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Large-excitability asymptotics for scroll waves in three-dimensional excitable media
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Three-dimensional scroll waves are considered in a reaction-diffusion model of excitable media in the large
excitability limit. Coordinates based on the scroll filament are defined and shown to provide a natural extension
of the coordinates used for two-dimensional spiral waves. The leading-order free-boundary equations for
interface motion in three dimensions are explicitly derived in these coordinates. Three specific examples are
considered: straight twisted scroll waves, axisymmetric scroll waves, and helical scroll waves. The equations
for the fields at leading and first order in the core region are given.
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I. INTRODUCTION

Wave propagation in excitable media occur in a wide
riety of chemical and biological contexts@1–4#, the most
important example being the electrical wave propagation
heart tissue@5–8#. In three-dimensional media, one typical
finds sustained waves in the form of scrolls that rotate ab
one-dimensional filaments~Fig. 1!. These filaments can
themselves move through the medium, generally on a t
scale much slower than the time scale of wave rotation ab
the filament, e.g., Refs.@9–13#. Almost all current theoretica
understanding of scroll wave dynamics in excitable media
based on laws that have been derived for the motion of
ments@9,14–18#. However, as we explain below, this theo
is incomplete and does not include a description of sc
waves themselves. In this paper we derive gene
asymptotic equations for three-dimensional~3D! scroll
waves directly from reaction-diffusion partial-differenti
equations and consider these equations in specific case
which the equations simplify.

We consider a standard two-component reaction-diffus
model of excitable media:

«2]u/]t5«2¹2u1 f ~u,v !, ~1a!

]v/]t5«g~u,v !. ~1b!

The equations are here written in the space and time sc
proposed by Fife@19#. The small parameter« is the charac-
teristic time scale separation between the fastu species and
the slowv species. This scale separation is exploited in
analysis. For concreteness we consider specific reac
terms@20–22#:

f ~u,v !5u~12u!S u2
v1b

a D , ~2a!

g~u,v !5u2v, ~2b!
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wherea andb are parameters. Our analysis applies equally
all similar two-component reaction-diffusion equations.

Previous analytical work on the motion of scroll filamen
has been of two types. The first one is strictly phenome
logical @23–28#, using geometrical considerations only an
not relying directly on the underlying reaction-diffusio
equations. The second approach is based on reac
diffusion equations and uses singular perturbation the
@14,16,18# in the small filament curvature limit. ~The fila-
ment torsion is also assumed to be small@except in Ref.
@29##, but for simplicity we shall refer only to filament cur
vature.! The parameter« controlling excitability is fixed and
then the small~order-d) curvature limit is considered. Sig
nificantly, it must be assumed that the solution to t
reaction-diffusion equations for a straight filament~equiva-
lent to the two-dimensional spiral solution! is known for any
required«. This is the leading-order (d50) solution. Equa-
tions for filament motion on a small~order-d) velocity scale
are then obtained by invoking a compatibility condition f
the equations at first order ind. In this work it has not been

FIG. 1. Sketch of a rotating scroll wave showing the differe
asymptotic regions and the coordinates used. Shown are the
regions @excited (1) and quiescent (2)#, the interface regions
@wave front (1) and wave back (2)#, and the core region. The
filamentX(s,t) is parametrized bys and timet. Local coordinates
to the filament are (r ,w,s), with (r ,w) in the plane normal to
X(s,t) and w is measured from the normal vectorn. The wave
rotates about the filament. The interface normalsN6 are also dis-
played.
©2002 The American Physical Society14-1
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possible to find the left null eigenvectors of the relevant l
ear operator and to show that the orthogonal product of th
vectors on the nonhomogeneous terms yields nonvanis
equations of motion. Therefore the order-d velocity of the
filament has not been substantiated, and more importa
the coefficients of the equations of motion are not given
functions of the parameters of the original reaction-diffus
system, e.g., Eqs.~1!. The analysis is nevertheless very im
portant because it gives the form of the equations of mo
at lowest order.

Since the early pioneering work on filament motion
excitable media and on 2D spiral waves@30–32#, the station-
ary ~rigidly rotating! 2D spiral has been fully understoo
using singular perturbation methods, both at leading orde
« @33–39# and more recently at first order in« @40,41#.
Scroll waves with straight filaments can be understood in
same way@37,40,41#. Progress has also been made in und
standing spiral drift, in the small-« limit, in bounded do-
mains @42#, and with applied fields@43#. Using a slightly
different approach@44,45#, the «→0 limit is considered
while the medium is kept in the weakly excitable regim
@46#.

The purpose of this paper is to build on the understand
gained from the two-dimensional case and to present a
eral geometrical description for three-dimensional sc
waves in the small-« limit. Specifically we will define a use-
ful system of three-dimensional coordinates and derive fr
boundary equations for wave motion in these coordinate
curvature and twist~as defined later in Sec. IV C! are taken
to zero, the known equations for stationary spirals are a
matically recovered. In this approach, it is not necessar
the outset to assume small filament curvature, and the e
tions are equally valid for large and small curvatures.

II. ASYMPTOTIC EQUATIONS

The first step in the analysis is to specify the geometry
the problem and to identify the different asymptotic regio
to be considered. The coordinate system we use is base
the scroll filament~Fig. 1!. Let the filament be a curveC
given parametrically by coordinates and time t: X
5X(s,t). Local to the filament we shall use the coordina
frame (er ,ew ,t), where (er ,ew) are unit vectors associate
with polar coordinates (r ,w) in the plane normal to the fila
ment withw measured from the normaln to C, and t is the
unit tangent vector. Then pointsx local to C are given in
(r ,w,s) coordinates by

x~r ,w,s,t !5X~s,t !1rer~w,s,t !.

We use polar coordinates rather than Cartesian coordin
~built on the normal and binormal frame! as used by Keene
@14# because the 2D spiral equations written in polar coo
nates are then easily recovered with our treatment. The
dium divides into three regions~Fig. 1!: outer, interface, and
core. The outer region comprises most of the medium. I
itself divided into both anexcitedportion, for whichu.1,
and aquiescentportion, for whichu.0. The interface re-
gion is a thin~quasi-two-dimensional! region separating the
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excited and quiescent portions of the outer region. In
interface region,u makes a rapid change betweenu50 and
u51. On the outer scale, this interface region is a surfaceS,
the scroll surface. For concreteness, we defineS to be the
surfaceu51/2. It consists of two parts: awave frontand a
wave backdescribed, respectively, by two functionsF6;
such thatw5F6(r ,s,t). Finally, when it exists, the core
region is a small quasi-one-dimensional region contain
the filament. Tyson and Strogatz@47# reviewed the geometri-
cal description of the filament including twist. Here, the d
ferential geometry of the scroll wave includes additiona
the interfacesF6.

In the small-« limit, both the filament positionX and the
interface depend on«, and have expansions of the form

X~s,t,«!5X(0)~s,t !1«X(1)~s,t !1•••,

F~r ,s,t,«!5F (0)~r ,s,t !1«F (1)~r ,s,t !1•••,

whereF means eitherF1 or F2. We refer to these order
as leading order, first order, etc.

The next step in the analysis is to rewrite Eqs.~1! in each
of the three regions—outer, interface, and core—using
propriate coordinates. From these equations one can obt
hierarchy of asymptotic equations in each region.

A. Outer region

In the outer region, we write Eqs.~1! in (r ,w,s) coordi-
nates:

«2]u/]t5«2¹2u1 f ~u,v !1«2vf•“u, ~3a!

]v/]t5«g~u,v !1vf•“v, ~3b!

wherevf5Ẋ1r ėr is the velocity of the moving frame due t
filament motion.

The gradient operator in these coordinates is

“5er

]

]r
1ew

1

r

]

]w
1tH

and the Laplacian is

¹25
1

rh

]

]r S rh
]

]r D1
1

r 2h

]

]w S h
]

]w D1HH,

where

s[u]X/]su,

h[s~12rk cosw!,

H[
1

h S ]

]s
2st

]

]w D .

Here,k is the curvature andt is the torsion of the filament
Details can be found in the Appendix.

We write the expansions foru andv in the outer region in
the form
4-2
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u~r ,w,s,t,«!5u(0)~r ,w,s,t !1«u(1)~r ,w,s,t !1•••,

v~r ,w,s,t,«!5v (0)~r ,w,s,t !1«v (1)~r ,w,s,t !1•••.

Substitution of these expansions into Eqs.~3! gives a hierar-
chy of asymptotic equations for the ordersu(k) and v (k), k
50,1, . . . , of theu andv fields in the outer region.

B. Interface region

For the interface region we shall use the local coordina
( r̂ ,ŝ,j) to describe the position of a pointx near interfaceF.
These coordinates are defined by projecting the pointx to the
interface along the interface normalN ~see Fig. 2!. Thenj is
the distance to the interface;r̂ and ŝ are the values ofr and
s of the projection onto the interface. Specifically, pointsx
local to the interface are given in (r̂ ,ŝ,j) coordinates by

x~ r̂ ,ŝ,j,t !5X~ ŝ,t !1 r̂er
s~ r̂ ,ŝ,t !1jN~ r̂ ,ŝ,t !,

with er
s( r̂ ,ŝ,t)5er@F( r̂ ,ŝ,t),ŝ,t#. For pointsx on the inter-

face,j50 and (r̂ ,ŝ)5(r ,s).
In this interface regions, the stretched coordinatej̄5j/«

is then introduced, and in (r̂ ,ŝ,j̄) coordinates, Eqs.~1! be-
come

«2]u/]t5¹̄2u1 f ~u,v !1«v•“̄u, ~4a!

]v/]t5«g~u,v !1«21v•“̄v, ~4b!

where

v5vf
s1vi , ~5!

vf
s[Ẋ1 r̂ ėr

s ~6!

vi[ r̂ Ḟew
s 1«j̄Ṅ ~7!

¹̄5«“5«“p1N
]

]j̄
, ~8!

FIG. 2. Sketch showing definition of interface coordinatesr̂ and

j ( ŝ is not illustrated!.
03621
s

¹̄25«2¹25«2¹p
2 1

]2

]j̄2
1

1

2m

]m

]j̄

]

]j̄
, ~9!

with ew
s 5ew@F( r̂ ,ŝ,t),ŝ,t# and ėr

s5ėr@F( r̂ ,ŝ,t),ŝ,t#. In Eq.
~5!, vi is the contribution to the velocity of the moving fram
coming from interface motion. The operators“p and¹p

2 are
the gradient and Laplacian orthogonal to theN direction and
m is the determinant of the metric tensor associated to
( r̂ ,ŝ,j̄) coordinates. The exact form of“p and ¹p

2 are not
required for the asymptotic orders considered in this pa
However, the lowest order representation of the last term
Eq. ~9! is needed:

1

2m

]m

]j̄

]

]j̄
52«2H

]

]j̄
1O~e2!, ~10!

whereH is the mean curvature of the interface. Details of t
interface coordinate system are given in the Appendix.

We write the expansions foru and v in the interface re-
gion as

u~ r̂ ,ŝ,j̄,t,«!5ui (0)~ r̂ ,ŝ,j̄,t !1«ui (1)~ r̂ ,ŝ,j̄,t !1•••,

v~ r̂ ,ŝ,j̄,t,«!5v i (0)~ r̂ ,ŝ,j̄,t !1«v i (1)~ r̂ ,ŝ,j̄,t !1•••,

where i denotes interface. Substitution of these expansi
into Eqs.~4! gives a cascade of asymptotic equations for
ordersui (k) andv i (k), k50,1, . . . , of theu andv fields in the
interface region.

There are significant advantages to using the stretc
normal coordinate to the interfacej̄ rather than the stretche
relative angle to the interfacew̄85(w2F)/« used by Fife
@30#. These advantages outweigh the fact that the chang
coordinates in the Fife approach, between (r ,w̄8,s) and the
outer coordinates (r ,w,s), is simple. The problem with the
Fife coordinates is that when the interface is expanded in«,
F(r ,s,t,«)5F (0)(r ,s,t)1«F (1)(r ,s,t)1•••, ~something
not done by Fife!, the solution of thekth-order equation foru
across the interface is complicated in (r ,w̄8,s) coordinates
and bothF (0) and F (1) enter in the first-order equation o
ui (1), from which the equation forF (0) must be extracted.

C. Core region

In the core region, the stretched radial coordinater̄ 5r /«
is introduced. In (r̄ ,w,s) coordinates, Eqs.~1! become

«2]u/]t5¹̄2u1 f ~u,v !1«vf•“̄u, ~11a!

]v/]t5«g~u,v !1«21vf•“̄v, ~11b!

wherevf5Ẋ1« r̄ ėr and
4-3
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“̄5«“5er

]

] r̄
1ew

]

r̄ ]w
1t«H

¹̄25«2¹25
1

r̄ h

]

] r̄
S r̄ h

]

] r̄
D 1

1

r̄ 2h

]

]w S h
]

]w D1«2HH.

In ( r̄ ,w,s) coordinatesh5s(12« r̄k cosw). We write the
expansions ofu andv in this core region as

u~ r̄ ,w,s,t,«!5uc(0)~ r̄ ,w,s,t !1«uc(1)~ r̄ ,w,s,t !1•••,

v~ r̄ ,w,s,t,«!5vc(0)~ r̄ ,w,s,t !1«vc(1)~ r̄ ,w,s,t !1•••,

wherec denotes core. Substitution of these expansions
Eqs. ~11! gives a hierarchy of asymptotic equations for t
ordersuc(k) and vc(k), k50,1, . . . , of theu and v fields in
the core region.

III. FREE-BOUNDARY EQUATIONS

The next step in the analysis is to solve the hierarchy
asymptotic equations in each of the asymptotic regions, o
by order, and to apply appropriate matching between th
regions. Sections III B and III C follow closely previou
work @30–39#.

A. Leading-order core

We begin with the core region. At lowest order~order
«21), Eq. ~11b! for the v field in the core gives

Ẋ(0)
•¹̄c(0)vc(0)50, ~12!

whereẊ(0) is independent ofr̄ andw and

¹̄c(0)[er

]

] r̄
1ew

]

r̄ ]w
. ~13!

The simplest way to satisfy Eq.~12! is to assume no leading
order filament motion and setẊ(0)50. Thus the filament
velocity goes to zero in the limit«→0. If, on the other hand
solutions to the reaction-diffusion equations exist w
leading-order filament motion,Ẋ(0)Þ0, then¹̄c(0)vc(0) is a
constant. Matching the core solution to the outer region~dis-
cussed in the following section! would, in fact, requirevc(0)

to be constant~and equal to the stall concentration as defin
later in Sec. III B!. It is known thatv is not constant in the
core of stationary~rigidly rotating! spirals in two dimensions
@36,39#. Thus, while we cannot definitely rule out scroll s
lutions with leading-order filament motion, any such soluti
will be very different from the known two-dimensional spir
solutions that have cores with nonuniform fieldsvc(0). Direct
numerical evidence thatẊ(0)50 for scroll rings is given in
Ref. @41#.
03621
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B. Leading-order outer and interface regions

At lowest order~order«0), Eqs.~3! give

05 f ~u(0),v (0)!, ~14!

]v (0)/]t50. ~15!

Thenu(0) is one of the two~stable! roots of f: u(0)5u(0)6,
where for Eq.~2a!, u(0)151 andu(0)250. The fieldv (0) is
time independent and is found by matching to the interfa

At lowest order~order«0 and order«21), Eqs.~4! in the
interface region give

05
]2ui (0)6

]j̄2
1 f ~ui (0)6,v i (0)6!, ~16!

05]v i (0)6/]j̄. ~17!

Here, the superscripts6 stand for interfacesF6. Matching
ui (0)6 to the solution in the outer region gives the bounda
conditions on Eq.~16!, ui (0)6( j̄→6`)5u6(0)(j→06).

Equation~17! requires thatv i (0)6 not vary across the in-
terface. Thusv i (0)6 appearing in Eq.~16! is a constant.
However, Eq.~16! will have a solution with the required
boundary conditions only for one unique value of this co
stant. This value is known as the stall concentration,v i (0)6

5vs. For Eqs.~2!, vs52b1a/2. We assume that this con
stant is not of the order«. Then the solution to Eq.~16! is
ui (0)65@16tanhj̄/(2A2)#/2, when the scroll interface is th
surfaceu51/2 and the sense ofj̄ is given by the interface
normalsN6 as in Figs. 1 and 2.

Finally, the outerv (0) solution is obtained from matching
to the interface solutionv i (0)65vs, v (0)(j→06)5v i (0)6( j̄
→6`). Since the interface passes through all points in
outer region at some time and sincev (0) is independent of
time @Eq. ~15!#, necessarilyv (0)(r ,w,s)5vs. This completes
the specification of the leading-order fieldsu and v every-
where outside the core.

C. First-order outer and interface regions

At «1 order, Eqs.~3! in the outer region give

05u(1)f u~u(0)6,vs!1v (1)f v~u(0)6,vs!, ~18!

]v (1)/]t5g6~vs!, ~19!

where g6(vs)[g(u(0)6,vs) and subscripts denote deriva
tives. For the kinetics in Eqs.~2!, f v(u(0)6,vs)50, and
hence Eq.~18! givesu(1)50. @For kinetics~2!, in the outer
region u(k)50 for all k.0.# For these kineticsg6(vs)
5u(0)62vs.

Equations~4! in the interface at next order~order«1 and
order«0) give
4-4
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05
]2ui (1)6

]j̄2
1ui (1)6 f u~ui (0)6,vs!1v i (1)6 f v~ui (0)6,vs!

1c6
]ui (0)6

]j̄
, ~20!

05]v i (1)6/]j̄, ~21!

where

c6[v(0)6
•N622H6, ~22!

whereN6 is the normal to, andH6 is the mean curvature of
the leading-order interfacesF (0)6. Here,v(0)6 is the veloc-
ity in Eq. ~5! for interfaces at leading order~from Sec. III A,
the leading-order filament motion is zero!. At leading order
in our coordinatesv(0)65r Ḟ (0)6ew

s6 , and using the expres
sion of the surface normal from the Appendix,

c652r Ḟ (0)6h6/Am622H6, ~23!

wherem6 is the determinant of the metric tensor, andh6 is
the value ofh, evaluated at the interfacesF (0)6. Matching

v i (1)6 to the outer solution requiresv i (1)6( j̄→6`)
5v (1)(j→06). From Eq.~21! v i (1)6 does not vary acros
the interface; v i (1)6( r̂ ,ŝ,j̄,t)5v i (1)6( r̂ ,ŝ,t). Thus v i (1)6

5v (1)6, wherev (1)6 is the outer concentrationv (1) at the
interfacesF (0)6.

The general solution of Eq.~20! is obtained by a double
variation of constants. This solution diverges forj̄→6`, in
general. On both interfacesF (0)6, the required matching to
the finite outer solutionui (1)6( j̄→6`)5u(1)(j→06) dic-
tates a specific value ofc6. For Eqs.~2!, the solution is
simply ui (1)650 and the value ofc6 is

c656
A2

a
v i (1)6. ~24!

~The6 signs arise here because of the sense of the inter
normals we have defined. see Fig. 1.!

This leaves Eq.~19! for v (1) in the outer region togethe
with the required boundary condition from matching th
v (1)5v i (1)6 at the ~moving! interfaces. Thus Eq.~19! and
Eq. ~24!, together withc6 obtained from Eq.~22!, give fi-
nally the free-boundary equations

]v (1)/]t5u62vs, ~25!

2
r Ḟ (0)6h6

Am6
52H66

A2

a
v (1)6. ~26!

Noting that in our coordinates the interface normal veloc
is

v(0)6
•N652

r Ḟ (0)6h6

Am6
,

03621
ce
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Eq. ~26! equates the normal velocity of the interface to twi
the mean curvatureH of the interface plus the speed of
plane interface. This result for leading-order interface mot
is widely known, e.g. Refs.@23–28,33#, although in the con-
text of excitable media it has been considered mainly in tw
space dimensions. What is important here is that we exp
the free-boundary equations in a form appropriate for sc
waves in three-dimensional media using a system of coo
nates based on the scroll filament. Explicit expressions foh,
m, and H in these coordinates are given in the followin
section.

IV. EXAMPLES

In this section, we will apply the leading-order free
boundary equations~25! and~26! to important specific case
for which the equations simplify. We shall restrict our atte
tion to cases in which scroll solutions do not depend on
coordinates parametrizing the filament. This class of sol
tions includes twisted scrolls with straight filaments, axisy
metric scroll rings, and certain helical scrolls.

Frequently in this section we shall drop the superscripts
being understood that all relevant quantities are evaluate
the leading-order interfacesF (0)6. When necessary, we sha
distinguish the front and back interfaces; leading order
assumed throughout.

The general expressions forh, m, andH, which appear in
Eq. ~26! are ~see the Appendix!

h5s~12rk cosF!, ~27!

m5~11C2!h21r 2x2, ~28!

H5
1

2m3/2
@E~11C2!22FrxC1G~r 2x21h2!#,

~29!

where

E[rx2@2hC1rsk sinF#1h2sk@C cosF1sinF#

1rx
]h

]s
2rh

]x

]s
, ~30a!

F[2x@hC21s2rskC sinF#2h
]C

]s
, ~30b!

G[2h~C31C1rC r !/r . ~30c!

We have used the definitions

C[r ]F/]r , ~31!

x[st1]F/]s. ~32!

A. Filament geometry and scroll twist

The geometry of filaments and the twist of scroll wav
about these filaments is discussed in detail in several pu
cations, e.g., Refs.@15,47,17,48#. The twist tw of a scroll
4-5
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filament is the rate of angular rotation of the interface ab
the filament per unit arclength along the filament@15,47#.
More specifically it is given by the value of (1/s)]N/]s•(t
3N) on the filament. In our coordinates

tw5t1
1

s

]F

]s
~r→0!,

i.e., tw5x(r→0)/s.
The twist is composed of two components: one com

nent arising from the torsiont of the filament and the asso
ciated rotation of the Frenet frame with displacement alo
the filament; the other component arising from the arclen
derivative of phaseF along the filament. Recall thatF is
measured with respect to the Frenet frame. In general,
instantaneous twist associated with the two interfacesF1

and F2 need not be the same,]F1/]sÞ]F2/]s, in gen-
eral. This possibility does not appear in past treatments
twisted scroll waves.

We are principally interested in solutions that do not d
pend on the coordinates. For these the curvature and torsio
of the filament must be constant. If both are nonzero
filament is helical. For concreteness, consider the filamen
be parametrized as

X~s!5~R coss,R sins,gs!.

The curvature and torsion are

k5
R

R21g2
, t5

g

R21g2
. ~33!

If g→0 with finite R, one obtains a planar ring. In the lim
R→0 one obtains a straight filament with twist. While th
Frenet coordinates are undefined for a straight filament,
possible to define the coordinate frame atR50 by continu-
ity.

We shall focus ons-independent situations for whic
]F6/]s50. For such scroll waves the interfacesF6 are
functions ofr and t only: F6(r ,t). In this case the twist is
the torsion, which in turn is a constant, and the two interfa
necessarily have the same twist. Finally, for this class
solutions, thes derivatives, Eqs.~30a! and ~30b!, drop out.

B. Numerical solutions

For the s-independent case, we can write the fre
boundary equations~25! and ~26! in terms of one two-
dimensional fieldv(r ,w) and two one-dimensional curve
F6(r ), each depending on time according to

]v
]t

5u62vs, ~34!

Ḟ657
A2

a

Am6

rh6
v62

2Am6

rh6
H6, ~35!
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where v represents the first-order slow fieldv (1) and v6

5v@r ,w5F6(r )# is its value at the6 interface. The quan-
tities h, m, andH are given by Eqs.~27!–~28!.

Equations~34! and~35! are easily simulated numerically
The v field is discretized on a polar grid of radiusRs with
Nr3Nw grid points. The center point atr 50 is not included,
so that the domain begins at the first radial grid pointDr
5Rs /Nr from the center. In our simulations, we typically w
useDr 50.05 and 128 points in thew direction. The inter-
faces F6 are represented using the sameNr radial grid
points. Ther derivatives in the interface equation are com
puted by finite differences with one-sided formulas used
the innermost and outermost grid points. The values ofv6

are found by interpolation of thev field.
Starting from an initialv field and valid~nonintersecting!

interface curves, Eqs.~34! and ~35! are simulated using the
Euler time stepping until an asymptotic state, steady or ti
periodic, is reached.

C. Straight filament with constant twist

Consider first the simple case of a straight yet possi
twisted scroll. This is obtained as the limitR→0 in Eqs.
~33!. With our assumption ofs independence, the twisttw is
equal to the limiting value of the torsion.

With k50 the quantities occurring in the free-bounda
equations simplify significantly to

h51, ~36!

m5q1C2, ~37!

H52
1

2~q1C2!3/2FC~11C2!

r
1qC r G , ~38!

where q511tw
2 r 2. For zero twist,q51 and the problem

reduces to the case of 2D spiral waves.
Figure 3 shows solutions to the free-boundary equati

~34! and ~35! for two values of twist. The solutions show
have reached a state of steady rotation.

One can derive a single universal equation for the sh
and frequency of the steady~rigidly rotating! twisted scroll
in Fig. 3. This has been done by Bernoff@37# in the general
case and by Karma@35# for the zero-twist~i.e., 2D! case.
One seeks a steady solution with~leading-order! frequency
v5Ḟ, for which the angle between the wave frontF1 and
wave back F2 is independent ofr. In this case C
[rdF/dr is the same for both interfaces. The angular se
ration between the two interfaces is found by integrating E
~25! in the quiescent (2) and excited (1) regions to give
the change inv (1) between the interfaces,Dv (1)5v (1)1

2v (1)2. This is independent ofr. Matching the change ove
the quiescent and excited regions, one finds that the ang
separation between the interfaces is

DF[F12F252pvs. ~39!

The separation is independent of twist.
4-6
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The valuesv (1)6 can be eliminated from interface equ
tion ~26! to obtain a single universal equation describing
shape of the interface,

q
dC

dr̃
1

C~11C2!

r̃
5 r̃ ~q1C2!2B~q1C2!3/2, ~40!

where lengths have been rescaled using the frequenr̃

[Avr , t̃w[tw /Av. The value ofq is unchanged,q51
1tw

2 r 2511 t̃w
2 r̃ 2. The eigenvalueB is given by

B5~m/v!3/2, m3/25A2pvs~12vs!/a. ~41!

Equation ~40! gives the leading-order shapeC and fre-
quency, viaB, of a twisted scroll wave with a straight fila
ment. For zero twist (q51), the equation describes th
leading-order shape of 2D spiral waves. Appropriate bou
ary conditions for solving Eq.~40! are obtained from the
large-r asymptotics of the equation. Figure 3 shows a co
parison of solutions to the universal equation and tim
asymptotic solutions obtained by direct simulation of t
free-boundary equations. Not surprisingly, the two solutio
are indistinguishable. The rotation frequencies are also
same. Elsewhere@40,41#, some solutions to Eq.~40! are
compared with leading-order results obtained directly
solving Eqs.~1!.

D. Axisymmetric scroll ring

The next important case is an axisymmetric scroll ring
radiusR. This corresponds tog50 in Eqs.~33!. The torsion
and twist are zero andk51/R. We then obtain

h512rk cosF, ~42!

m5~11C2!h2, ~43!

FIG. 3. Solutions of the free-boundary equations for a strai
filament. ~a! Untwisted scroll, i.e., a 2D spiral wave and~b! a
twisted scroll with twisttw50.35. Light ~dark! gray areas denote
the quiescent~excited! regions from the numerical solution of free
boundary equations~34! and~35!. These time-asymptotic solution
rotate counterclockwise with constant frequency. The white curv
the interface obtained from universal equation~40!. Parameters are
a51.0, b50.1, and domain radiusRs510.
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H52
1

2~11C2!3/2FC~11C2!

r
1C r G

1
k

2A11C2

C cosF1sinF

12rk cosF
. ~44!

The polar coordinates in this description are only valid
rk5r /R,1. On substituting into the free-boundary equ
tions, Eq.~35! for Ḟ becomes

Ḟ65~2D terms!1
k

r

C6cosF61sinF6

12rk cosF6
, ~45!

where the 2D terms are those which appear for spiral wa
or equivalently, a straight filament with zero twist.

Figure 4 shows the asymptotic, time-periodic evolution
an axisymmetric scroll ring obtained by numerically simula
ing free-boundary equations~34! and ~35!, starting from a
2D spiral-wave solution. The filament ring has radiusR56
so that the curvature isk51/6. The simulation domain o
radiusRs55 is normal to the ring. The symmetry axis of th
scroll ring is to the right of the simulation domain as ind
cated. Shown for comparison is the rigidly rotating 2D (k
50) solution to the free-boundary equations. It is al
shown at four equally spaced time intervals over its rotat
period. ~The period of thek50 is almost identical to the
period of the scroll ring solution; see below.!

t

is

FIG. 4. Nonstationary rotation of an axisymmetric scroll rin
from numerical solution of free-boundary equations~34! and ~35!.
The plots show the solution at four equally spaced time interv
over the rotation period. The quiescent~light gray! and excited
~dark gray! regions are separated by the numerically computed
terfaces~thin black curves!. The simulation domain of radiusRs

55 is normal to the filament ring of radiusR56. The symmetry
axis of the scroll ring is to the right of the simulation domain
indicated. The white curve is the interface for a 2D spiral wa
Parameters area51.0 andb50.1.
4-7
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DANIEL MARGERIT AND DWIGHT BARKLEY PHYSICAL REVIEW E 66, 036214 ~2002!
With curvature, the interfaces do not have fixed sha
Instead, due to the explicit dependence of interface posi
F in the mean curvature, the interfaces move at speeds
depend on the positionF about the curved filament. Henc
the instantaneous angular velocities of the interfaces
their instantaneous angular separation vary periodically
time. We show this quantitatively in Fig. 5 by plotting the
quantities extracted from the interfaces at half the dom
radius, Rs/2. In this case it is not possible to reduce t
free-boundary equations to a single time-independent uni
sal equation, as has been done in the absence of curva
Only for k50, the factors in cosF and sinF drop out of the
free-boundary equations.

The filament of axisymmetric scroll solutions of the fu
reaction-diffusion equations~1! is known to be time depen
dent @10–12,9,15#. In general, the radius of axisymmetr
scroll rings shrinks with time and the ring translates in
direction perpendicular to the plane of the ring. However,
stress that this motion is absent at leading order in« ~see
Sec. III A!. Hence the solutions in Fig. 4, in which there
no filament motion, are the correct dynamics of the reacti
diffusion equations at leading order in«. The filament mo-
tion seen in laboratory and numerical experiments come
higher order in«.

The terms due to curvature in the free-boundary equat
are of sizeO(k). Hence the fluctuations in the interfac
shape and instantaneous frequency seen in Figs. 4 and
of this order. This is shown quantitatively in Figs. 5 and
where we show results from a simulation withk51/6 and
k51/12. The magnitude of fluctuations fork51/12 is al-
most exactly half of that found fork51/6.

FIG. 5. Time series showing the instantaneous angular veloc
of the interfaces,v6 ~top!, and instantaneous separation of the
terfaces,DF ~bottom!, for the axisymmetric scroll solution show
in Fig. 4. The horizontal bar indicates one period of thek50 solu-
tion. Quantities are from the interfaces at half domain radiur
5Rs/252.5.
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What is of particular interest is the effect of curvature
the~mean! frequency and on the average interface shape.
this we consider the limit of small curvature and average
free-boundary equations over one period of the ze
curvature solution. It is most convenient to work in the r
tating reference frame for which thek50 solution is time
independent:

w̃5w2vt,

ṽ~r ,w̃ !5v~r ,w2vt !,

F̃6~r !5F6~r ,t !2vt.

In the rotating coordinates, the curvature term in Eq.~45! is,
at lowest order ink,

k

r
$C6~r !cos@F̃6~r !1vt#1sin@F̃6~r !1vt#%.

The average of this term over one period of the unpertur
problem is zero, i.e., there are no resonant terms at the l
ing order. Curvature does not explicitly enter the equation
the slow field. Thus, toO(k), the average equations for th
axisymmetric scroll ring are the same as the equations f
2D spiral wave. As a result, the rotation period of an
axisymmetric scroll ring can be expected to be quite close
that of the 2D spiral wave with the same kinetics paramet
This can be seen in Figs. 5 and 6 where the mean rota
period in both cases is very close to the period of the
spiral wave for the same conditions. Verification of th
O(k2) scaling is beyond the precision of the numeric
scheme we have used. The mean interface separation i
most exactly that for a 2D spiral wave.

es
FIG. 6. Same as Fig. 5 except that the scroll ring has radiuR

512, i.e., half the curvature. The vertical bars to the right show h
the peak-to-peak variation of theR56 case. The horizontal ba
indicates one period of thek50 solution.
4-8
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E. Symmetric helix

Our final example is a scroll with a helical filament. W
shall call ans-independent scroll wave with a helical fila
ment a symmetric helix, in analogy with the axisymmet
scroll ring. Figure 7 shows such a state obtained from so
tion of the full reaction-diffusion equations~1! and ~2!. The
twist of the scroll is equal to the torsion and so the scr
phase rotates exactly as does the Frenet coordinate fr
This helix arises from an instability of a straight, twiste
filament ~so-called sproing instability!. Such helices have
been studied numerically and analytically in the framewo
of filament dynamics@49,17,48#.

Figure 8 shows results from simulations of the fre
boundary equations~34! and~35! for such a helix. The twist
is tw50.35, the same value is shown for the twisted strai
filament in Fig. 3; the curvature isk51/6. The normal and
binormal directions are horizontal and vertical, respective
Simulations are started from a solution for a straight, twis
scroll and evolved until an asymptotic periodic solution
reached. As for the scroll ring, the interfaces are not of fix
shape during rotation.

For the helix, the expressions forh, m, andH appear in
the interface equation~35! and do not simplify significantly
from the general expressions~27! and ~28!, so we do not
give them here. However, for small curvature, the interfa
equation is of the form

Ḟ65~Straight terms!1k@A1~C6,C r
6 ,r ,tw ,v6!cosF6

1A2~C6,r ,tw!sinF6#1O~k2!,

where the straight terms are those appearing in the equa
for the straight filament with twisttw , and A1 and A2 are
functions of the arguments shown.

FIG. 7. Symmetric helix from numerical solution of Eqs.~1! and
~2!. The isosurfaces of theu field are shown corresponding to th
interfacesF1 andF2. The helical filament is shown in white. Th
parameters area51.0, b50.1, and«50.2
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The interface equation containsO(k) terms and so the
periodic variation in the interface speed and shape see
Fig. 8 are ofO(k), just as for the scroll ring previously
shown. TheO(k) terms have zero mean and so the avera
of the Ḟ equation is the same as the equation for a stra
filament with twist up toO(k2) terms. Thus the mean inter
face shape and frequency can be predicted from the solu
of universal equation~40! up to O(k2). We find that the
numerically computed rotation period of the free-bounda
solution shown in Fig. 8 is almost identical to the period
the straight twisted scroll shown in Fig. 3~b!.

V. CORE EQUATIONS

We return now to the equations in the core region. So
tions in this region are necessary to provide a comp
asymptotic solution to the reaction-diffusion equations e
erywhere in space. In particular, the solution in the core
gion is necessary to regularize the cusp that would otherw
exist in most cases as the wave frontF1 and wave backF2

come together in the vicinity of the filament. Unfortunate
the core equations cannot be reduced to one dimension
hence must be solved numerically with boundary conditio
determined from the outer solutions. Kessleret al. @36,39#
have done this in the 2D steady case. Fortunately, for ste
spiral waves in 2D and for the examples in the preced
section, core solutions do not dictate the leading-order
quency or interface shape. Hence, with regard to the imp

FIG. 8. Nonstationary rotation of a helical scroll wave fro
numerical solution of free-boundary equations~34! and ~35!. The
plots show the solution at four equally spaced time intervals o
the rotation period. The quiescent~light gray! and excited~dark
gray! regions are separated by the numerically computed inter
~thin black curve!. The simulation domain of radiusRs55 is nor-
mal to the filament for whichk51/6 and tw50.35. The white
curve is the interface for a straight scroll withtw50.35. Parameters
area51.0 andb50.1.
4-9
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DANIEL MARGERIT AND DWIGHT BARKLEY PHYSICAL REVIEW E 66, 036214 ~2002!
tant issues of selection of rotation frequency and sc
shape, explicit core solutions are not required. For compl
ness we shall give the core equations at leading and
order ~the lowest order for which filament curvature ente
the core equations!, but we shall not give solutions to thes
equations.

At order«0, Eqs.~11! for the fields in the core region ar

05¹̄2c(0)
uc(0)1 f ~uc(0),vc(0)!, ~46!

]vc(0)/]t5N(0)[Ẋ(1)
•“̄

c(0)vc(0), ~47!

where“̄c(0) is defined in Eq.~13!, and

¹̄2c(0)
[

]2

] r̄ 2
1

1

r̄

]

] r̄
1

1

r̄ 2

]2

]w2
.

Asymptotic matching to the outer region gives the boun
ary conditions vc(0)( r̄→`)5v (0)(r→0)5vs and uc(0)( r̄
→`)5u6(0)(r→0).

At order «1, Eqs.~11! give

¹̄2c(0)
uc(1)1uc(1)f u~uc(0),vc(0)!5M(1), ~48!

]vc(1)/]t5g~uc(0),vc(0)!1N(1), ~49!

where

M(1)52vc(1)f v~uc(0),vc(0)!1k¹̄c(0)uc(0)
•n,

N(1)5~Ẋ(2)1 r̄ ėr
(1)!•¹̄c(0)vc(0)1Ẋ(1)

•¹̄c(0)vc(1)

1t•Ẋ(1)H (0)vc(0),

where

H (0)[
1

s S ]

]s
2st

]

]w D .

In order to close the steady version of Eqs.~46! and~47! for
the steady spiral in 2D, Kessleret al. @36,39# have extracted
a compatibility condition from the steady version of Eq.~49!.

In the same way, in order to close the steady version
Eqs.~48! and ~49! for the steady spiral in 2D, one needs
extract a compatibility condition from the equation for thev
field at next order. This next order equation is

]vc(2)/]t5uc(1)2vc(1)1N(2), ~50!

where

N(2)5~Ẋ(3)1 r̄ ėr
(2)!•¹̄c(0)vc(0)1~Ẋ(2)1 r̄ ėr

(1)!•¹̄c(0)vc(1)

1Ẋ(1)
•¹̄c(0)vc(2)1t•~Ẋ(2)1 r̄ ėr

(1)!H(0)vc(0)

1t•Ẋ(1)~H(0)vc(1)1 r̄k coswH(0)vc(0)!.

These expressions show explicitly how the curvature
filament motion enter the equations for the core region. T
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differences between these equations, for a moving cur
scroll filament, and the core equations for a stationary
spiral ~straight motionless filament! are the curvature term

k¹̄c(0)uc(0)
•n in the expression ofM(1) and the terms con-

taining the time derivatives of the filament position at fir

and second order,Ẋ(1) andẊ(2). In addition, because curva
ture dictates a nonstationary outer solution, curvature affe
core solutions in a nontrivial way via the boundary con
tions on the core obtained by matching to the outer soluti

VI. CONCLUSIONS

We have presented a systematic, order-by-order appro
to a full matched asymptotic description of scroll waves
excitable media in the large-excitability~small-«) limit. A
large part of our purpose has been to specify a useful sys
of coordinates for the free-boundary equations in three
mensions. These coordinates are a natural extension of c
dinates used to study spirals in two dimensions and t
provide nice coordinates for numerical simulations. We ha
considered some specific examples in which the fr
boundary equations simplify and we have shown numer
solutions to these equations. While we have focused o
particular model, our approach can be readily applied to
similar models of excitable media as in Refs.@35,37#. Com-
parisons with full solutions to the reaction-diffusion equ
tions are presented elsewhere@40,41#.

The derivation of the free-boundary equations does
require the assumption that filament curvature and twist
small. The operators appearing in our equations are, in f
simpler than those in the singular-perturbation approach
neered by Keeneret al. @14,16,18#. By considering the small-
« limit first, we thus are able to treat scroll waves who
filaments have large~order-one! curvature, and moreover, w
are able to capture theO(k) variations in interface motion
arising because of curvature.

The way in which the difficulty of curvature enters ou
approach is that curvature eliminates the possibility of
actly stationary ~rigidly rotating! solutions of the free-
boundary equations. Thus exact order-by-order solutions
not stationary even in the small-« limit and this presents very
difficult challenges for obtaining solutions to the asympto
equations. Nevertheless, it would be of interest to cons
formally the small-curvature limit of the equations we ha
obtained. Because the large-excitability limit results in co
siderable simplifications, we may hope that in these two li
its it will be possible to make progress on the problem
filament motion. In particular, there is hope that equations
slow filament motion may be obtained in which coefficien
are directly related to parameters of the original reacti
diffusion equations.

APPENDIX: COORDINATE SYSTEMS

In this appendix we give some useful properties of t
coordinate systems used. We base our derivation on
Frenet equations
4-10
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LARGE-EXCITABILITY ASYMPTOTICS FOR SCROLL . . . PHYSICAL REVIEW E 66, 036214 ~2002!
]X

]s
5st,

]t

]s
5skn,

]n

]s
5s~tb2kt!,

]b

]s
52stn,

wheret is the torsion andk the curvature of the curve~fila-
ment! given parametrically byX(s), ands[u]X/]su.

1. Outer coordinates

A point x in coordinates (r ,w,s) is given by x5X(s)
1rer(w,s), where er5coswn1sinwb. The coordinate
frame (E1 ,E2 ,E3) for (r ,w,s) is

E15er ,

E25r ]er /]w5rew ,

E35
]X

]s
1r

]er

]s
5ht1rstew ,

where h[s(12rk cosw). Hence the (r ,w,s) coordinates
are not an orthogonal system.

The expressions for the gradient and Laplacian opera
in (r ,w,s) coordinates can, however, be easily deduced
using the orthogonal coordinates (r ,u5w1*0

sstds8,s) and
the associated change of variables,

]

]u
5

]

]w
,

]

]sU
u

5
]

]sU
w

2st
]

]w
. ~A1!

The coordinate frame for (r ,u,s) is

E15er ,

E25r ]er /]u5r ]er /]w5rew ,

E35
]X

]s
1r

]er

]s U
u

5st1r
]er

]sU
w

2rst
]er

]w
5ht.

The componentsmi j of the metric tensor for these orthogon
coordinates are thusm1151, m225r 2, andm335h2.

The representation for the gradient and Laplacian op
tors in orthogonal coordinates are standard. From their
resentation in (r ,u,s) coordinates, one can use Eq.~A1! to
obtain their representation in the nonorthogonal (r ,w,s) co-
ordinates.

2. Interface coordinates

We consider properties of the local interface coordina
( r̂ ,ŝ,j) and, in particular, give properties of the coordina
at the surface~interface! j50. Where necessary we sha
distinguish intrinsic surface quantities from similar volum
quantities by the superscripts. We also use superscripts to
indicate volume quantities evaluated at the surface. In
main part of the paper this superscript is rarely used; sur
03621
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quantities are clear either from accompanying text or the
of the superscript6 denoting wave front/back.

In general, for a surface given parametrically
xs(x1 ,x2), the surface tangent vectorsEi

s5]x/]xi define the
surface coordinate bases with corresponding metric ten
mi j

s 5Ei
s
•Ej

s . If the interface is described by the two param

eters (x1 ,x2)5( r̂ ,ŝ), asxs5X( ŝ)1 r̂er@F( r̂ ,ŝ),ŝ#, then

E1
s5er

s1Cew
s ,

E2
s5 r̂xew

s 1hst,

m11
s 511C2,

m22
s 5 r̂ 2x21~hs!2,

m12
s 5m21

s 5 r̂Cx,

ms5m11
s m22

s 2~m12
s !25~11C2!~hs!21 r̂ 2x,

where hs5s(12 r̂k cosF), C5 r̂F r̂ , x5st1F ŝ , er
s

5er@F( r̂ ,ŝ),ŝ#, ew
s 5ew@F( r̂ ,ŝ),ŝ#, and ms is the determi-

nant of the metric tensor.
The 3D local coordinates (r̂ ,ŝ,j) are such that pointsx

near the surface (r̂ ,ŝ,j) are given byx5xs1jN, whereN is
the unit normal to the surface. The coordinate fram
(E1 ,E2 ,E3) associated to (r̂ ,ŝ,j) can be expressed in term
of the interface coordinate frame (E1

s ,E2
s) via

E15~12jL1
1!E1

s2jL1
2E2

s[h11E1
s1h12E2

s ,

E252jL2
1E1

s1~12jL2
2!E2

s[h21E1
s1h22E2

s ,

E35N5E1
s3E2

s/uE1
s3E2

su,

with Li
k5( jL i j m

sk j, for i , j ,k51,2, whereLi j 5]Ei
s/]xj•N

are the fundamental forms andmsi j are the components o
the inverse of the surface metric tensor. We have used
Weingarten theorem@50#:

]N

]xi
52(

k
Li

kEk
s .

The unit normal is

N5~hsCer
s2hsew

s 1 r̂xt!/ms1/2.

The components of the metric tensor associated to
coordinates (r̂ ,ŝ,j) are

m115m11
s h11

2 12m12
s h12h111m22

s h12
2 ,

m225m11
s h21

2 12m12
s h21h221m22

s h22
2 ,

m3351,
4-11
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m125m215m11
s h11h211m12

s ~h11h221h12
2 !1m22

s h12h22,

m135m315m235m3250,

and the determinant ism5m11m222m12
2 .

The gradient operator is

“u5 (
i , j 51

2

mi j
]u

]xj
Ei1

]u

]j
N[“pu1

]u

]j
N,

and the Laplacian is

¹2u5
1

m1/2 (
i , j 51

2
]

]xj
S m1/2mi j

]u

]xi
D1

1

m1/2

]

]j S m1/2
]u

]j D
[¹p

2 u1
]2u

]j2 1
1

2m

]m

]j

]u

]j
, ~A2!

wheremi j are the components of the inverse metric tens
We need the last term in Eq.~A2! at leading order inj,

which will be leading order in« when using the stretche
coordinatej̄5j/«. Expanding themi j using the definitions
of hi j gives
nc

R

s

n

03621
.

m115m11
s 22jL111O~j2!,

m225m22
s 22jL221O~j2!,

m125m12
s 22jL121O~j2!.

Thus

m5m11m222m12
2 5mS1jm11O~j2!,

where

m1522~m11
s L2222m12

s L121m22
s L11!.

Therefore

1

2m

]m

]j
5

m1

2mS1O~j!522H1O~j!,

whereH is the mean curvature of the interface and is giv
by @50#

H5
m11

s L2222m12
s L121m22

s L11

2ms
.

s.

,
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