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A periodically driven relaxation-oscillator circuit is used to study experimentally the multifractal
structure of the quasiperiodic parameter set on the critical line. The experimental data provide evidence
of a phase transition in the thermodynamic free energy ¢(r). The experimental thermodynamics com-
pares well with that of the sine circle map and provides strong evidence for universality in the parameter

scaling at the borderline of chaos.
PACS numbers: 05.45.+b, 03.40.—t, 05.70.—a

The recently developed thermodynamic formalism of
multifractals'™ has been used to quantify fractal struc-
tures arising in a variety of physical contexts. Notable
examples include fractals generated in chaotic dynam-
ics, 247 fluid turbulence,® and fractal growth process-
es.”!1% For many fractal sets,'%"!> nonanalyticities exist
in the associated thermodynamic functions, e.g., the free
energy g (7). In light of the analogy to thermodynamics,
these nonanalyticities have a natural, and in certain
cases formally exact,'? interpretation as phase transi-
tions.

One fractal set of particular interest in the setting of
chaotic dynamics is the quasiperiodic parameter set at
the borderline of chaos, that is, the complement to the
set of mode lockings on the critical line.'® The quasi-
periodic set provided the first physically important exam-
ple of phase-transition phenomena in the scaling of mul-
tifractals,'' and a detailed theoretical study of this set,
with particular emphasis on the existence of first-order
transitions, has recently appeared. '’

Apart from the issue of phase transitions, the scaling
of the (critical) quasiperiodic set is important because it
represents a truly global manifestation of the transition
from quasiperiodicity to chaos. For example, numeri-
cal'® and experimental'’ studies indicate that at the
transition to chaos, the fractal dimension, Dy, of the
quasiperiodic set obtains a universal value. Because Do

depends on the mode-locking structure everywhere along
the critical line, the universality of Do implies a global
universality in the quasiperiodic transition to chaos.'
However, Dg represents but one value in a continuum of
dimensions, D, reflecting an infinity of scalings within
the quasiperiodic set."'>?° Until now there has been no
experimental study to test the universality of the entire
spectrum of scalings possessed by the quasiperiodic set.

We report here the experimental study of the quasi-
periodic set for a periodically driven operational-
amplifier oscillator which has previously been de-
scribed.2''?? We find strong experimental evidence for a
phase transition in the thermodynamic functions for the
quasiperiodic set. We also present the first experimental
measurement of the scaling spectrum, f(a), for this set.

We begin by recalling the thermodynamic formal-
ism.'"* Consider the covering of a fractal measure by
intervals of length /;. [Each interval contains a corre-
sponding weight or probability p;. Then define the parti-
tion function by

N
I'(g,7) = > pi/ir. (1)
i=1

In principle, one takes the limit /N — oo; in practice, we
consider finite V. Setting I'(g,7) =1, we obtain ¢(r),
which in the thermodynamic analogy plays the role of
free energy,?> F(B). In the study of phase transitions, it
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is useful to examine u(r)=dq/dt and c(z) =d?q/d?,
which play the rule of internal energy and specific heat,
respectively. One can alternatively consider r as a func-
tion of ¢, and by Legendre transformation, obtain the
spectrum of scaling indices f(a)=ga—1(q), where
a=dt/dgq =1/u.

The starting point for the thermodynamics of the
(critical) quasiperiodic set is a collection of N+ 1 mode-
locked intervals {P,-/Qi}, labeled by their winding num-
ber. The mode lockings are thought of as a set of holes
in the critical line on which the quasiperiodic set does
not live. The covering, {1,}, for the quasiperiodic set is
the complement to the set of holes, i.e., interval /; is the
gap between neighboring mode lockings P;/Q; and
Pi+1/Qi+1.

Several different measures have been put forth for the
quasiperiodic set,!"'> as represented by different defini-
tions of the probabilities p;. Each measure gives rise to
distinct thermodynamics. Here we follow Halsey et al.'
and take the p; to be the change in (dressed) winding
number across covering interval /; (normalized such that
X pi=1). We study this thermodynamics because it is
experimentally the most accessible: We simply compute
the probabilities from whatever mode lockings are found
experimentally.

The experimental apparatus is an operational-am-
plifier relaxation oscillator which is driven by a sine wave
whose frequency and amplitude can be varied. The drive
frequency and voltage are computer controlled. The out-
put voltage, sampled once every drive period, is filtered
by a 500-kHz low-pass filter, digitized by a twelve-bit
analog-to-digital converter, and passed to the computer
for analysis. Complete details can be found in Refs. 21
and 22.

We first experimentally determined the critical line
(drive voltage as a function of drive frequency) for the
transition to chaos (see Fig. 1 of Ref. 21). We identified
the transition to chaos by the appearance of a fold in the
Poincaré sections (Fig. 2, Ref. 21). The critical line was
then scanned by making 5-Hz steps in drive frequency
and adjusting the drive amplitude so as to remain on the
critical line. At each step the period and winding num-
ber of the driven oscillator were obtained by the comput-
er. From the scan of the critical line, 249 of the possible
388 mode-locked intervals with periods Q; <50 were
identified. Of the covering intervals /;, obtained from the
experimental mode lockings, four were narrower than 20
Hz and are not considered in our analysis because of the
large relative error of these intervals.

Figure 1(a) shows the devil’s staircase for the experi-
mental data. For comparison, we plot the staircase for
the sine circle map'® with all mode lockings such that
Qi =50. Figure 1(b) shows our experimental estimate
of the fractal density of quasiperiodic states on the criti-
cal line: p=p;/l; in covering interval i and zero else-
where.

Because of scale-dependent prefactors,''>2* the ther-

328

25 (b) S

0.0 -
290 340 390 440

Drive Frequency (kHz)

FIG. 1. (a) The devil’s staircase obtained by plotting wind-
ing number, W, as a function of drive frequency for the 249 ex-
perimentally measured mode-locked intervals along the critical
line. Three low-order lockings are labled. For comparison, the
devil’s staircase for the sine circle map (SCM) is plotted with
the end points of the 1/1 and 1/2 mode lockings aligned with
the experimental data. (b) Experimental estimate of the frac-
tal density, p, for the quasiperiodic set. The holes due to low-
order mode lockings are clearly seen.

modynamic functions computed directly from (1) often
converge slowly as V— oo. This is particularly true for
the experimental relaxation oscillator whose wide low-
order (small-Q;) mode lockings impair convergence as N
becomes large. The ill effects of the low-order lockings
can be greatly reduced by computing z(g) [or alterna-
tively, ¢ (z)] from the ratio of partition functions: "*'?

I'(g,t0)/T'(g,7)=1, )

where primed and unprimed functions refer to a coarse
and fine covering of the quasiperiodic set, respectively.
The coarse and fine coverings are determined from mode
lockings whose periods Q; do not exceed maximum
periods Q' and Q, respectively.

In Fig. 2 we illustrate how, for the experimental data,
results obtained from (2) depend on the choice of cover-
ings. Shown is the fractal dimension, Do= — 1(q =0),
as a function of Q for several values of Q'. In the limit
Q — oo, the results should be independent of the coarse
covering given by Q’, and we expect all curves in Fig. 2
to approach asymptotically the same value of Dy. How-
ever, at the resolution of the experimental data, Q =50,
the finite-NV estimates of Do depend considerably on the
coarse covering. While in studies of circle maps the
choice Q'=[Q/+/2] has been used?® (square brackets
denote integer part), it is impossible, a priori, to say
what value of Q' is most appropriate for the finite-N ex-
perimental data. It is clear, however, that small values



VOLUME 64, NUMBER 4

PHYSICAL REVIEW LETTERS

22 JANUARY 1990

0.90

4

1
0.851

Do

0.80 1

0.75 Y T
20 30 Q 40 50

FIG. 2. Fractal dimension, Do= — 7(0), for the experimen-
tal data as a function of Q for values of Q' indicated in the
legend. Q and Q' determine the fine and coarse coverings used
in (2). The bold curve, without symbols, is for Q'=[Q/V2],
where brackets denote integer part. The experimental error
bar for Dg is shown to the right.
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FIG. 3. The free energy q(z), internal energy u(7) =dq/dr,
and specific heat c(7) =dg?/dt?, as functions of inverse tem-
perature, 7. Points are from experiment. Sine-circle-map re-
sults are shown for two values of Q: Q=180 (long-dashed
curve) and Q=50 (short-dashed curve). The short-dashed
curve is not shown in (a) as it is not clearly distinguishable
from the long-dashed curve. In (c) the experimental data are
plotted with solid lines, without error bars, at three values of Q
(with Q'=[Q/v/2]): @ =30, 40, and 50, corresponding to
N =121, 186, and 244. For clarity, circle-map results are not
shown in (c), but they are comparable to experiment. The
abrupt change in the slope of the free energy and the peaking
of the specific heat at r==1.3 indicates a first-order phase tran-
sition. The experimental deviation from the circle-map curve
at large 7 is presumably due to finite-/V effects (see text).

of Q' are inappropriate for estimating the asymptotic
value of D,.

Based on Fig. 2, the experimental error bar for the
fractal dimension is chosen to include al/ finite-N values
of D¢ for Q near 50 and Q' greater than 27. We have es-
timated uncertainty in Do due to experimental error in
determining the end points of the mode-locked intervals
and have found this to be negligible in comparison with
the uncertainty due to the arbitrariness of Q'. While it is
not possible to extrapolate unequivocally the asymptotic
value of Dy, we find it significant that the curves Q' =32
and Q'=37 are quite flat as a function of Q (as are all
curves for Q' in the range 30 < Q' <40). These curves
indicate that the asymptotic value of D¢ for the experi-
mental data is near 0.87, the (conjectured) universal
value for the fractal dimension of the quasiperiodic set. '®

The free energy g(z) and its derivatives are shown in
Fig. 3. The scaling spectrum f(a) is shown in Fig. 4.
As in the case of the fractal dimension (Fig. 2), all error
bars in Figs. 3 and 4 are based on variations in the ther-
modynamic variables for Q=50 and Q'> 27. We be-
lieve that for 7 <1 the error bars bound the asymptotic
thermodynamics; for =2 1 we cannot be certain of the
asymptotic limit and the error bars should be interpreted
as the uncertainty in the finite-/V experimental results.
For comparison, we show results obtain by numerically
computing mode lockings for the sine circle map and us-
ing (2) with Q=180 and Q'=I[Q/v21=127. This is
our best numerical estimate of the asymptotic thermo-
dynamics for the circle map. The choice Q =180 has no
significance other that it is the largest Q for which we
could feasibly obtain all mode lockings. In Fig. 3(b) we
also show circle-map results for @ =50 and Q' =35, cor-
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FIG. 4. The scaling spectrum f(a) for the experimental
data (points) and the sine circle map with Q =180 (dashed
curve). The experimental uncertainties in f are very large on
the right branch and vertical error bars are not shown. The
phase transition is contained in the left branch and extends to
the a axis. The experimental deviation from the circle-map
curve along the left branch is presumably due to slow conver-
gence at the phase transition.
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responding approximately to the resolution of experi-
ment.

The abrupt change in the slope of the free energy g (r)
at 7==1.3 clearly suggests a phase transition. From
finite-NV experimental or numerical data it is impossible
to conclude with certainty the existence of a true first-
order phase transition. Nevertheless, the experimental
specific heat [Fig. 3(c)] has not reached a limiting value
as a function of N, and the data suggest that, in the
“thermodynamic limit” N — oo, the specific heat tends
to a & function. This is a strong indication that the ex-
perimental data are a finite-N reflection of a first-order
phase transition. We cannot, however, rule out the pos-
sibility that the phase transition is infinite order.*'> To
our knowledge, Fig. 3 provides the most direct and con-
vincing experimental evidence to date of a true phase
transition in the thermodynamics of a multifractal set.

The experimental points systematically deviate from
the circle-map curve in the high-t phase. We attribute
this to finite-NV effects, and note that similar deviations
have been observed in numerical studies of phase transi-
tions.!>!> For the quasiperiodic set, the behavior at
large 7 is governed by the scaling of the harmonic series
within the quasiperiodic set, and these series have ex-
tremely poor convergence properties.?’ For example, we
know 31620 that in the thermodynamic limit g should
equal 2 at large 7. However, the convergence to this lim-
it is very slow as the circle-map curves in Fig. 3(b) illus-
trate. Because we do not expect universality in finite-NV
results, we cannot expect the finite-NV experimental and
circle-map results to agree. Given that for the circle
map with Q@ =50, u at large t differs by 2% from the
thermodynamic limit, we regard the corresponding 7%
difference in experiment as reasonable.

The agreement between the experimental and circle-
map thermodynamics is very significant. The low-order
mode lockings in the two staircases of Fig. 1 are quite
different and would appear to reflect different parameter
scalings along the critical line, and yet, a comparison of
either the free energies g(t) or the scaling spectra f(a)
reveals that this is not the case. Except for differences
which can be expected when computing thermodynamic
functions from a finite number of mode lockings, the
scaling of the quasiperiodic set for the driven relaxation-
oscillator circuit is the same as that of the one-
dimensional sine circle map.

A transfer-matrix method has been proposed for ob-
taining the free energy from low-order approximations to
the scaling function.>™® We are not able to apply this
technique directly to the problem considered here, how-
ever, because neither the probabilities p; nor covering in-
tervals /; are uniform. We hope that the transfer-matrix
method can be extended to the case of nonuniform prob-
abilities as this approach should lend further insight into
the phase transition. We are presently working along
these lines.
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In conclusion, we have presented the first experimental
study of the thermodynamics of the quasiperiodic set,
and have provided strong experimental evidence for a
phase transition in this multifractal set. We have ob-
tained, in experiment, thermodynamic functions, q(z)
and f(a), which agree well with those of the sine circle
map. This provides the most complete confirmation to
date of universality in the mode-locking structure at the
transition from quasiperiodicity to chaos.

We acknowledge helpful discussions with P. S. Linsay,
P. Cvitanovic, and A. Chhabra. D.B. is supported by the
Office of Naval Research, Grant No. N00014-85-K-
0205 SRO.

@present address: Program in Applied and Computational
Mathematics, 202 Fine Hall, Princeton University, Princeton,
NJ 08544.

'T. C. Halsey, M. H. Jensen, L. P. Kadanoff, 1. Procaccia,
and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).

2M. J. Feigenbaum, M. H. Jensen, and I. Procaccia, Phys.
Rev. Lett. 57, 1503 (1986).

3M. H. Jensen, L. P. Kadanoff, and I. Procaccia, Phys. Rev.
A 36, 1409 (1987).

4M. J. Feigenbaum, J. Stat. Phys. 52, 527 (1988).

5M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia,
and J. Stavans, Phys. Rev. Lett. 55, 2798 (1985).

6J. A. Glazier, M. H. Jensen, A. Libchaber, and J. Stavans,
Phys. Rev. A 34, 1621 (1986).

7E. G. Gwinn and R. M. Westervelt, Phys. Rev. Lett. 59,
157 (1987).

8C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59,
1424 (1987); R. R. Prasad, C. Meneveau, and K. R. Sreeniva-
san, Phys. Rev. Lett. 61, 74 (1988), and references therein.

9T. C. Halsey, P. Meakin, and 1. Procaccia, Phys. Rev. Lett.
56, 854 (1986).

10T. Bohr, P. Cvitanovi¢, and M. H. Jensen, Europhys. Lett.
6, 445 (1988).

P, Cvitanovié, in Proceedings of the Workshop in Con-
densed Matter, Atomic and Molecular Physics, Trieste, 1986,
edited by S. Lundqvist, N. H. March, and E. Tosatti (unpub-
lished).

2D, Katzen and I. Procaccia, Phys. Rev. Lett. 58, 1169
(1987).

3R. Artuso, J. Phys. A 21, L923 (1988).

'4P. Paoli et al., Phys. Rev. Lett. 62, 2429 (1989), and refer-
ences therein.

I5R. Artuso, P. Cvitanovié, and B. G. Kenny, Phys. Rev. A
39, 268 (1989).

16M. H. Jensen, P. Bak, and T. Bohr, Phys. Rev. Lett. 50,
1637 (1983); Phys. Rev. A 30, 1960 (1984); 30, 1970 (1984).

17W. J. Yeh, D.-R. He, and Y. H. Kao, Phys. Rev. Lett. 52,
480 (1984); S. E. Brown, G. Mozurkewich, and George
Griiner, Phys. Rev. Lett. 52, 2277 (1984).

18There are other features of the quasiperiodic transition
which are global in that they capture the scaling everywhere
along attractors in phase space, e.g., Refs. 5 and 7.



VOLUME 64, NUMBER 4

PHYSICAL REVIEW LETTERS

22 JANUARY 1990

19H. G. E. Hentschel and I. Procaccia, Physica (Amsterdam)
8D, 435 (1983).

20p. Cvitanovié, B. Shraiman, and B. Soderberg, Phys. Scr.
32, 263 (1985).

21A. Cumming and P. S. Linsay, Phys. Rev. Lett. 59, 1633
(1987).

22A. Cumming and P. S. Linsay, Phys. Rev. Lett. 60, 2719
(1988); P. S. Linsay and A. Cumming (to be published).

23Strictly speaking, g (t)/7 is the free energy; factors of tem-
perature are ignored.

24W. van de Water and P. Schram, Phys. Rev. A 37, 3118
(1988).

25Because N~Q?2 Q'=[0/V/2] gives a coarse covering with
approximately one-half the number of covers as in the fine cov-
ering. Results are much less sensitive to Q' for the sine circle
map than for experiment.

331



