller geodesics. A Teichmüller
geodesic is also determined by a pair of laminations µ, ν which fill up S, namely
the horizontal and vertical foliations of the defining quadratic differential, see
Section 2.5. Gardiner and Masur [12] showed that this Teichmüller geodesic
Gµ,ν can be characterised as the line along which the product of the extremal
lengths of µ, ν is minimised. Unlike the sum of lengths along Lµ,ν , this product
remains constant along Gµ,ν . The limiting behaviour of lines of minima and
Teichmüller geodesics is at least partly comparable, see Section 3.4 and [9].
More detailed questions about the relationship between lines of minima and
Teichmüller geodesics have been explored by Choi, Rafi and Series. In [6] they
gave a combinatorial estimate of the distance between the two paths and in [7],
proved that a line of minima is a Teichmüller quasi-geodesic. These results
are discussed in Section 5.

The methods of Section 5 are heavily dependent on some techniques origi-
nally due to Minsky [24] and developed further by Rafi [31, 32, 33], on curves
which are short on surfaces along a Teichmüller geodesic. Since this work
contains some powerful and interesting techniques, we take the opportunity to
summarize it briefly in Section 6.

I would like to thank Athanase Papadopoulos for giving me the opportunity
to present this relatively recent body of work in this volume.
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2 Kerckhoff’s original paper

2.1 Basic definitions

Let S be a surface of hyperbolic type with genus g and b punctures, and
denote its Teichmüller space by T (S). For simplicity, Kerckhoff restricted his
statements in [18] to surfaces without punctures, but remarked that the work
easily generalises to the finite area case. Here we state the results for surfaces
with punctures, noting some of the points where the original proofs need a
little attention.

We denote the spaces of measured and projective measured laminations
on S, by ML(S) and PML(S) respectively. Then T (S) and ML(S) are open
balls of real dimension 2d with d = 3g−3+b. The Thurston compactification of
T (S) adjoins PML(S), homeomorphic to the 2d−1-sphere, as a boundary [[11]
Exposé 8]. For µ ∈ML(S) we denote by [µ] its projective class and by |µ| its
underlying support.

Let S denote the set of homotopy classes of simple non-peripheral curves
on S. We call a lamination µ ∈ ML(S) rational if |µ| is a disjoint union of
closed geodesics αi ∈ S. We write such laminations

∑
i aiαi, where ai ∈ R+

and αi (more properly δαi) represents the lamination with support αi which
assigns unit mass to each intersection with αi.

The hyperbolic length lµ of a lamination µ ∈ ML(S) is the function on
T (S) which associates to each p ∈ T (S) the total mass of the measure which
is the product of hyperbolic distance along the leaves of µ with the transverse
measure µ. (Here and in what follows, the hyperbolic structure on S is the one
which uniformises the conformal structure on p ∈ T (S).) In particular, if µ =∑

i aiαi is rational, then lµ =
∑

i ailαi , where lαi(p) is the hyperbolic length of
the geodesic αi on the surface p ∈ T (S). The length is a continuous function
ML(S)× T (S)→ R>0. Likewise the geometric intersection number i(µ, ν) of
µ, ν ∈ ML may be defined as continuous function ML(S) ×ML(S) → R≥0

extending the usual geometric intersection number i(α, α′) of two geodesics
α, α′ ∈ S, see for example [17].

2.1.1 Filling up a surface

Definition 2.1. Laminations µ, ν ∈ ML(S) fill up S if i(µ, η) + i(ν, η) > 0
for all η ∈ML.

This condition clearly only depends on the projective classes of µ, ν in
PML. An equivalent condition is that every component of S−|µ|∪|ν| contains
at most one puncture, and whose closure, after filling in the puncture if needed,
is compact and simply connected. For the equivalence of these two conditions
see [18] Proposition 1.1 and Lemma 4.4, or [28] Proposition 2. These authors
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treat the case of closed surfaces, however there is no essential difference for
surfaces with punctures provided we allow complemetary components which
are punctured disks. For rational laminations it is enough to require that
the components of the complement be disks or punctured disks. For general
laminations this is not enough, since the complement of a generic lamination
is a union of ideal polygons. This is why one needs in addition that the
complementary components be compact.

If laminations are replaced by foliations, the condition of filling up a surface
is also equivalent to a pair of foliations in the measure equivalence classes being
realised transversally, see Section 2.5.

2.1.2 Earthquakes The time t left earthquake [17] along a lamination µ ∈
ML is a real analytic map Eµ(t) : T (S)→ T (S) which generalises the classical
Fenchel-Nielsen twist. The earthquake shifts complementary components of
the lamination |µ| on the surface p ∈ T (S) a hyperbolic distance tµ(κ) relative
to one another, where µ(κ) is the µ-measure of a transversal κ joining the two
components.

If p ∈ T (S), we denote by Eµ = Eµ(p) the earthquake path Eµ(t)(p), t ∈ R.
This path induces a flow and hence a tangent vector field ∂/∂tµ on T (S). In
[17], Kerckhoff shows that if ν ∈ ML, then the length lν is a real analytic
function of t along Eµ(p). One has [[17] Lemma 3.2, [42] Theorem 3.3]:

∂lν/∂tµ =
∫ ∫

cos θdµ× dν, (2.1)

where the integral is over all intersection points of a leaf of |µ| with one of |ν|,
and for each such intersection point, θ is the anticlockwise angle from ν to µ.
Following [18], we sometimes write Cos(µ, ν) =

∫ ∫
cos θdµ × dν. It follows

that lν is strictly convex along Eµ(p) if i(µ, ν) > 0 and constant otherwise, in
particular, lν has a unique minimum on Eµ(p). Equation (2.1) also immediately
gives Wolpert’s antisymmetry formula [[41] Theorem 2.11]

∂lν/∂tµ = −∂lµ/∂tν , (2.2)

from which one deduces easily that the minimum points for lν along Eµ and lµ
along Eν coincide. Wolpert also showed [[42] Theorem 3.4] that if i(µ, ν) > 0,
then at the unique minimum, ∂2lν/∂t2µ > 0 (see [[10] 3.10] for the same result
for laminations). This observation becomes crucial in Bonahon’s Theorem 4.7
below.

Thurston’s earthquake theorem [17, 40] states that for any pair of points
p, p′ ∈ T (S), there is a unique µ ∈ ML(S) such that Eµ(1)(p) = p′. (The
proof of the earthquake theorem in [17] requires a bit of attention when S has
punctures. The main point is that in the approximation arguments, one has to
use the well known fact that every leaf in the support of a lamination µ ∈ML
avoids a definite horocycle neighbourhood of each cusp.)
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2.2 Kerckhoff’s main results

The foundational result on the existence of minima of length functions is a
classic application of the earthquake theorem. In fact the proof gives a rather
stronger statement:

Theorem 2.2 ([18] Theorem 1.2). Let µ, ν ∈ ML be laminations which fill
up S. Then lµ + lν has a unique critical point on T (S) which is necessarily a
minimum.

Proof. We first show fµ,ν = lµ + lν : T (S) → R+ is proper. We have to
show that fµ,ν(pn) → ∞ whenever pn → ∞ in T (S). Pick a subsequence
of (pn) which converges to η ∈ PML. Then there exist cn → ∞ such that
lµ/cn → i(µ, η) and lν/cn → i(ν, η), see [11, 27]. Since µ, ν fill up S, we have
i(µ, η) + i(ν, η) > 0 so fµ,ν → ∞ as claimed. It follows that fµ,ν has at least
one minimum on T (S).

Now we show there is a unique critical point, which from the above must be
a minimum. Suppose that p, p′ ∈ T (S) are both critical points. By Thurston’s
earthquake theorem there is a unique η ∈ ML such that Eη(1)(p) = p′. Both
lµ and lν are convex along this path. Moreover since µ, ν fill up S, we have
i(µ, η) + i(ν, η) > 0 so that at least one of lµ, lν must be strictly convex. Thus
so is fµ,ν , hence the critical point along this path is unique.

The next result shows that the assumption that µ, ν fill up S is necessary.

Proposition 2.3 ([18] Theorem 2.1 Part II). Suppose that µ, ν ∈ML do not
fill up S. Then lν + lµ has no critical point on T (S).

Proof. It suffices to show that if µ and ν fail to fill up S, then lν +lµ can always
be decreased. Precisely this statement is proved in [[18] Theorem 2.1 Part II,
pps. 194-5]. The argument needs minor changes if S has cusps to allow for the
possibility that the complementary components of various laminations may be
punctured disks.

Definition 2.4. Suppose that µ, ν ∈ML fill up S. The line of minima Lµ,ν of
µ, ν is the image of the path (0, 1)→ T (S), t '→M((1−t)µ, tν). Note that this
definition depends only on the projective classes of µ, ν, and that equivalently,
Lµ,ν is the image of the path (0,∞)→ T (S), k '→M(µ, kν). Since the notation
is slightly lighter, we shall from now on frequently parameterise the line of
minima in this way.

At the critical point p = M(µ, kν), we have ∂/∂tη(lµ+klν) = 0, equivalently
using (2.1):

Cos(µ, η) + k Cos(ν, η) = 0 (2.3)
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for all η ∈ML.

Proposition 2.5 ([18] Theorem 2.1 Parts I, III). The map k → M(µ, kν) is
a continuous injection (0,∞)→ T (S).

Proof. Injectivity is a special (easy) case of [[18] Theorem 2.1 Part III]. To
see this, use (2.3) at the point M(µ, kν), together with the easy observation
that Cos(ν, η) certainly does not vanish simultaneously for all η, to show that
M(µ, kν) = M(µ, k′ν) implies k = k′. Continuity is proved in [[18] Theorem
2.1 Part I].

One of Kerckhoff’s main results is that the lines Lµ,ν for varying ν foliate
T (S) in a manner analogous to the foliation of H2 by geodesics emanating
from one point on the boundary ∂H2. Fixing [µ] ∈ PML(S), we therefore
need to understand PMLµ, the set of laminations which together with µ fill
up S. Clearly, PMLµ ⊂ PML−{[µ]} ∼ R6g−7+2b = R2d−1. If µ is uniquely
ergodic and maximal, then by definition i(µ, η) = 0 implies η ∈ [µ]. It is easy
to see in this case that PMLµ = PML−{[µ]}. In general, PMLµ can smaller,
nevertheless we have:

Theorem 2.6 ([18] Theorem 4.7, see also [12] Theorem 8). Suppose µ ∈
ML \{0}. Then PMLµ is homeomorphic to R2d−1.

Proof. If µ is rational, one can prove this as follows. Extend the support
curves of µ to a pants decomposition A = {α1, . . . , αd} of S. It is not hard
to see that µ, ν fill up S if and only if i(ν, αi) > 0 for all αi ∈ A. Setting
qi(η) = i(η, αi), let {(pi(η), qi(η))d

i=1} denote the Dehn-Thurston coordinates
of η ∈ ML relative to A, see for example [30]. Then PMLµ is the image Q
in PML of the set {η ∈ ML : qi(η) > 0 for all i}. We can map any point in
Q to the point in Rd × Σd−1 whose ith coordinates in Rd and Σd−1 are pi/qi

and qi/
∑

qj respectively, where Σd−1 denotes the d − 1 dimensional simplex
{(x1, . . . , xd) :

∑
xi = 1, xi > 0}. This shows that Q is homeomorphic to

Rd × Σd−1. For the general case, see [18].

Fix a continuous section j : PML→ML, for example by choosing a fixed
point p0 ∈ T (S) and defining j([ν]) = ν

lν(p0)
.

Theorem 2.7 ([18] Theorem 2.1). The map PMLµ×(0,∞) → T (S) which
sends ([ν], k) to M(µ, kj([ν])), is a homeomorphism.

Proof. By Theorem 2.6, the domain and range are both balls of dimension 2d.
The proof consists in showing that the map is continuous, proper and injective.
If the map is not proper, one shows that there exists (ν, k) ∈ PML×(0,∞)
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such that lµ + klν has a critical point at p ∈ T (S), contradicting Proposi-
tion 2.3. To prove injectivity, the question is reduced using (2.3) to showing
that if Cos(ν, ζ) = Cos(η, ζ) for all ζ ∈ ML at some point p ∈ T (S), then
ν = η. This is resolved using the more technical but useful Proposition 2.8
which follows.

Proposition 2.8 (Kerckhoff [18] Theorem 4.8). Suppose that µ, ν ∈ML and
that i(µ, ν) > 0. Let p ∈ T (S). Then there exists η ∈ML such that at p:

Cos(ν, η) > Cos(µ, η),Cos(ν, η) > Cos(ν, µ) and Cos(µ, ν) > Cos(µ, η).

It follows from Theorem 2.7, that for each p ∈ T (S), µ ∈ ML, there is a
unique νµ = νµ(p) such that lµ + lνµ is minimised at p. Let

P̂ML = PML×[1,∞)/ PML×{1}

be the cone over PML with the cone point as PML×{1}. Then:

Theorem 2.9 ([18] Theorem 3.6). Fix p ∈ T (S). Then the map P̂ML →
T (S) which sends (µ, k) to M(µ, kνµ(p)) is surjective.

Corollary 2.10 ([18] Corollary 3.7). There is a line of minima between every
pair of points in T (S).

It is not known whether or not this line is unique, see [[18] p. 188].

2.3 Lines of minima and earthquakes

There is a close connection between lines of minima and earthquakes. As
remarked above, the earthquake flow Eµ(t) generates a field of tangent vectors
∂/∂tµ on T (S). Likewise, the length function lµ defines a cotangent vector
field dlµ.

Theorem 2.11. ([18] Theorem 3.5) For all p ∈ T (S), the maps µ→ ∂/∂tµ(p)
and µ→ dlµ(p) are homeomorphisms from ML to the tangent space Tp(T (S))
and the cotangent space T ∗p (T (S)) respectively.

Proof. To prove that µ → ∂/∂tµ(p) is a homeomorphism, one uses invariance
of domain. The key step is to prove that the map µ → ∂/∂tµ(p) is injective,
which follows from Proposition 2.8. The second statement can be proved using
(2.2).

Remark 2.12. The fact that {dlα, α ∈ S} span T ∗p (T (S)) is classical and
goes back to Fricke-Klein, see [42] p.229.
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Corollary 2.13 ([18] Theorem 3.4). Given µ, ν ∈ ML which fill up S, and
k ∈ (0,∞), there is a unique p ∈ T (S) such that dlµ = −kdlν , or equivalently
∂/∂tµ = −k∂/∂tν , at p. Moreover p = M(µ, kν).

Proof. By Theorem 2.2, dlµ = −kdlν at p ∈ T (S) if and only if p = M(µ, kν).
At M(µ, kν), we have ∂/∂tη(lµ + klν) = 0 for every η ∈ML. Using (2.2) this

gives
∂lη
∂tµ

= −k
∂lη
∂tν

for all η. We conclude by Theorem 2.11 that ∂/∂tµ =

−k∂/∂tν . Reversing the argument concludes the proof.

In fact, the conditions on k, µ, ν in Corollary 2.13 are automatic:

Corollary 2.14 ([35] Proposition 4.7). Suppose that µ, ν ∈ ML and that
µ /∈ [ν]. Suppose also that ∂/∂tµ = −k∂/∂tν for some k ∈ R. Then µ and ν
fill up S and k > 0. In particular, p = M(µ, kν).

Proof. The main part of the proof is the case i(µ, ν) > 0. By Proposition 2.8,
for any point p ∈ T (S), there exists a lamination η ∈ML such that at p:

Cos(ν, η) > Cos(ν, µ) and Cos(µ, ν) > Cos(µ, η).

From ∂/∂tµ = −k∂/∂tν we deduce −k Cos(ν, µ) = Cos(µ, µ) = 0 and hence

Cos(ν, η) > 0 > Cos(µ, η) = −k Cos(ν, η)

which forces k > 0. By the same argument as Corollary 2.13, we deduce that
dlµ = −kdlν at p and the conclusion follows from Proposition 2.3.

2.4 Action of the mapping class group

Lines of minima are natural for the action of the mapping class group:

Theorem 2.15 ([18] Theorems 3.1, 3.2). A pseudo-Anosov mapping class φ
fixes the unique line of minima defined by its stable and unstable laminations.
More generally, the action of the mapping class group carries lines of minima
to lines of minima.

Proof. Let µ± be the two fixed laminations of φ, so that φ(µ±) = λ±1(µ±) for
some λ ∈ R+, see [11, 27]. From this we deduce immediately that Lφ(µ+),φ(µ−) =
Lµ+,µ− . The second statement follows in a similar way.

2.5 The analogy with Teichmüller geodesics

Let q be a quadratic differential on a Riemann surface R. Its horizontal tra-
jectories equipped with the vertical measure |*

√
q(z)dz| form a measured fo-

liation Hq on R, similarly the vertical trajectories with the horizontal measure
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|+
√

q(z)dz| form a measured foliation Vq, see [39]. Hubbard and Masur [13]
showed that on every compact Riemann surface, every equivalence class of
measured foliations is realised as the horizontal foliation of a unique quadratic
differential q.

Suppose K ∈ (0,∞). Then q also determines a Teichmüller map from
R to another surface R′ with dilatation K. If q′ is the terminal quadratic
differential on R′ with the same norm as q, then the horizontal and vertical
foliations of q′ are K−1/2Hq and K1/2Vq respectively. The foliations Hq,Vq

are clearly transverse. Gardiner and Masur [[12] Theorem 5.1] showed that
conversely, for any pair of transversally realisable measured foliations F, F ′,
there is a unique Teichmüller geodesic determined by a quadratic differential
q on a Riemann surface R for which F, F ′ are measure equivalent to Hq and
Vq respectively. We note that the condition of being transversally realisable
is equivalent to the two corresponding pair of measured laminations filling up
the surface, see [[12] Lemmas 3.4 and 5.3].

The Gardiner-Masur Teichmüller line is found by the following minimisa-
tion property. Generalising the usual definition of extremal length of a curve,
define the extremal length of a measured foliation [F ] as

Ext([F ]) = ||q|| =
∫

R
|q(z)|dxdy,

where q is the unique quadratic differential on R for which F is equiva-
lent to the horizontal foliation Hq. It is not hard to see that the product
Ext([Hq])Ext([Vq]) is constant along the Teichmüller geodesic G determined
by q. [[12] Theorem 5.1] proves that conversely, Ext([Hq])Ext([Vq]) achieves
its infimum along G, and that at any point not on G the product is strictly
larger. In the course of the proof, it is shown that if µ and ν are not transver-
sally realisable, then the product can always be decreased, in analogy with
Proposition 2.3.

3 Further straightforward properties

In this section, we describe some relatively straightforward extensions of Ker-
ckhoff’s results.

3.1 Lines of minima and fixed length horoplanes

In the very special case 2d = dimRT (S) = 2, the analogy between H2 and
T (S) suggests viewing lines of minima as geodesics and earthquake paths as
horocycles. It is not hard to see, [[14] Lemma 6], that in this case a line of
minima meets an earthquake path in exactly one point. One way to generalise
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this is as follows. Note that along the earthquake path Eµ, the hyperbolic
length of the lamination µ is constant. For µ ∈ML, c > 0, define the horoplane
Hµ;c = {p ∈ T (S) : lµ(p) = c}, so that Eµ ⊂ Hµ;c, with equality in the case
d = 1. As above, let MLµ = {ν ∈ ML : µ, ν fill up S}, and let j be a
fixed section PML → ML. The following result is an improvement on [[35]
Theorem 7.2].

Theorem 3.1. For each ν ∈MLµ, the restriction of lν to Hµ;c has a unique
minimum. The minimum point pν is also the unique point in which Lµ,ν meets
Hµ;c. The map PMLµ → Hµ,c sending to [ν] to pj([ν]) is a homeomorphism.

Proof. The proof in [35] can be substantially simplified by using Lagrange
multipliers to minimise lν subject to the constraint that lµ = c. This shows
that at a critical point, dlν = λdlµ for some λ ∈ R, which is exactly the
condition in Corollary 2.14.

By contrast, if we prescribe the lengths of all the curves in a pants decompo-
sition A = {α1, . . . , αd}, the situation is more subtle. For c = (c1, . . . , cd), ci >
0, define the shearing plane EA,c = {p ∈ T (S) : lαi(p) = ci, i = 1, . . . , d}. Let
MLA be the set of laminations ν such that

∑
i αi and ν together fill up S. We

have:

Theorem 3.2 ([35] Theorem 7.3). Let A be a pants decomposition of S and
let c = (c1, . . . , cd), ci > 0. Then there is a non-empty open set U ⊂ MLA
such that for all ν ∈ U , there are no laminations µ =

∑
i aiαi for which Lµ,ν

meets EA,c.

However [8] gives an example of a pants decomposition A and a curve
γ ∈MLA for which LA,γ meets EA,c for any choice of c.

3.2 The simplex of minima

Series [35] and Dı́az and Series [8] studied the special case of lines of min-
ima for families of disjoint curves A = {α1, . . . , αN} and B = {β1, . . . , βM}
which fill up S. The simplex of minima ΣA,B associated to A and B is the
union of lines of minima Lµ,ν , where µ, ν ∈ML(S) are strictly positive linear
combinations of {αi} and {βi}, respectively. We can regard ΣA,B as the im-
age of the affine simplex in Σ̂A,B ⊂ RN+M−1 spanned by independent points
A1, . . . , AN , B1, . . . , BM , under the map Φ = Φ(A,B) which sends the point
(1 − s)(

∑
i aiAi) + s(

∑
j bjBj) to M((1 − s)(

∑
i ailαi), s(

∑
j bj lβj )), where

0 < s, ai, bj < 1,
∑

ai = 1,
∑

bj = 1. The methods of [18] show that Φ is con-
tinuous and proper, extending continuously to the faces of ΣA,B corresponding
to the subsets of A× B which still fill up S.
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The map Φ may or may not be injective. This may be studied by examining
the case in which A and B are pants decompositions, so that M = N = d.
Let M(A,B) be the d × d matrix

(
∂lβi
∂tαj

)
. If µ =

∑
i aiαi, we have ∂/∂tµ =

∑
i ai∂/∂tαi from which ∂lbj /∂tµ =

∑
i ai∂lβj /∂tαi for each i and hence

(∂lβ1/∂tµ, . . . , ∂lβd/∂tµ) = M(A,B)(a1, . . . , ad)T .

Set ν =
∑

j bjβj . At the point M(µ, kν) we have ∂/∂tµ = −k∂/∂tν . Hence
∂lβj /∂tµ = −k

∑
i bi∂lβj /∂tβi = 0 for all j so that detM(A,B) = 0 at

M(µ, kν). The converse statement, that detM(A,B) = 0 at p ∈ T (S) implies
p = M(µ, kν), is false. This is because although the condition implies that
∂/∂tµ = −k∂/∂tν for some formal combinations µ =

∑
i aiαi, ν =

∑
j bjβj ,

the coefficients ai, bj may not all have the same sign. Nevertheless, elaborating
these observations, we have:

Proposition 3.3 ([8] Proposition 4.6). Let A,B be two pants decompositions
which fill up S. Then rankM < d on Im Φ. Moreover Φ is a homeomorphism
onto its image if and only if rankM = d − 1 on Im Φ. If rankM = d − 1,
then p ∈ Im Φ if and only if the adjoint matrix of M has all its entries of the
same sign (with possibly some entries vanishing).

It can be shown by example, see Section 3.3, that both cases rankM = d−1
and rankM < d− 1 occur.

3.3 Concrete examples

Not many explicit computations of lines of minima have been made. In the case
of the once punctured torus S1,1, there are two special cases, corresponding to
the laminations µ, ν being supported on curves α, β which intersect once and
twice respectively. It turns out [[15] Section 11] that the lines Lµ,ν are the lines
in T (S) which correspond to rectangular and the rhombic tori respectively.
One can see this as follows. In the first case, let (V,W ) be a generator pair
for π1(S1,1), so that we may take V = α, W = β. Then any point on Lα,β is
fixed by the rectangular symmetry R : (V,W ) '→ (V,W−1), and it follows that
Lα,β must be the fixed line of R. In the second case, again taking (V,W ) to
be a generator pair of π1(S1,1), the curves α = V W and β = V W−1 intersect
twice. In this case, any point on Lα,β is fixed by the rhombic involution
V →W,W → V , so that Lα,β must be the fixed line of the rhombic symmetry
which is given by the equation TrW = Tr V .

If α, β intersect once, one can also determine Lµ,ν as follows. The condition
∂/∂tα = −k∂/∂tβ on Lµ,ν implies by (2.1) that α and β are orthogonal. Let
tα,β be the Fenchel-Nielsen twist coordinate of α about β, normalised to be 0
when α and β are orthogonal. Then relative to the Fenchel-Nielsen coordinates
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(lα, tα,β) for T (S1,1), Lα,β is the line (l, 0), 0 < l < ∞. If α, β are curves on
S1,1 which meet exactly once, we have [[29] Theorem 2.1]:

cos(tα,β/2) = cosh(lα/2) tanh(lβ/2). (3.1)

It follows that Lα,β is also defined by the equation

sinh(lα/2) sinh(lβ/2) = 1

obtained by setting tα,β = 0 in (3.1).
More interesting examples were computed in [8] for the twice punctured

torus S1,2. Let A = {α1, α2} and B = {β1, β2} be pairs of non-separating, dis-
joint, simple closed curves on S1,2 such that each βi intersects each αj exactly
once. Also letD = {β1, δ1}, where δ1 is a separating curve, disjoint from β1 and
α2 and intersecting α1 twice. Using Fenchel-Nielsen coordinates relative to the
pants systems A, extensive computations in [8] located the simplices of min-
ima ΣA,B and ΣA,D in T (S1,2) = R4. These two examples serve to illustrate
the distinction made in Proposition 3.3. We find rankM(A,B) = d−1 = 3 on
ΣA,B whereas rankM(A,D) = d− 2 = 2 on ΣA,D. It follows that Φ(A,B) is
an embedding of the affine simplex Σ̂A,B and that ΣA,B is a 3-submanifold of
T (S1,2), while the image of Σ̂A,D under Φ(A,D) is not embedded and ΣA,D
is a 2-submanifold.

3.4 Limiting behaviour at infinity

It might be natural to suppose that the ends of Lµ,ν would always converge
to the points [µ], [ν] in Thurston’s compactification of T (S), namely PML.
However Kerckhoff [[18] p.192] indicates that this may not always be the case.
In fact:

Theorem 3.4 ([9] Theorems 1.1, 1.2). Suppose that µ, ν ∈ML fill up S. For
t ∈ (0, 1), let Mt = M((1 − t)µ, tν). If µ =

∑N
i=1 aiαi ∈ ML is rational with

ai > 0 for all i then

limt→0Mt = [α1 + · · ·+ αN ] ∈ PML .

If µ is uniquely ergodic and maximal, then

limt→0Mt = [µ] ∈ PML .

This should be compared with the analogous results of Masur [22] for Te-
ichmüller geodesics. A geodesic ray is determined by a base surface p ∈ T (S)
and a quadratic differential q on p. Masur shows that if q is a Jenkins-Strebel
differential, that is, if the horizontal foliation H is supported (apart from sad-
dle connections) on closed leaves, then the associated ray converges in PML
to the barycentre of the leaves (the foliation with the same closed leaves all
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of whose cylinders have unit height). At the other extreme, if H is uniquely
ergodic and every leaf apart from saddle connections is dense in S, the ray
converges to the boundary point defined by H.

Recently Anya Lenzhen [19] has shown the existence of Teichmüller geodesics
which do not converge to any point in PML. One can presumably apply [6] to
show the same is true of lines of minima, although to the author’s knowledge
this has not been written down.

3.4.1 Proof of Theorem 3.4 The condition of being uniquely ergodic and
maximal, is equivalent to the condition that i(µ, ν) = 0 for all ν ∈ML implies
that ν ∈ [µ], [[9] Lemma 2.1]. The second statement of Theorem 3.4 is thus
easily proved by showing that as t → 0, any subsequence of (Mt) necessarily
has a convergent subsequence which limits on [µ] ∈ PML.

The proof of the first part of Theorem 3.4 is easiest when {αi} form a pants
decomposition A of S. Let (lαi , tαi) be the Fenchel-Nielsen coordinates of S
relative to A, where the twist tαi is the signed hyperbolic distance twisted
round αi measured from some suitable base point. It is not hard to show by
constructing surfaces in which the lengths lαi are specified, that lαi(Mt)/t is
uniformly bounded away from 0,∞ as t→ 0 for each i.

An earthquake about a curve α fixes lα, while the length lγ of any transverse
curve γ is a proper and convex function of the earthquake parameter. It is
therefore reasonable to suppose that for fixed lengths lαi , the sum lµ + lν
attains its minimum within bounded distance of the point where tαi = 0. To
make this more precise, we replace γ by a homotopic piecewise geodesic curve
γ̂ which runs alternately along the pants curves αi, and across pairs of pants
in such a way that it meets the boundary components orthogonally, so that
adjacent segments of γ̂ always meet orthogonally. Now the hypotenuse of a
right angled hyperbolic triangle is, up to bounded additive constant, equal to
the sum of the lengths of the other two sides. It follows that if the lengths lαi

are bounded above (so that each curve αi is surrounded by a collar of definite
width), the length lγ is coarsely approximated by the length lγ̂ , with error
comparable in magnitude to the intersection number of γ with A. By the
hyperbolic collar lemma, the width of the collar round a short curve of length
l is approximately log 1/l, see [21, 26]. Using the observation that the twist
parameter remains bounded at Mt, gives the estimate

lγ(Mt) = 2
N∑

j=1

i(αj , γ) log
1

lαj (Mt)
+ O(1) (3.2)

for a curve γ transverse to the pants curves A. Since we have already observed,
lαj (Mt) ∼ t for all i, the result follows from the definition of convergence to a
point in PML, see [11]. The argument in the case that A is not a full pants
decomposition is considerably more subtle, see [[9] Section 6].
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4 Lines of minima and quasifuchsian groups which are
almost Fuchsian

As discovered by Series [35, 36], lines of minima are closely related to small
deformations of Fuchsian into quasifuchsian groups. To understand the connec-
tion, recall first some basic facts about quasifuchsian groups and their convex
cores; for more details see [20]. A Kleinian group (that is, a discrete subgroup
of SL(2, C)) is called quasifuchsian if it is isomorphic to π1(S) for some sur-
face S of hyperbolic type and if its limit set is a Jordan curve. Equivalently,
a Kleinian group G is quasifuchsian if the associated hyperbolic 3-manifold
H3/G is homeomorphic to S × (0, 1). Let C be the convex hull of the limit set
of G in H3, see [10]. Then C/G is the smallest closed convex set containing all
closed geodesics in H3/G and is homeomorphic to S × [0, 1]. Moreover C has
two simply connected boundary components ∂±C whose quotients ∂±C/G are
pleated surfaces [10], each themselves homeomorphic to S. Each component is
bent along a geodesic lamination on S, the amount of bending being measured
by the bending measures pl± = pl±(G) ∈ ML(S). The following is a special
case of a fundamental result of Bonahon and Otal:

Theorem 4.1 ([4] Theorème 1). Let S be a hyperbolisable surface and suppose
that µ, ν ∈ ML(S). Suppose also that every closed leaf of µ and of ν has
weight strictly less than π. Then there is a quasifuchsian group G(µ, ν) for
which pl+(G) = µ and pl−(G) = ν, if and only if µ, ν fill up S. If µ, ν are
rational, then G(µ, ν) is unique.

The following conjecture, known as the bending measure conjecture, was
originally made by Thurston.

Conjecture 4.2. For any µ, ν ∈ML satisfying the conditions of Theorem 4.1,
the quasifuchsian group G(µ, ν) for which pl+(G) = µ and pl−(G) = ν is
unique. Moreover groups for which both bending laminations are rational are
dense in the space of all quasifuchsian groups.

This was proved by Series [37] for the very special case in which S is a once
punctured torus. We shall return to this conjecture in Section 4.3.

From now on, we denote by G(µ, ν) any quasifuchsian group for which
pl+(G) = µ and pl−(G) = ν. It seems reasonable to assume that as θ, φ → 0,
the convex cores of the groups G(θµ, φν) flatten out approaching a Fuchsian
limit. In fact we have:

Theorem 4.3 ([36] Theorems 1.4, 1.6). Let µ, ν be two measured laminations
which fill up S, and suppose that µn → µ, νn → ν in ML(S) and that θn → 0.
Then the sequence of groups G(θnµn, θnνn) converges to M(µ, ν) as n→∞.
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For a partial proof, see Proposition 4.6 below. It is however essential that
the bending measures stay in bounded proportion:

Theorem 4.4 ([36] Theorem 1.5). Let µ, ν be two measured laminations which
fill up S. Then any sequence of groups G(θnµ, φnν) with θn, φn → 0 diverges
(that is, no subsequence has an algebraic limit) unless θn/φn is uniformly
bounded away from 0 and ∞.

Let Q(S) denote the space of quasifuchsian groups with the algebraic topol-
ogy (inherited from the space of representations π1(S) → SL(2, C)). Then
Q(S) is a 2d-dimensional complex manifold, as may be seen using complex
Fenchel-Nielsen coordinates [38]. Via the uniformisation theorem, T (S) may
be identified with the space of Fuchsian groups F(S), naturally embedded as
a 2d-dimensional totally real submanifold in Q(S). The following close con-
nection between lines of minima and bending measures of groups in Q(S) was
originally noted by Keen and Series [15] in the context of the once punctured
torus. Given two non-zero measured laminations µ and ν, the pleating variety
Pµ,ν consists of all quasifuchsian groups G(λµ, κν), λ, κ ∈ R+.

Theorem 4.5 ([36] Theorems 1.7). Let µ, ν be two measured laminations
which fill up S. Then the closure of Pµ,ν meets F(S) precisely in Lµ,ν .

To prove Theorem 4.5 one needs to invoke Theorem 4.1 for the existence of
the groups G(θnµ, τnν). Since for rational laminations this in turn is based on
the Hodgson-Kerckhoff theory of deformations of cone manifolds, Theorem 4.5
rests ultimately on the same thing.

We deduce from Theorem 4.5 that given any point p ∈ F(S) and lamination
µ ∈ ML(S), it is possible to move away from p into Q(S) along a path in
Pµ,ν , if and only if p ∈ Lµ,ν . Using Theorem 3.1, we deduce that for any
µ ∈ ML, c > 0 and any ν ∈ MLµ one can bend (see Section 4.2) along µ to
produce groups in Pµ,ν for which lµ = c. One the other hand, Theorem 3.2
implies the rather surprising negative result that if A = {α1, . . . , αd} is a pants
decomposition of S, then for any choice of fixed lengths lαi = ci, i = 1, . . . , d,
there are laminations ν ∈MLA with the property that it is impossible to bend
on the lines αi obtaining groups with pl− ∈ [ν].

4.1 Applications and examples

The examples of simplices of minima described in Section 3.3 were expanded
in [8] into direct computations of pleating varieties in Q(S1,2). With notation
as in that section, complex Fenchel-Nielsen coordinates were used to locate the
pleating varieties PA,B and PA,D (those groups G ∈ Q(S) for which pl±(G)
are supported on the curves A,B or A,D respectively) in QF(S1,2) = C4. The
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computations confirm Theorem 4.5, showing by explicit computation that the
closures of PA,B and PA,D meet F(S) in the simplices of minima ΣA,B and
ΣA,D. As expected (see Proposition 4.9) both pleating varieties are smooth
submanifolds of real dimension 4.

4.2 Quakebends and the Fuchsian limit

The main part of the proof of Theorem 4.3 involves geometry in H3 and is
beyond the scope of this article. However the proof that if the limit of the
groups G(θnµn, θnνn) exists, it must be M(µ, ν), is a nice illustration of the
results in Section 2.2.

The proof uses quakebends [[10] Section 3.5], an extension of earthquakes
into the complex domain. Starting from a Fuchsian group G0, representing a
point p ∈ F(S), the quakebend construction produces a quasifuchsian group
G by bending, more generally quakebending, G0 along a lamination µ ∈ML.
Let |µ̃| denote the union of the lifts of the (geodesic) leaves supporting µ in the
hyperbolic structure on p to H2. This gives a decomposition of H2 into plaques,
each plaque being a connected component of H2 \ |µ̃|. Let τ = t + iθ ∈ C.
The time τ left quakebend Qµ(τ) reglues these plaques, in such a way that if
two plaques are connected by a transversal κ to |µ̃|, they are reglued at an
angle θµ(κ) after being shifted a relative distance tµ(κ), resulting in a pleated
surface Qµ(τ)(H2) in H3. This surface is invariant under the action of a group
G = Qµ(τ)(G0) ⊂ SL(2, C). Keen and Series [14] showed that for sufficiently
small |τ |, Qµ(τ)(H2) is embedded in H3 and hence that G = Qµ(τ)(G0) is
quasifuchsian. Moreover Qµ(τ)(H2) is one of the two boundary components
of the hyperbolic convex hull C of the limit set of G in H3, and pl+(G) = θµ.

Proposition 4.6 ([36] Proposition 3.1, see also [3] Proposition 6). Let µ, ν
be measured laminations which fill up S. Suppose that as θn → 0, the groups
G(θnµ, θnν) converge to p ∈ F(S). Then p = M(µ, ν).

Proof. By Theorem 2.11 and Corollary 2.13 it is enough to show that
∂lη
∂tµ

(p) +
∂lη
∂tν

(p) = 0 for all η ∈ML .

Now for any µ ∈ ML and p ∈ F(S), the quakebend construction with
τ = iθ gives a one parameter family of quasifuchsian groups G(θ) for which
pl+ = θµ for all small θ > 0. Throughout this deformation, the Fuchsian
structure p+(θ) on ∂C+(G(θ)) (see [10]) remains fixed. Thus we can reach
q(θ) = G(θµ, θν) ∈ Q(S) either by starting at p+(θ) and making the pure
bend Qµ(iθ), or by starting at p−(θ) and making the pure bend Qν(−iθ).

One can extend the definition of the complex length of a curve γ ∈ S to
that of an arbitrary lamination η ∈ML, either by taking limits of real lengths
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and extending along a suitable branch from F(S) into QF(S) [[15] Theorem
3], or using Bonahon’s shearing coordinates [2]. The resulting complex length
function λη(Qµ(τ)) is a holomorphic function of τ . Hence we can expand λη

as a Taylor series about p±(θ) (checking the second derivatives are uniformly
bounded) and compare the results:

λη(q(θ)) = lη(p+(θ)) + iθ
∂lη
∂tµ

(p+(θ)) + O(θ2)

and

λη(q(θ)) = lη(p−(θ))− iθ
∂lξ
∂tν

(p−(θ)) + O(θ2).

Equating imaginary parts gives:

∂lη
∂tµ

(p+(θn)) +
∂lη
∂tν

(p−(θn)) = O(θn). (4.1)

It is proved in [[36] Proposition 1.8] that up to subsequences, the groups
G(θnµ, θnν) necessarily converge in such a way that the real analytic structures
on p±(θn) are close. Viewing lη as a real analytic function on F(S), this gives

∂lη
∂tν

(p+(θn))− ∂lη
∂tν

(p−(θn)) = O(θn). (4.2)

Combining (4.1) and (4.2) and taking limits completes the proof.

4.3 The bending measure conjecture

We return to Conjecture 4.2. Although the conjecture in general remains open,
Bonahon proved:

Theorem 4.7 ([3] Theorem 1). There exists an open neighbourhood U of the
Fuchsian submanifold F(S) of QF(S) such that the bending map β : Q(S) →
ML(S) ×ML(S), β(q) = (pl+(q), pl−(q)), is a homeomorphism from U onto
its image.

This provides an alternative proof of Theorem 4.5. One can modify the
proof to show that the length map / : Q(S) → R+ × R+ which sends q ∈
Q(S) to (lj([pl+(q)]), lj([pl−(q)]) (where j is a section PML → ML), is also a
homeomorphism from U onto its image [Series, unpublished].

The key steps in the proof of Theorem 4.7 are summarized below. The
essential idea is to translate the non-degeneracy of the Hessian of the function
lµ + lν at the minimum M(µ, ν) into a suitable transversality statement about
the pleating varieties P±(µ) = {q ∈ Q(S) : pl±(q) ∈ [µ] ∪ {0}}.
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Proposition 4.8 ([3] Proposition 3). Let µ, ν ∈ ML fill up S. Then the
sections p '→ ∂/∂tµ(p), p '→ −∂/∂tν(p) from F(S) to T (F(S)) are transverse.

Proof. By [42], the Weil-Petersson symplectic form induces the isomorphism
∂/∂tµ → dlµ between the tangent bundle T (F(S)) and the cotangent bundle
T ∗(F(S)), see also Theorem 2.11. Thus the statement can be converted into
the transversality of the sections dlµ,−dlν : F(S) → T ∗(F(S)). The inter-
section of the tangent spaces to these sections at p = M(µ, ν) consists of all
vectors which can be written in the form Tp(dlµ)(w) = Tp(−dlν)(w) , where
w ∈ Tp(F(S)) and Tp(dlµ), Tp(−dlν) : Tp(F(S))→ Tp(T ∗(F(S))) are the tan-
gent maps of the two sections. One shows by calculation in local coordinates
that Tp(dlµ)(w) − Tp(−dlν)(w) is the image of w under the natural isomor-
phism Tp(F(S))→ T ∗p (F(S)) induced by the Hessian of lµ + lν . Since by [41]
(see also Section 2.1.2) the Hessian is non-degenerate, the result follows.

Proposition 4.9 ([3] Lemma 7). Let µ ∈ ML. The pleating varieties P±(µ)
are submanifolds of Q(S) of dimension 2d + 1 and with boundary F(S).

Proof. If µ =
∑

i aiαi is a rational lamination with weight ai > 0 on all
the curves in a pants decomposition A, this follows using complex Fenchel-
Neilsen coordinates (λαi , ταi) relative to A [[38], see also [14]]. Here λαi is
the complex length given by 2 coshλαi/2 = Tr αi and ταi is the complex twist
as in the quakebend construction 4.2. A necessary condition for a curve α
to be contained in the bending locus is that its complex length be real [[15]
Proposition 22], giving d conditions λαi ∈ R. The bending angle on αi is the
imaginary part of ταi , giving a further d− 1 conditions to ensure the bending
angles are in the proportion [a1 : a2 : . . . : ad] specified by [µ].

To prove the result in general is substantially harder. One needs to use
Bonahon’s shear-bend coordinates [2] which provide a substitute for Fenchel-
Nielsen coordinates for laminations which are not rational.

The final key step is to blow up Q(S) along its boundary F(S). Define
Q̌(S) to be the union of Q(S)\F(S) with the unit normal bundle N 1(F(S)) of
F(S) ⊂ Q(S) with suitable topology. Then Q̌(S) is a manifold with boundary
N 1(F(S)). The complex structure gives a natural identification of N (F(S))
with iT (F(S)).

The inclusion P+(µ) → Q(S) extends uniquely to an embedding P+(µ) ∪
F(S) → Q̌(S) by sending p ∈ F(S) to nµ(p), where nµ(p) is the unit normal
vector in the direction i∂/∂tµ at p. We define P̌+(µ) to be the image of
P+(µ) ∪ F(S) under this map. Likewise we embed P−(ν) by the map p '→
−nν(p), and define P̌−(ν) in a similar way. The following result is then a
translation of Proposition 4.8.
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Proposition 4.10 ([3] Proposition 9). The boundaries of P̌+(µ), P̌−(ν) in
N 1(F(S)) have non-empty intersection if and only if µ, ν fill up S. If they fill
up, the intersection is transverse and is equal to the image of Lµ,ν under the
map p '→ nµ(p) = −nν(p) ∈ Q̌(S).

The injectivity of the map β in Theorem 4.7 follows from the transversality
of P̌+(µ), P̌−(ν) in a neighbourhood of N 1(F(S)) in Q̌(S). Using invariance
of domain, one then shows that β is a homeomorphism in a neighbourhood
U of F(S) in Q(S) \ F(S). The density of groups with rational pleating loci
(see Conjecture 4.2) is immediate from the density of rational laminations in
ML×ML.

5 Relationship to Teichmüller geodesics

In two papers [6, 7], Choi, Rafi and Series investigated the relationship between
Teichmüller geodesics and lines of minima. The first paper derives a combi-
natorial formula for the Teichmüller distance between the time t surfaces on
these two paths, and the second proves that a line of minima is a Teichmüller
quasi-geodesic.

The first step is to parameterise both paths in a comparable way. Given
laminations µ, ν ∈ML which fill up S, define

µt = etµ, νt = e−tν.

We define the line of minima t '→ Lt to be the path which takes t to the
minimising surface M(µt, νt). As explained in Section 2.5, for each t, there is
a unique Riemann surface Gt and quadratic differential qt such that µt, νt are
the horizontal and vertical foliations of qt respectively. The path t '→ Gt is a
Teichmüller geodesic.

For α ∈ S let lα(Gt), lα(Lt) denote the lengths of α in the hyperbolic metrics
on Gt,Lt respectively. We say a curve is extremely short if its hyperbolic length
is less than some fixed constant ε0 > 0 determined in the course of the proofs.
For functions f, g we write f , g and f

∗, g to mean respectively, that there
are constants C, c > 1, depending only on the topology of S such that

1
c
g(x)− C ≤ f(x) ≤ cg(x) + C and

1
c
g(x) ≤ f(x) ≤ cg(x).

Theorem 5.1 ([6] Theorems A and D). The extremely short curves in the
hyperbolic metrics on Lt and Gt coincide. The Teichmüller distance dT between
Lt and Gt is given by

dT (Lt,Gt) =
1
2

log max
α

lα(Gt)
lα(Lt)

+ O(1),
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where the maximum is taken over all simple closed curves α that are extremely
short in Gt. In particular, the distance between corresponding thick parts of Lt

and Gt is bounded.

Theorem 5.2 ([7] Theorem A). The line of minima t '→ Lt, t ∈ R, is a
quasi-geodesic with respect to the Teichmüller metric dT . In other words,

dT (La,Lb) , |b− a|

for any a, b ∈ R.

The constants involved in these two theorems depend only on the genus
and number of punctures of S.

The method is to compare the curves which are short on the time t surfaces
Gt,Lt. Perhaps surprisingly, although the same curves are short on the two
surfaces, their lengths are not necessarily in bounded proportion. Thus one
can construct examples of surfaces and pairs of laminations for which the two
paths t '→ Gt and t '→ Lt are unboundedly far apart.

Theorem 5.1 is proved using estimates for short curves in Lt and Gt which
involve two quantities Dt(α),Kt(α) defined in Section 5.0.1 below. Both Dt(α)
and Kt(α) have a combinatorial interpretation in terms of the topological
relationship between α, µ and ν: Dt(α) is large iff the relative twisting of µ
and ν about α is large, while Kt(α) is large iff µ and ν have large relative
complexity in S \ α (the completion of S minus α), in the sense that every
essential arc or closed curve in S \ α must have large intersection with both µ
and ν.

Theorem 5.3 ([31], see also [6] Theorem B). Suppose that α ∈ S is extremely
short on Gt. Then

1
lα(Gt)

, max{Dt(α), log Kt(α)}.

Theorem 5.4 ([6] Theorem C). Suppose that α ∈ S is extremely short on Lt.
Then

1
lα(Lt)

, max{Dt(α),
√

Kt(α)}.

The motivation for this approach stems in part from a central ingredient of
the proof of the ending lamination theorem. Suppose that N is a hyperbolic
3-manifold homeomorphic to S × R. The ending lamination theorem states
that N is completely determined by the asymptotic invariants of its two ends.
A key step is to show that if these end invariants are given by the laminations
µ, ν, then the curves on S which have short geodesic representatives in N can
be characterized in terms of their combinatorial relationship to µ and ν. (The
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relationship is expressed using the the complex of curves of S. Roughly speak-
ing, a curve is short in N if and only if the distance between the projections of
µ and ν to some subsurface Y ⊂ S is large in the curve complex of Y , see [5].)

Since the proofs of Theorems 5.1–5.4 involve some interesting techniques,
the remainder of Section 5 will be spent outlining their proofs.

5.0.1 Definitions of the combinatorial parameters With the terminol-
ogy introduced in Section 6, Dt(α) is approximately the modulus of the max-
imal flat annulus round α while log Kt(α) is approximately the modulus of
the maximal expanding annulus. The following definitions are independent of
these notions.

The term Kt(α) depends on the (possibly coincident) hyperbolic thick com-
ponents Y1, Y2 of the surface Gt adjacent to α. Let qt be the area 1 quadratic
differential on Gt whose horizontal and vertical foliations are respectively µt

and νt. Associated to qt is a singular Euclidean metric; we denote the geodesic
length of a curve γ in this metric by lγ(qt), see Section 5.1.1. By definition

Kt(α) = max
{ λY1

lγ(qt)
,

λY2

lγ(qt)

}

where λYi is the length of the shortest non-trivial non-peripheral simple closed
curve on Yi with respect to the qt-metric. If Yi is a pair of pants, there is a
slightly different definition, see [6].

To define Dt(α), we need the notion of the relative twist dα(µ, ν) of µ and
ν around α. Following [26], for p ∈ T (S) and η ∈ML, define

twα(η, p) = inf s/lα(p),

where lα(p) is the hyperbolic length of α in the surface p, s is the signed
hyperbolic distance between the perpendicular projections of the endpoints of
a lift of a geodesic in |η| at infinity onto a lift of α, and the infimum is over all
lifts of leaves of |η| which intersect α. Now define

dα(µ, ν) = inf
p
|twα(µ, p)− twα(ν, p)|,

where the infimum is over all points p ∈ T (S). Then twα(µ, p) − twα(ν, p)
is independent of p up to a universal additive constant, see [26]. Note that
dα(µ, ν) agrees up to an additive constant with the definition of subsurface
distance between the projections of |µ| and |ν| to the annular cover of S with
core α, as defined in [23] Section 2.4 and used throughout [31, 32].

The definition of Dt(α) also involves the balance time of α, namely the
unique time t = tα for which i(α, µtα) = i(α, νtα). (If i(α, ν) = 0 define
tα = −∞, if i(α, µ) = 0 define tα =∞.) Finally, define

Dt(α) = e−2|t−tα|dα(µ, ν).
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By [[32] Theorem 3.1], the length lα(Gt) is approximately convex along G
and is close to its minimum at tα.

For later use we note that the twist is closely related to the normalised
Fenchel-Nielsen twist coordinate sα(p) defined in Section 5.2.1:

Lemma 5.5 (Minsky [26] Lemma 3.5). For any lamination η ∈ML and any
two hyperbolic metrics p, p′ ∈ T (S),

|(twα(η, p)− twα(η, p′))− (sα(p)− sα(p′))| ≤ 4.

5.1 Comparison in the thick part of Teichmüller space

It is relatively easy to compare the two surfaces Gt and Lt when both are
contained in the thick part of Tthick(ε) of T (S), consisting of all surfaces on
which the hyperbolic injectivity radius has some fixed lower bound ε > 0. We
have:

Theorem 5.6 ([6] Theorem 3.8). If Gt,Lt ∈ Tthick(ε) then dT (Gt,Lt) = O(1).

To gain some insight into how the two surfaces may be compared, we outline
the proof.

5.1.1 Quadratic differential metrics A finite area holomorphic quadratic
differential q on a Riemann surface p ∈ T (S) defines a singular Euclidean
metric, which away from the singularities is just the Euclidean metric defined
by the horizontal and vertical foliations Hq,Vq, see Section 2.5 and [39, 24].
On the surface Gt, by definition Hq and Vq are equivalent to the lamina-
tions µt, νt respectively. Every simple closed curve γ in (S, q) either has a
unique q-geodesic representative, or is contained in a family of closed Eu-
clidean geodesics foliating an annulus whose interior contains no singularities,
see [39] and Section 6.1. Thus on Gt, the horizontal and vertical lengths of γ
are i(γ, µt) and i(γ, νt) respectively, from which it follows that its q-geodesic
length lγ(qt) satisfies

lγ(qt)
∗, i(µt, γ) + i(νt, γ). (5.1)

5.1.2 Short markings Define a marking of a surface S to be a collection of
pants curves A, together with a dual set of curves which intersect each curve in
A either once or twice, depending on the topology [[6] Section 3]. The marking
is short with respect to a hyperbolic metric on S, if there is a uniform upper
bound to the lengths of all curves in A, and if in addition the dual curves are
as short as possible among all choices which have the same intersections with
A. By a result of Bers [1], one can always choose A so that

∑
α∈A lα is less

than some universal upper bound depending only on the genus of S.
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Since curves in A may be arbitrarily short, there is in general no upper
bound to the length of the dual curves. However in Tthick, the lengths of the
dual curves are uniformly bounded above. It follows, see e.g.[[25] Lemma 4.7],
that for any hyperbolic metric h ∈ Tthick and short marking Mh, we have

lγ(h) ∗, i(γ, Mh) and lMh(h)
∗≺ 1. (5.2)

for any γ ∈ S, where lMh(h), i(γ, Mh) are the sums over curves in Mh of the
lengths and intersections numbers with γ respectively.

5.1.3 Proof of Theorem 5.6 Let MGt and MLt be short markings for Gt,Lt

respectively. In Tthick, any two metrics, in particular the hyperbolic metric and
the quadratic differential metric, are comparable. Hence using (5.1) and (5.2):

lMGt
(Gt)

∗, lMGt
(qt)

∗, i(MGt , µt) + i(MGt , νt)
∗, lµt(Gt) + lνt(Gt). (5.3)

In a similar way

lMLt
(Gt)

∗, lMLt
(qt)

∗, i(MLt , µt) + i(MLt , νt)
∗, lµt(Lt) + lνt(Lt).

Since Lt minimizes lµt(h) + lνt(h) over all hyperbolic metrics h ∈ T (S):

lµt(Gt) + lνt(Gt) ≥ lµt(Lt) + lνt(Lt).

Putting together the preceding three equations, we have

lMGt
(Gt)

∗0 lMLt
(Gt).

We deduce from (5.2) that

lMLt
(Gt)

∗≺ 1 (5.4)

It is not hard to see that the set of surfaces for which a given marking M
has a diameter bounded by B > 0, has bounded diameter with respect to
the Teichmüller distance, with a bound which depends only on B. The result
follows.

5.2 Comparison in the thin part of Teichmüller space

Let us assume for a moment the results of Theorems 5.3 and 5.4. If α ∈ S is
short in the hyperbolic metrics on two surfaces p, p′ ∈ T (S), then Kerckhoff’s
formula [16]

dT (p, p′) =
1
2

log sup
γ∈S

Extγ(p)
Extγ(p′)

(5.5)
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(where Ext(γ) is the extremal length of γ) together with Theorem 6.3 below,
shows that the expression

1
2

log max
α

lα(Gt)
lα(Lt)

in Theorem 5.1 is an appoximate lower bound for dT (Gt,Lt). To turn this into
a precise estimate, one uses Minsky’s product region theorem. This is worth
explaining in its own right.

5.2.1 Minsky’s product region theorem This theorem, proved in [26], is
an approximate formula for the Teichmüller metric dT in the part of T (S) in
which a collection A = {α1, . . . , αn} of disjoint, homotopically distinct, simple
closed curves on S are short. Extending A to a pants decomposition Â if
necessary, we fix Fenchel-Nielsen coordinates (lαi , sαi) on Â, where sα is the
normalised twist, that is the hyperbolic signed distance twisted away form
some base point divided by the length lαi .

Let Tthin(A, ε0) ⊂ T (S) be the subset on which all curves αi ∈ A have
hyperbolic length at most ε0. Let SA denote the surface obtained from S by
removing all the curves in A and replacing the resulting boundary components
by punctures. For α ∈ A, let Hα be the hyperbolic plane and let dHα be half
the usual hyperbolic metric on Hα. Define Πα : T (S)→ Hα by

Πα(p) = sα(p) + i/lα(p) ∈ Hα.

Also define Π0 : T (S)→ T (SA) by forgetting the coordinates of the curves in
A and keeping the same Fenchel-Nielsen coordinates for the remaining surface.

Theorem 5.7 (Minsky [26]). Let p, p′ ∈ Tthin(A, ε0). Then

dT (p, p′) = max
i
{dT (SA)(Π0(p),Π0(p′)), dHαi

(Πi(p),Πi(p′)} ±O(1).

A consequence of this formula is that unless the difference between the
twist coordinates sα(p), sα(p′) is extremely large in comparison to lα(p), lα(p′),
their contribution to dT (p, p′) can be neglected. Lemma 5.5 shows that we can
replace |sα(p)− sα(p′)| with |twα(η, p)− twα(, η, p′)|, for any η ∈ML. In fact:

Corollary 5.8 ([6] Corollary 4.7). Suppose that p, p′ ∈ Tthin(α, ε0) and that
there exists η ∈ML such that |twα(η, r)| lr(α) = O(1) for r = p, p′. Then

dHα(Πα(p),Πα(p′)) =
∣∣∣∣log

lα(p)
lα(p′)

∣∣∣∣±O(1).

5.2.2 Proof of Theorem 5.1 Theorems 5.3 and 5.4 show that, with suit-
able choices of constants, the extremely short curves on Lt and Gt coincide.
To use Minsky’s product theorem to deduce Theorem 5.1 from Theorems 5.3
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and 5.4, we need to estimate the Teichmüller distance between the hyperbolic
thick components of Gt and Lt, and also the difference between the Fenchel-
Nielsen twist coordinates corresponding to the short curves in the two surfaces.

The first part is done by an elaboration of the method in Theorem 5.6.
One needs a substitute for the fact that the surface Lt minimises lµt + lνt over
T (S). Let Q be a thick part of the hyperbolic surface Lt. One shows [[6]
Proposition 7.4] that the contribution to lµt + lνt coming from the intersection
with Q is less, up to multiplicative constants, than the similar sum for the
surface Gt.

For the second part, by Corollary 5.8, it is enough to show that

|twα(η, p)|lα(p) = O(1)

for p = Lt,Gt and some η ∈ ML, where as usual lα(p) means the hyperbolic
length of α in the hyperbolic metric uniformising p. On the surface Lt, the
result follows from equation (2.3) with η = µ if t > tα and η = ν if t < tα, see
[[6] Theorems 6.2, 6.9]. For the surface Gt, we use the analogous notion of the
twist twα(ν, q) of ν about α with respect to a quadratic differential metric q,
introduced by Rafi [32]. We have:

Proposition 5.9 ([32] Theorem 4.3, [6] Proposition 5.7). Suppose that p ∈
T (S) and that q is a compatible quadratic differential. For any geodesic lami-
nation η intersecting α, we have

lα(p)|twα(η, p)− twα(η, q)| = O(1).

As explained in Section 6, a hyperbolically short curve α on Gt is sur-
rounded by an annulus of large modulus which in the associated quadratic
differential metric qt is either flat (that is, isometric to a Euclidean cylinder)
or expanding. It follows immediately from the Gauss-Bonnet theorem (6.1)
that the contribution to twα(µ, q) and twα(ν, q) from an expanding annulus
is bounded. In a flat annulus F , at the balance time tα the leaves of the
horizontal and vertical foliations make angles of ±π/4 with ∂F . It is an exer-
cise in Euclidean geometry to determine the angle with the boundary at time
t− tα, from which one deduces the required bounds on twists with the aid of
Proposition 5.9.

5.2.3 Proof of Theorem 5.2 It follows from Theorem 5.1, that along inter-
vals on which either there are no short curves, or on which Dt(α) dominates
Kt(α) for all short curves α, the surfaces Lt and Gt remain a bounded distance
apart. However the path Lt may deviate arbitrarily far from Gt along time in-
tervals on which Kt(α) is large and dominates Dt(α). To prove Theorem 5.2,
in addition to Theorems 5.3 and 5.4, we therefore need to control distance
along intervals along which Kt(α) is large. Let Sα be the surface obtained
by cutting S along a short curve α and replacing the two resulting boundary
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components by punctures. The following somewhat surprising result shows
that in this situation, the distance in T (S) is dominated by the distance in
the thick part T (Sα).

Proposition 5.10 ([7] Theorem D). If Kt(α) is sufficiently large for all t ∈
[a, b], the distance in T (Sα) between the restrictions of Ga and Gb to Sα is
equal to b− a, up to an additive error that is bounded by a constant depending
only on the topology of S.

The proof of Theorem 5.2 also requires a detailed comparison of the rates
of change of Dt(α) and Kt(α) with t. The situation is further complicated
because the family of curves which are short on Lt varies with t, so that the
intervals along which different curves α are short may overlap. One needs a
somewhat involved induction to complete the proof.

5.2.4 Proof of Theorem 5.4 The main tool in the proof of Theorem 5.4
is the formula (2.1) for the variation of length with respect to Fenchel-Nielsen
twist, together with the extension proved by Series [34] for variation with
respect to the lengths of pants curves. To explain, if γ ∈ S, its hyperbolic
length lγ is a real analytic function of the Fenchel-Nielsen coordinates (lα, tα)
for T (S) relative to a setA of pants curves of S. Series’ formula is an expression
for ∂lγ/∂lα, analogous to the formula (2.1) for ∂lγ/∂tα. As in Section 3.4.1,
homotope γ to run alternately along and perpendicular to the boundaries of the
pairs of pants in the decomposition defined by A. The formula is a sum similar
to one in (2.1), but involving additionally both the distance twisted by γ round
the pants curves and the complex distance between a given segment of γ across
a pair of pants P and the common perpendicular joining the corresponding
components of ∂P . Imposing the condition that ∂(lµt + lνt)/∂lα = 0 for
short curves α gives additional constraints which need to be satisified at the
minimum of the function lµt + lνt . It requires considerable work to bring these
results into the form in the statement of Theorem 5.4.

The proof of Theorem 5.3 is explained in Section 6.4 below.

6 Short curves on Teichmüller geodesics

In [24], Minsky analyses the curves which are hyperbolically short in a surface
on which one has a metric defined by a quadratic differential q as in Sec-
tion 5.1.1. In a series of papers [31, 32, 33], Rafi has developed this into a
technique for estimating the lengths of curves which are short on a surface on
a Teichmüller geodesic, in particular implying a proof of Theorem 5.3. Since
this work contains some important ideas, we conclude this article with a brief
summary of their results.
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6.1 Flat and expanding annuli

Let q be a finite area quadratic differential on a Riemann surface p ∈ T (S)
and let A ⊂ S be an annulus with piecewise smooth boundary. We say A is
regular if its boundary components ∂0, ∂1 are are q-equidistant and monoton-
ically curved in the sense that their acceleration vectors always points into A,
with suitable definition at singular points, namely the zeros of q. The total
curvature of ∂i is

κ(∂i) =
∫

∂i

κ(p) +
∑

[π − θ(P )],

where the sum is over all singular points P ∈ ∂i and θ(P ) is the interior angle
at P . The annulus A is called flat if κ(∂i) = 0 for each i and expanding if
κ(∂i) 1= 0 for i = 0, 1.

By the Gauss-Bonnet theorem,

κ(∂0) + κ(∂1) = π
∑

ordP (6.1)

where the sum is over the singularities of q in the interior of A and ordP
is the order of the zero at P . A regular annulus is primitive if it contains no
singularities of q in its interior. It follows from (6.1) that a primitive annulus is
either flat or expanding. A flat annulus is necessarily primitive, and is foliated
by Euclidean geodesics homotopic to the boundaries. Thus a flat annulus is
isometric to a cylinder obtained as the quotient of a Euclidean rectangle in
R2. Expanding annuli are exemplified by an annulus bounded by a pair of
concentric circles in R2. In this case, with a suitable choice of sign convention,
κ(∂0) = −2π, κ(∂1) = 2π. Any expanding annulus is coarsely isometric to this
example [24].

Theorem 6.1 ([24] Theorem 4.5, [31]). Let A ⊂ S be an annulus that is
primitive with respect to q and with boundaries ∂0 and ∂1. Let d be the q-
distance between ∂0 and ∂1. Then either

(i) A is flat and modA = d/l∂0(q) or

(ii) A is expanding and modA , log[d/l∂0(q)].

Theorem 6.2 ([24] Theorem 4.6). Let p ∈ T (S) be a Riemann surface and
let q be a quadratic differential on p. Let A be any homotopically non-trivial
annulus whose modulus on p is sufficiently large. Then A contains an annulus
B that is primitive with respect to q and such that modA , modB.

(The statement of Theorem 4.6 in [24] should read modA ≥ m0 not modA ≤
m0.)
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6.2 Moduli of annuli and hyperbolically short curves

One can link the hyperbolic and quadratic differential metrics on a surface
using annuli of large modulus. Let h be a hyperbolic metric on S. If α is short
in h, Maskit [21] showed that the extremal length Ext(α) and hyperbolic length
lα(h) are comparable, up to multiplicative constants. Moreover, there is an
embedded collar C(α) around α whose modulus is comparable to 1/lα(h) (see
[26] for an explicit calculation), and therefore also to 1/Ext(α). Combining
with the results in Section 6.1, this gives

Theorem 6.3 ( [6] Theorem 5.2). If α is a simple closed curve which is suffi-
ciently short in a hyperbolic metric h on S, then for any compatible quadratic
differential q, there is an annulus A that is primitive with respect to q with
core homotopic to α such that

1
lα(h)

, mod(A).

6.3 Rafi’s thick-thin decomposition for the q-metric

Rafi [32] used the above results to analyse the relationship between the q-
metric on a Riemann surface p ∈ T (S) and the uniformizing hyperbolic metric
h in the thick components of the standard thick-thin decomposition of h. The
main result is that on the hyperbolic thick parts of (S, h), the two metrics are
comparable, up to a factor which depends only on the moduli of the expanding
annuli around the short curves in the boundary of the thick components.

For a subsurface Y of S, let Ŷ be the unique subsurface of (S, q) with
q-geodesic boundary in the homotopy class of Y that is disjoint from all the
maximal flat annuli containing boundary components of ∂Y .

Theorem 6.4 (Rafi [32]). Let p ∈ T (S) be a Riemann surface, let h be the
hyperbolic metric that uniformizes p and let Y be a thick component of the
hyperbolic thick-thin decomposition of (S, h). Then there exists λY > 0 such
that

(i) diamqŶ
∗, λY ,

(ii) For any non-peripheral simple closed curve γ ⊂ Y , we have

lγ(q) ∗, λY lγ(h).

In fact λY is the length of the q-shortest non-peripheral simple closed curve
contained in Ŷ unless Y is a pair of pants, in which case λY = max{lq(γi)}
where γi, i = 1, 2, 3 are the boundary curves of Ŷ .
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6.4 Proof of Theorem 5.3

This is an application of Theorem 6.1. Let R be a Riemann surface and let q
be a quadratic differential on R. It follows as above from Equation (6.1) that
every simple closed curve γ on (R, q) either has a unique q-geodesic represen-
tative, or is contained in a family of closed Euclidean geodesics which foliate
a flat annulus. Denote by F (γ) the maximal flat annulus, which necessarily
contains all q-geodesic representatives of γ. (If the geodesic representative of
γ is unique, then F (γ) is taken to be the degenerate annulus containing this
geodesic alone.) Denote the (possibly coincident) boundary curves of F (γ)
by ∂0, ∂1 and consider the q-equidistant curves from ∂i outside F (γ). Let ∂̂i

denote the first such curve which is not embedded. If ∂̂i 1= ∂i, then the pair
∂i, ∂̂i bounds a region Ei(γ) whose interior is an annulus with core homotopic
to γ, and which by its construction is regular and expanding. Let h be the
uniformising hyperbolic metric on R. Combining Theorems 6.1, 6.2 and 6.3
we have:

Corollary 6.5. If α is an extremely short curve on (R, h), then

1
lα(h)

, max {modF (α),modE0(α),modE1(α)} .

The proof of Theorem 5.3 then follows from the following two propositions.

Proposition 6.6 ([6] Proposition 5.6). Let q = qt denote the quadratic dif-
ferential on the surface Gt whose horizontal and vertical foliations are µt, νt

respectively. Let α ∈ S be a curve that is neither vertical nor horizontal. Then

modFt(α) , Dt(α).

Proposition 6.7 ([6] Proposition 5.7). Let p ∈ T (S) be a Riemann surface
with compatible quadratic differential q. Suppose that α is extremely short in
the uniformising hyperbolic metric h and let Y be a thick component of the hy-
perbolic thick-thin decomposition of (S, h), one of whose boundary components
is α. Let α̂ be the q-geodesic representative of α on the boundary of Ŷ and let
E(α) be a maximal expanding annulus on the same side of α̂ as Ŷ . Then

modE(α) , log
λY

lα(q)
.

Proposition 6.6 is an exercise in Euclidean geometry and Proposition 6.7
follows from Theorems 6.1 and 6.4.
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6.5 Rafi’s combinatorial formula for Teichmüller distance

Rafi [33] has developed the above ideas further into a combinatorial expression
for the Teichmüller distance between any two surfaces p, p′ ∈ T (S) in which
different families of curves may be short. Let h, h′ be the hyperbolic metrics
uniformising p, p′ respectively, and let Mp,Mp′ be short markings for h, h′

(see 5.1.2). Then:

Theorem 6.8 ([33] Theorem 6.1).

dT (S)(p, p′) ,
∑

Y

[
dY (Mp,Mp′)

]
k

+
∑

α/∈Γ

log
[
dα(Mp,Mp′)

]
k

+

+ max
β∈Γp

log
1

lβ(h)
+ max

β∈Γp′
log

1
lβ(h′)

+ max
α∈Γ

dH2
α
(p, p′). (6.2)

where Γp,Γp′ , and Γ are defined as follows:

Γp = {α ∈ S : lα(h) < ε, lα(h′) > ε},
Γp′ = {α ∈ S : lα(h′) < ε, lα(h) > ε},
Γ = {α ∈ S : lα(h) < ε, lα(h′) < ε}. (6.3)

Here dY (Mp,Mp′) is the distance between the projections of the union of
the curves in the markings Mp,Mp′ in the curve complex of Y and dα(Mp,Mp′)
is the relative twist of the curves in Mp,Mp′ round α. For X ≥ 0, the function
[X]k takes the value 0 when X < k and X when X ≥ k.

This formula is not needed in the proofs of Theorems 5.1 and 5.2.
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