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The nonlinear dynamics of cardiac action potentials is explained via simple model equations describing
the membrane potential and the inward and outward currents through the membrane. The equations
approximate ionic models, yet are expressed as polynomial functions, and robustly capture the phase-

space dynamics of action potentials.

PACS numbers: 87.19.Hh, 05.45.—a, 87.10.+e

Action potentials are the characteristic time series ob-
served in the electrical potential across the membrane of
a cardiac or nerve cell following depolarization (firing).
While action potentials vary significantly from cell type to
cell type [1,2], a typical example for a cardiac cell, ob-
tained from an ionic model [3,4], is shown in Fig. 1(a),
together with the associated inward and outward currents
through the cell membrane [Fig. 1(b)]. The dynamics of
the membrane potential and associated currents are ex-
tremely important because these dictate wave propagation
in extended physiological media, and in the case of cardiac
tissue, these waves are believed responsible for certain ar-
rhythmias, often leading to death [5].

Detailed ionic models are immensely complicated,
making analytical treatment impossible and simulations
costly (and currently impossible in three dimensions). For
this reason, the FitzHugh-Nagumo model [6] has been
popular in theoretical and computational studies, e.g.,
Ref. [7]. The model has just two variables and a cubic
nonlinearity. It nevertheless captures the most basic fea-
tures of action potentials and its simple phase portrait with
N-shaped nullcline explains key aspects of excitability.
However, the standard FitzHugh-Nagumo model fails to
capture the form of fast response action potentials in real
cardiac tissue where the time scales of depolarization
and repolarization are significantly different, and where
early partial repolarization generally follows the upstroke
[Fig. 1(a)]. Furthermore, the propagation of wave trains
in the FitzHugh-Nagumo model is qualitatively at odds
with what is found in cardiac tissue (Fig. 2) where resti-
tution is strong, promoting instability at small diastolic
interval [§—10], and dispersion is weak, with wave speed
insensitive to the postrepolarization state of the medium.

Models have been proposed to improve the fidelity of
the FitzHugh-Nagumo equations while not resorting to
full physiological modeling. Of particular importance are
models that attempt to capture the restitution and disper-
sion of cardiac tissue, either through modification of the
FitzHugh-Nagumo equations [11,12] or through charac-
terizing basic ionic mechanisms [13]. However, as far as
we are aware, there is no published simple model that ac-
curately captures the characteristic action potential and
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currents shown in Figs. 1(a) and 1(b), and provides ex-
planation for these dynamics.

Here we propose a surprisingly simple approach to un-
derstanding and modeling action potentials. Analysis is
based on the currents through the cell membrane rather
than on the gating mechanisms responsible for these cur-
rents. This allows model differential equations to be con-
structed in terms of low-order polynomials that correctly
account for all of the important phase-space features found
in ionic models and thus reproduce in detail the dynamics
of these complex equations.

Noble’s modification [3] of the Hodgkin-Huxley equa-
tions [14] produces action potentials and membrane
currents (shown in Fig. 1) close to those observed ex-
perimentally, and yet for an ionic model it contains few
variables. Thus we shall use it as the starting point for
developing simple polynomial approximations. The Noble
model is
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with dynamical variables V (membrane potential), and m,
h, and n (gate variables). C,, is the membrane capacitance.
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FIG. 1. (a) Typical action potential and (b) corresponding in-

ward (solid) and outward (dotted) membrane currents from the
Noble model.
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FIG. 2. (a) Restitution and (b) dispersion for the Noble model

(squares), the FitzHugh-Nagumo model (circles), model (3)
(crosses), and model (4) (triangles). Plotted are the normalized
action potential duration APD and wave speed C versus the
normalized diastolic interval DI. APD, and C, are the action
potential duration and speed of an isolated pulse (DI = ).

All functions of V, e.g., m«(V), are rational functions of
exponentials. We use I; and I, to denote the inward and
outward currents to emphasize that, while originally as-
sumed to be due to sodium and potassium ions only, in
reality many other ions participate [15] and only the total
inward and outward currents are captured by this model
[1]. In particular, the total inward current is primarily due
to sodium and calcium currents. In the following we shall
indicate parenthetically the roles of the sodium, calcium,
and potassium currents.

We write Egs. (1) in a form useful for subsequent analy-
sis. We adiabatically eliminate the variable m in terms
of the voltage-dependent equilibrium m..(V), which is a
monotonic function of V. This is possible since the time
scale of the (sodium activation) gate m is at least an order
of magnitude faster than any other time scale in the system
[1,2]. Simulations show that only small quantitative effects
result from the elimination of m [9,16]. We then perform
a straightforward change of variables from V, k, and n to
V, I;, and I,, and obtain

V=I-1, (2a)

L= (fsh + f) (L + f3) + falil, + fil, + fo,
(2b)

L= — L)g(V.L) + g(V.L), (20)

where we have defined nondimensional currents [ =
—I;/I* and I, = Iy/I*, where I* = 125 wA/cm? for
Cn =12 uF/cm?.  We have also made the voltage
nondimensional by V* = 16.3 mV and time by ¢* =
1.57 msec. The f; are functions of V only.

Following a detailed analysis [16] of the phase space of
Egs. (2), the dynamics of action potentials can be under-
stood, and, in fact, almost exactly reproduced, by replacing
the complicated functions f;, g; derived from the Noble

model by relatively simple polynomials. Specifically, f>
can be approximated by zero (a significant reduction in
the nonlinearity of the equations), fo, f1, and f4 can be
replaced by constants, gg can be taken to be a linear func-
tion of V only, and f5 is proportional to V. While these
approximations are generally consistent with the forms ob-
tained from Egs. (1), the source and justification for the
approximations are an analysis of their role in generating
dynamics.

We consider two model systems. The first is a qualita-
tive model, with at most cubic nonlinearity, capturing the
essential fast or slow dynamics of physiological media:

V=1 -1, (32)
L =—-(VL + DI, — Db, (3b)
L=¢ll, - L)L -V)+a+V], @G

where @ and € are parameters. A phase portrait and time
series from these equations are shown in Fig. 3. The dy-
namics is oscillatory with periodic action potentials.
From Eq. (3a), the extrema of V occur at points where
the currents are equal. The cubic term —VI 12 in Eq. (3b) is
the essential nonlinearity in the model, and modulo con-
stants, this approximates well f5112: the dominant term
in Eq. (2b) for large 7;. The role of the nonlinear term
can be seen in the /| nullclines (curves on which I; = 0).
For I = 0 these are I; = 0 and I = —1/V (Fig. 3 in-
set). For nonzero I, the nullclines change qualitatively near
I = 0 and the symmetry (V,I;) — (=V,—1I;) in Fig. 3
is broken, but the curve Iy = —1/V is persistent for large

FIG. 3. Dynamics from Eqgs. (3) with a« = 3 and € = 0.09.
(a) Phase portrait showing inward current /; (solid) and out-
ward current I, (dotted) vs V. Inset shows the I; nullclines for
I, = 0. Arrows indicate the sign of I;. (b) Action potential and
(c) currents.
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1. Approximating g;(I,V) by €(I; — V) in Eq. (3¢) is
the simplest choice giving correct behavior for I, and a
reasonable form for the action potentials [17].

Starting from the potential minimum at ¢t = 0 (Fig. 3),
the dynamics are as follows. The currents balance with
I, increasing and I, decreasing. [ is above but near the
hyperbolic portion of the nullcline. I, reaches a minimum
and then increases so that the two currents remain close
until ¢ = 4, during which time V is small. Att =4, I;
begins to deviate significantly from the nullcline and the
term —VI 12 > 0 leads to explosive nonlinear growth of the
inward (sodium) current. This produces the large voltage
derivative (V = I} — I > 1) of the upstroke. V very
quickly becomes positive driving I; across its nullcline
at a large value (I; = 56). Then I; changes sign and I,
rapidly falls. The fast dynamics of the upstroke abruptly
ends when Iy = I, and V obtains its maximum.

The time scale of repolarization is vastly slower than that
of depolarization because the two currents remain close
in magnitude. The outward current agrees qualitatively
with the outward (potassium) current in physiological me-
dia where it plays a dominant role in repolarization. In
Egs. (3) the inward current is not correctly modeled dur-
ing repolarization (roughly, the effect of the calcium cur-
rent in cardiac tissue is neglected), and as a result there is
no voltage plateau prior to repolarization and the system
does not recover to an excitable fixed point. Otherwise,
the essential fast (sodium) and slow (potassium) dynam-
ics of physiological media are well captured with a cubic
nonlinear model, significantly different from those with
N-shaped nullclines as in Fig. 1.

Consider now the quantitative model given by

V=0L—-D,
L=—-(VL + D[l — hy(V)] + 68 — L), (4

L =€l - L)L — he(V)] + y(a + V)},

where 3, v, and & are additional parameters and 4 (V) and
he(V) are quartic and quadratic polynomials, respectively.
The coefficients in /¢(V) and h,(V) are easily determined
by fitting to the nullclines in the Noble equations. For
I, = B, the I; nullclines are /; = —1/V and I} = hs(V)
as shown in Fig. 4.

Figure 5 shows time series from this model, and Fig. 6
shows phase portraits for both Egs. (1) and (4). The dy-
namics of the two systems are almost identical. For com-
parison with the Nobel model, and physiological media in
general, in Figs. 5 and 6 we plot dimensional variables,
V =VVv* 1 = LI, ], = LI*, and time #1*.

The nonlinear mechanism of fast depolarization [re-
gion 1 of Fig. 6(b)] is as in Egs. (3). Following the voltage
maximum, /; falls to nearly zero, and V briefly becomes
moderately large and negative (region 2). This generates
the partial repolarization from the outward (potassium)
current generally observed in fast response action po-
tentials [1,2]. There is then a second rise of the inward
(calcium [1,2]) current as I; follows the quartic branch
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FIG. 4. (a) I, nullclines with I, = 8 for Egs. (4). (b) I, > B:
nullcline crossing in (a) breaks to form channel for /; trajectory
(bold). (c) I, < B: nullcline crossing breaks in other direction
generating an excitation threshold for fixed point (dot).

of the nullcline (region 3). [Heuristically, the dynamics of
the calcium component of the inward current results from
the nullcline 7; = hy(V).] The voltage plateau occurs
because a near balance of current is established. Both
currents increase slowly (/, is small because I} — I is
small, and hence 7y dictates the length of the plateau).
Once I; reaches the local maximum of its nullcline it
again decreases, increasing |V| and leading to repolariza-
tion (region 4).

The final recovery of the system and establishment of
a voltage threshold for reexcitation is shown in Figs. 4(b)
and 4(c). With I, > B the nullclines form a channel
for the I; trajectory. The system is absolutely refractory
because no voltage perturbation can put the system above
the upper nullcline in Fig. 4(b) and reexcite the system.
(Note that I, > B = 0.3 corresponds to L, > pI* =
37.5 wA/cm?.) After I, falls below the value 8, the null-
clines change qualitatively establishing a voltage threshold
for excitation.

We have simulated wave trains in one dimension and
spiral waves in two dimensions using both current models
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FIG. 5. (a) Action potential and (b) membrane currents from
Egs. (4) shown in dimensional variables. Parameters are @ =
49, B =03, y=8X10"% & =0.12, e = 0.33; he(V) =
—0.0333(V + 1.23)> + 0.365 and Ay (V) = 4.65 X 1073V* +
0.0205V3 — 0.0384V? — 0.188V + 0.288.
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FIG. 6. Trajectories of inward (solid) and outward (dotted)
currents vs voltage for (a) the Noble model and (b) Egs. (4).
Both systems are excitable: trajectories start from V = —76
and eventually return to fixed points with V = —80. See text
for explanation of the four regions in (b).

(3) and (4) by including spatial variation in the membrane
potential and currents [18]. The normalized restitution
and dispersion curves for both current models are qualita-
tively of the type observed in cardiac tissue (Fig. 2). These
curves are for the same parameters as are used in homo-
geneous simulations in Figs. 3 and 5; however, for model
(4) using 6 = 0.3 gives waves with action potentials more
like those in cardiac tissue. The evolution to spiral waves
starting from broken wave fronts in both current models
is very similar to that found in the Noble model. With
suitable choice of arbitrary length and time scales, the pe-
riod, wavelength, and core size of spirals based on Egs. (3)
agree with spirals in the Noble model. The spiral period
based on Egs. (4) is 45 ms compared with 65 ms for the
Noble model using parameters in this paper. However, the
spiral wavelength and core size from Eqs. (4) are both ap-
proximately a factor of 3 smaller than those in the Noble
model. The reason for this difference is currently not
understood.

We have demonstrated an approach to modeling cardiac
action potentials using a small number of physiologically
relevant variables whose phase-space dynamics can be pre-
cisely understood. On the one hand, Eqgs. (3) elucidate the
essential nonlinear dynamics of all fast response action
potentials and have significant advantages over N-shaped-
nullcline models such as the FitzHugh-Nagumo model. On
the other hand, Egs. (4) demonstrate how this approach

can be used to reproduce and understand detailed dynam-
ics of realistic action potentials using relatively simple
equations. By varying the parameter values and functions
hy and h, in Egs. (4), it is possible to capture, at least
qualitatively, many types of action potentials observed in
physiological media [16]. Finally, work is ongoing using
four-dimensional models with independent sodium and
calcium currents. While desirable from a physiological
perspective, this extension diminishes the simplicity of
phase-space analysis reported here and will be presented
elsewhere.
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