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Global Bifurcation to Traveling Waves in Axisymmetric Convection
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A traveling-wave state observed in full numerical simulations of cylindrical convection is reported.
These waves arise with large amplitude via a global bifurcation of the steady convective state in systems
with highly conducting sidewalls. For poorly conducting sidewalls, transition occurs instead to a discon-
nected branch of steady states. The Prandtl-number dependence of these transitions is interpreted in
light of a wavelength selection mechanism previously proposed for axisymmetric convection.

PACS numbers: 47.20.Ky, 47.25.Qv

Many recent studies of Rayleigh-Bénard convection
have focused on time-dependent spatial patterns. Theory
and experiment agree regarding the existence of travel-
ing-wave solutions in binary fluids' and in systems with
spatially ramped Rayleigh number.?3 Traveling waves
have also been predicted, both analytically* and with
model equations,5 to occur in axisymmetric convection;
these, however, have never been observed experimentally.

We report here on observations of axisymmetric trav-
eling waves near the onset of convection in simulations of
the full time-dependent Boussinesq equations for a cylin-
drical geometry. We find that these waves, for suffi-
ciently high Prandtl number, are not subject to the
nonaxisymmetric instabilities often observed,® but
significantly, that they are suppressed when the sidewalls
have the poor conductivity typical of past experiments.
Along with detailed quantitative predictions, we present
a description of the global bifurcation triggering these
waves, and a simple model which reproduces the param-
eter dependence of this bifurcation.

We have obtained our results using an initial-value
pseudospectral code, which has additional capabilities for
calculating unstable steady states and eigenvectors.’ All
computations have been performed for aspect ratio ' =35,
with use of fifty Chebyshev polynomials in the radial
direction r, sixteen polynomials in the vertical direction
z, and a time step of 0.002. (All times are expressed in
units of the vertical thermal diffusion time 1, =d%/x,
where d and x are the depth and thermal diffusivity of
the fluid layer; all distances are expressed in units of d.)

The top and bottom plates are perfect thermal conduc-
tors. We have investigated both thermally conducting
and insulating sidewalls, corresponding to Dirichlet
(h=0) and Neumann (9,2 =0) boundary conditions, re-
spectively, where 4 is the temperature deviation from the
conductive profile. All boundaries are rigid: Boundary
conditions u, =u, =0 are imposed on the velocity. The
boundary conditions and equations are reflection sym-
metric about the midplane z =0.

The most detailed results reported here are for Np,
=10. For this Prandtl number and aspect ratio ' =35,
and in the range of Rayleigh number studied, we have

determined that, once obtained, axisymmetric patterns8

are stable to nonaxisymmetric perturbations of the form
exp(im@) for all m <5. We have tested the stability of
the steady states by determining that the most unstable
nonaxisymmetric eigenvector has a negative growth rate,
and that of the periodic states by observing the decay of
nonaxisymmetric perturbations in full three-dimensional
nonlinear simulations. We shall also present some re-
sults for a wide range of Prandtl numbers, including
some (Np; S4) for which we have found the system to
be unstable to a nonaxisymmetric perturbation with
m=1.

We now describe two bifurcation sequences (one for
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FIG. 1. Schematic bifurcation diagram for the case of con-
ducting sidewalls. ¢ is the reduced Rayleigh number, and A4 is
a coordinate which distinguishes between different states.
(a),(b) Numerically calculated stream function contours of
representative five-roll steady states at two values of €. (c)-(g)
Phase portraits at the five values of € denoted by tick marks.
Stable (unstable) states are denoted by solid (dashed) lines in
the bifurcation diagram, and by filled (empty) circles in the
phase portraits. The traveling-wave state (see Fig. 2) is denot-
ed by bold lines.
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FIG. 2. Instantaneous stream function contours in the r-z
plane of the traveling-wave state at ¢=1.39. Solid (dashed)
contours denote clockwise (counterclockwise) flow. Contours
are shown at times ¢ =0, 19, 27, 34, 70, 89, 97, and 104. The
numbers label slowly varying quasi five-roll and quasi four-roll
states.

conducting sidewalls and one for insulating sidewalls) as
a function of reduced Rayleigh number e=(R — R.)/R.,
where R, is the critical Rayleigh number for onset of
convection. For I'=5, R, =1734, as found previously by
numerical linear stability analysis® and confirmed by us
to within 0.1%.

A schematic bifurcation diagram summarizing our
findings for the case of conducting sidewalls is shown in
Fig. 1. For negative € the conductive state is stable [Fig.
1(c)]l. At €=0, a supercritical bifurcation breaks the
reflection symmetry, giving rise to two symmetrically re-
lated steady five-roll states [Fig. 1(d)]. Figure 1(a)
shows numerically obtained stream functions in the r-z
plane for one of these two states. As ¢ is increased, the
size of the central roll [the leftmost roll in Figs. 1(a) and
1(b)] decreases, until at a critical value ex =1.3844
+0.0002 the stable five-roll state gives way to a large-
amplitude low-frequency traveling wave (limit cycle), in-
dicated with bold lines in Fig. 1.

Instantaneous stream functions for the traveling-wave
state are shown in Fig. 2 for ¢=1.39. The central roll
grows smaller and is annihilated, while new rolls are con-
tinually created at the sidewall, leading, heuristically, to
alternation between four and five rolls. Note that the
transition to periodic behavior is a symmetry-restoring
bifurcation, as the states in the second half of the limit

FIG. 3. Numerically computed phase portraits at (a)
€=1.38 [corresponding to Fig. 1(f)] and at (b) e=1.39
[traveling-wave state of Fig. 1(g) and Fig. 2]. The coordinates
are the projections onto the two most unstable eigenvectors of
the conductive state (at €=1.40). Trajectories emanating
from four different initial conditions are shown in each case.
Points are equally spaced in time. All trajectories in (a) ter-
minate at one of two steady states. Numbers in (b) refer to
Fig. 2.

cycle are related by z reflection to those of the first half.

The period of the oscillations diverges at onset: The
periods at €=1.3846, 1.39, and 2.00 are 492, 140, and
25, respectively. In addition, the traveling waves are
born with finite amplitude, indicating that they arise
from a global (heteroclinic) bifurcation, rather than a
Hopf bifurcation. The scenario leading up to the forma-
tion of the traveling-wave state is as follows. After the
first supercritical bifurcation [Fig. 1(d)], the conductive
branch undergoes a second supercritical bifurcation to a
pair of unstable five-roll states [Fig. 1(e)]. These new
unstable states inherit from the conductive state trajec-
tories that terminate on the stable five-roll states.

The onset of periodic behavior is marked by the col-
lision of the unstable and stable states in a pair of
saddle-node bifurcations [Fig. 1(f)]; the connections be-
tween these steady states form the heteroclinic orbit.
We have verified the existence of the saddle-node bifur-
cation by determining that the least stable eigenvalue
along the stable five-roll branch goes to zero as
(ex —€)'2. We have confirmed its role in the formation
of the traveling-wave state by numerically generating
phase portraits before [Fig. 3(a)] and after [Fig. 3(b)]
the saddle-node bifurcation [compare with Figs. 1(f) and
1(g)]. The system evolves very slowly as it passes
“ghosts” of the five-roll states labeled 5 and 5'.

We now turn to the case of insulating sidewalls, again
summarizing our findings in a schematic bifurcation dia-
gram (Fig. 4). Traveling waves are not observed. Upon
an increase of ¢, the primary five-roll branch again loses
stability via a saddle-node bifurcation, at a value
éx =1.4115 quite close to the transition point ex =1.3844
for conducting sidewalls. However, this time the transi-
tion is to another steady state, one having four rolls [Fig.
4(a)]l. The transition is strongly hysteretic: The four-
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FIG. 4. Schematic bifurcation diagram for the case of insu-
lating sidewalls. Conventions are the same as in Fig. 1. The
diagram differs from Fig. 1 by the absence of the traveling-
wave state and by the presence of additional steady four-roll
states (a).

roll branch can be followed by decreasing ¢ until it
disappears via a saddle-node bifurcation (of Eckhaus'®
type) at e=0.1, inducing a transition back to the pri-
mary five-roll branch. (We have also followed this four-
roll branch to values of € as high as 6.0.) The phase por-
traits [Figs. 4(b)-4(e)] illustrate the emergence of the
four-roll states, which intercept the trajectories in such a
way as to prevent the formation of the limit cycle. Note
that the “ghosts™ of these four-roll states influence the
dynamics even when the sidewalls are conducting, caus-
ing the slow regions 4 and 4’ in the limit cycle of Fig.
3(b).

Axisymmetric traveling waves such as we described
above have never been observed experimentally. To un-
derstand this, we have investigated the hybrid boundary
condition'' uh+9,h=0, which for u=(zx./x)
xtanh(xt, ) approximates sidewalls with a finite thermal
diffusivity x, and thickness f,,. Our simulations show
that, for Np; near 10 and T near 5, traveling waves
should occur in an experimental apparatus only when
1 >33, Thus it is because experiments have heretofore
been conducted with pu~1 that these waves have
remained unobserved.

Our results are in accord with a prediction'! that the
band of roll sizes allowed in steady convection is nar-
rower for conducting than for insulating sidewalls. This
prediction is supported by a numerical simulation of the
Boussinesq equations in a rectangular container. 2

We have also examined the Prandtl-number depend-
ence (see Fig. 5) of the critical value ex marking the ter-
mination of the five-roll branch. (These points provide
experimental predictions only for Np; 2 5, since we have
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FIG. 5. The value e« of the saddle-node bifurcation ter-
minating the five-roll branch plotted as a function of Prandtl
number, denoted in the figure by Pr. The circles and crosses
refer to conducting and insulating boundaries, respectively.
The solid curve is the solution to the equation A(ex,Np;)
=const, where A(e+,Np;) is given by the wavelength selection
criterion of Manneville and Piquemal (Ref. 13), and the con-
stant is chosen to match the curve to our data at Np;=1000.
Both e+ and ex attain their minimum at Np,=1.7 and climb
steeply at low Np,. For water (Npr=6), e&x =1.24.

determined that axisymmetric flows are unstable at
lower Prandtl numbers.) For all values of Np;, as € is in-
creased to ex, we have found that the four noncentral
rolls expand at the expense of the central roll, as shown
in Figs. 1(a) and 1(b), and that the five-roll states corre-
sponding to points in Fig. 5 have a small central roll of
approximately the same size. This suggests a simple
model for the transition: There exists some size &, in-
dependent of Np; and u, below which the central roll
cannot survive, but instead vanishes abruptly (the same
phenomenon causes a saddle-node bifurcation in spheri-
cal Couette flow!4).

A second ingredient of our model comes from a theory
of axisymmetric wavelength selection®!'>'> which pre-
dicts the size A of rolls as a function of € and Np,. Let us
assume that the sizes of the four outermost rolls are
determined by the wavelength selection mechanism.
With the hypothesis of a minimum central-roll size &, we
predict that the five-roll branch terminates when
4\ (ex,Np)+8=5. This yields an implicit equation for
ex'(Np;), the transition point predicted by our model.
We plot ex'(IVp;) calculated from the analytic expression
of Manneville and Piquemal'? as the solid curve in Fig.
5. Although ' is derived from an asymptotic expansion
in € and in 1/r, it reproduces the most visible features of
our points extremely well.

While we have used wavelength selection to gain phys-
ical insight, this approach cannot predict the range of
phenomena we observe: The role of the wavelength
selection mechanisms is complementary to that of full
numerical simulation. Midway between the two lie
theories of phases dynamics,'® which seek a reduced set
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of dynamical equations. Some authors,>* relating time
dependence to pattern frustration, have indeed used
phase dynamics to predict, qualitatively, slow traveling
waves caused by incompatible wavelength selection
mechanisms operating at different spatial locations.

In conclusion, we have shown that by employing
sidewalls of sufficiently high thermal conductivity, it is
possible to obtain axisymmetric traveling waves in a cy-
lindrical geometry. We have analyzed the global bifur-
cation giving rise to these waves and the Prandtl-number
dependence of this bifurcation. We hope that our quan-
titative analysis will stimulate experimental investigation
of these waves.
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