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Large-excitability asymptotics for scroll waves in three-dimensional excitable media
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Three-dimensional scroll waves are considered in a reaction-diffusion model of excitable media in the large
excitability limit. Coordinates based on the scroll filament are defined and shown to provide a natural extension
of the coordinates used for two-dimensional spiral waves. The leading-order free-boundary equations for
interface motion in three dimensions are explicitly derived in these coordinates. Three specific examples are
considered: straight twisted scroll waves, axisymmetric scroll waves, and helical scroll waves. The equations
for the fields at leading and first order in the core region are given.
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I. INTRODUCTION wherea andb are parameters. Our analysis applies equally to
all similar two-component reaction-diffusion equations.

Wave propagation in excitable media occur in a wide va- Previous analytical work on the motion of scroll filaments
riety of chemical and biological contexfd—4]|, the most has been of two types. The first one is strictly phenomeno-
important example being the electrical wave propagation iogical [23—28, using geometrical considerations only and
heart tissug5—8|. In three-dimensional media, one typically not relying directly on the underlying reaction-diffusion
finds sustained waves in the form of scrolls that rotate abougquations. The second approach is based on reaction-
one-dimensional filamentgFig. 1). These filaments can diffusion equations and uses singular perturbation theory
themselves move through the medium, generally on a timgl4,16,18 in the small filament curvature limit(The fila-
scale much slower than the time scale of wave rotation aboutent torsion is also assumed to be snjabkcept in Ref.
the filament, e.g., Ref$§9—-13]. Almost all current theoretical [29]], but for simplicity we shall refer only to filament cur-
understanding of scroll wave dynamics in excitable media isvature) The parameteg controlling excitability is fixed and
based on laws that have been derived for the motion of filathen the smallorder<) curvature limit is considered. Sig-
ments[9,14-18. However, as we explain below, this theory nificantly, it must be assumed that the solution to the
is incomplete and does not include a description of scrolreaction-diffusion equations for a straight filameatuiva-
waves themselves. In this paper we derive generdent to the two-dimensional spiral solutipis known for any
asymptotic equations for three-dimension@D) scroll  requirede. This is the leading-orderd=0) solution. Equa-
waves directly from reaction-diffusion partial-differential tions for filament motion on a smalbrder-d) velocity scale
equations and consider these equations in specific cases fare then obtained by invoking a compatibility condition for
which the equations simplify. the equations at first order i®. In this work it has not been

We consider a standard two-component reaction-diffusion

model of excitable media: outer (+)

interface (+) interface (-)

e?oulat=eV2u+f(u,v), (1a

dvldt=eg(u,v). (1b)

The equations are here written in the space and time scales
proposed by Fif¢19]. The small parameter is the charac-
teristic time scale separation between the faspecies and

the slowwv species. This scale separation is exploited in our
analysis. For concreteness we consider specific reaction
terms[20-22:

v+b

) (2a) FIG. 1. Sketch of a rotating scroll wave showing the different
asymptotic regions and the coordinates used. Shown are the outer
regions [excited (+) and quiescent {)], the interface regions

g(u,v)=u-v, (2D [wave front (+) and wave back )], and the core region. The
filamentX(s,t) is parametrized bg and timet. Local coordinates
to the filament arer(¢,s), with (r,¢) in the plane normal to
*Present address: Institut de” bémique des Fluides de Toulouse, X(s,t) and ¢ is measured from the normal vectar The wave
31400 Toulouse Cedex, France. Email address: margerit@imft.fr rotates about the filament. The interface normfs are also dis-
TEmail address: barkley@maths.warwick.ac.uk played.

f(u,u)=u(1—u)<u—
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possible to find the left null eigenvectors of the relevant lin-excited and quiescent portions of the outer region. In the
ear operator and to show that the orthogonal product of theseaterface regionu makes a rapid change betweer 0 and
vectors on the nonhomogeneous terms yields nonvanishing=1. On the outer scale, this interface region is a surfsice
equations of motion. Therefore the ordewvelocity of the the scroll surface. For concreteness, we defn® be the
filament has not been substantiated, and more importantlgurfaceu= 1/2. It consists of two parts: wave frontand a
the coefficients of the equations of motion are not given asvave backdescribed, respectively, by two functiods™;
functions of the parameters of the original reaction-diffusionsuch thate=®*(r,s,t). Finally, when it exists, the core
system, e.g., Eqg1). The analysis is nevertheless very im- region is a small quasi-one-dimensional region containing
portant because it gives the form of the equations of motionhe filament. Tyson and Strogdi7] reviewed the geometri-
at lowest order. cal description of the filament including twist. Here, the dif-
Since the early pioneering work on filament motion in ferential geometry of the scroll wave includes additionally
excitable media and on 2D spiral waJj@&§—37, the station-  the interfacesb ~.
ary (rigidly rotating 2D spiral has been fully understood In the smalle limit, both the filament positiorX and the
using singular perturbation methods, both at leading order imterface depend o, and have expansions of the form
e [33-39 and more recently at first order ia [40,41.

Scroll waves with straight filaments can be understood in the X(s,t,e)=XO(s,t) +eXD(s,t)+-- -,
same way{37,40,4]. Progress has also been made in under-
standing spiral drift, in the smad-limit, in bounded do- O(r,s,t,e)=0O(r,s,t) +e@B(r,5,t) + - - -,

mains[42], and with applied field§43]. Using a slightly _ . -
different approacr{44,4a, the e—0 limit is considered where® means eithe®™ or ® . We refer to these orders

while the medium is kept in the weakly excitable regimeasleading order first order, etc. _ _
[46]. The next step in the analysis is to rewrite E(9.in each
The purpose of this paper is to build on the understandin@f the three regions—outer, interface, and core—using ap-

gained from the two-dimensional case and to present a ge[ﬁl.ropnate Coord|nates.'Fr0m these equatlons 0.ne can obtain a
eral geometrical description for three-dimensional scrollhierarchy of asymptotic equations in each region.
waves in the smalt limit. Specifically we will define a use-
ful system of three-dimensional coordinates and derive free- A. Outer region
boundary equations for wave motion in these coordinates. If : - ; ;

. . . In the outer region, we write Eq$l) in (r,¢,s) coordi-
curvature and twistas defined later in Sec. IV)Gre taken nates: g agD) in (r.¢.)
to zero, the known equations for stationary spirals are auto- '

matically recovered. In this approach, it is not necessary at g2oulat=e?V2u+f(u,v)+&?v Vu, (33
the outset to assume small filament curvature, and the equa-
tions are equally valid for large and small curvatures. avlat=eg(u,v)+Vv;- Vo, (3b)

Il. ASYMPTOTIC EQUATIONS wherevf=X+ ré, is the velocity of the moving frame due to

i . o ) filament motion.
The first step in the analysis is to specify the geometry of The gradient operator in these coordinates is
the problem and to identify the different asymptotic regions

to be considered. The coordinate system we use is based on 9 1 9

the scroll filament(Fig. 1). Let the filament be a curvé VZQE+9¢F£HH
given parametrically by coordinates and time t: X

=X(s,t). Local to the filament we shall use the coordinateand the Laplacian is
frame @ ,e,,t), where € ,e,) are unit vectors associated

with polar coordinatesr( ¢) in the plane normal to the fila- , 14

ment with ¢ measured from the normalto C, andt is the v “rh E(rh ar
unit tangent vector. Then points local to C are given in

(r,¢,s) coordinates by where

+HH,

+lz9h¢9
%h ol de

X(r,@,s,t)=X(s,t) re(e,s,t). o=[dX1ds|,

We use polar coordinates rather than Cartesian coordinates h=o(1-r«kcose),
(built on the normal and binormal framas used by Keener

[14] because the 2D spiral equations written in polar coordi- d d

nates are then easily recovered with our treatment. The me- g“”@)-

dium divides into three region$ig. 1): outer, interface, and

core. The outer region comprises most of the medium. It iHere, k is the curvature and is the torsion of the filament.
itself divided into both arexcitedportion, for whichu=1, Details can be found in the Appendix.

and aquiescentportion, for whichu=0. The interface re- We write the expansions farandv in the outer region in
gion is a thin(quasi-two-dimensionalregion separating the the form

H

1
h
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FIG. 2. Sketch showing definition of interface coordinatesd
& (s is not illustratel

u(r,e,s,t,e)=u®(r,p,s,t) +eu(r,@,s,t)+- - -,

v(r,qo,s,t,s)=U(O)(r,¢,S,t)+sv(1)(r,<p,s,t)+

Substitution of these expansions into E(®.gives a hierar-
chy of asymptotic equations for the order®) andv®, k
=0,1, ..., of theu andv fields in the outer region.

B. Interface region

For the interface region we shall use the local coordinates

(r,s,&) to describe the position of a poirtnear interfaceb.
These coordinates are defined by projecting the pointthe
interface along the interface norndl(see Fig. 2 Then¢ is

the distance to the interface;ands are the values of and
s of the projection onto the interface. Specifically, poirts

local to the interface are given i §,£) coordinates by
X(1,8,E ) =X(5,0) +Te(r,5,) +EN(T S,1),

with €(r,s,t)=e[®(r,s,t),s,t]. For pointsx on the inter-
face,£=0 and ¢,s)=(r,s). B
In this interface regions, the stretched coordingteé/ e

is then introduced, and i (s,&) coordinates, Eqs.1) be-
come

e29ulgt=VZ2u+f(u,v)+ev-Vu, (43
é’v/r?t=sg(u,v)+sflv-VU, (4b)
where

V=Vit Vv, (5)
Vi=X+re (6)
Vi=r o€ + e N 7)

_ J
V=eV=¢V_+N—=, (8)

23
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# 1 om
V2=e2V2=eVot =+ o
9E*

(€)

2m

with € =e,[®(r,5,1),5,t] andeg=e[D(r,5,1),5,t]. In Eq.

(5), v; is the contribution to the velocity of the moving frame
coming from interface motion. The operatdvs, andeT are

the gradient and Laplacian orthogonal to telirection and

m is the determinant of the metric tensor associated to the
(r,s,€) coordinates. The exact form &, and V2 are not
required for the asymptotic orders considered in this paper.
However, the lowest order representation of the last term in
Eq. (9) is needed:

1

2m (10

Qy
quf|| E

3
—=—g2H —_+ O(€?),
Z3 23

whereH is the mean curvature of the interface. Details of the
interface coordinate system are given in the Appendix.

We write the expansions far andv in the interface re-
gion as

u(r,s, &t,e)=u'Or,s &) +euW(r s, &)+ - -,

v(r,5,6t,8)=0'O(r,5,6) +e0' (5,60 +- -,
wherei denotes interface. Substitution of these expansions
into Eqgs.(4) gives a cascade of asymptotic equations for the
ordersu'® andv'®, k=0,1, . .., of theu andv fields in the
interface region.

There are significant advantages to using the stretched
normal coordinate to the interfagerather than the stretched

relative angle to the interface’ = (¢— ®)/e used by Fife
[30]. These advantages outweigh the fact that the change of
coordinates in the Fife approach, betweene(,s) and the
outer coordinatesr(¢,s), is simple. The problem with the
Fife coordinates is that when the interface is expanded in
d(r,s,t,e)=PO(r,s5,t) +e®D(r,s,t)+---, (something

not done by Fifg¢ the solution of théth-order equation fou
across the interface is complicated in¢’,s) coordinates
and both®(® and &) enter in the first-order equation of
u'®, from which the equation fo®(®) must be extracted.

C. Core region

In the core region, the stretched radial coordimate /e
is introduced. In £, ¢,s) coordinates, Eqg1l) become

e2gulat=V2u+f(u,v)+ev- Vu, (11a

ﬂv/&t=sg(u,v)+8_1vf~Vv, (11b

wherevi=X+ere and

036214-3



DANIEL MARGERIT AND DWIGHT BARKLEY PHYSICAL REVIEW E 66, 036214 (2002

B. Leading-order outer and interface regions

— 0 J
V=eV=g=te,=+teH At lowest order(ordere®), Egs.(3) give

ar rde
0="f(u® ), (14
_ 1 0 /[— 0 1 0 d
V2: 2V2=_—— rh—| +_——<h_ + ZHH
S T Thar\ ar] T2hoae\ ag) © a0/ gt=0. (15)

Thenu(® is one of the twa(stablg roots off: u(®=u©=*,
where for Eq.(2a), u@*=1 andu(®~=0. The fieldv© is
time independent and is found by matching to the interface.

At lowest order(ordere® and orders ~1), Egs.(4) in the
interface region give

In (r,¢,s) coordinatesh=o(1—erx cose). We write the
expansions ofi andv in this core region as

u(r,,s,t,e)=utOr, o,s,t)+eu(r, o, 5,t)+ - - -,

o(r,e,5t8)=vO(r,,5,) +e0°D(r,@,5,t)+ - -,

PEIUES _ _
0= —=—+ (U@ 1O, (16)
wherec denotes core. Substitution of these expansions into 9E
Egs. (11) gives a hierarchy of asymptotic equations for the
ordersu®® andv°® k=0,1, ..., of theu andv fields in R
0=0v'@*/s¢. (17)

the core region.

Here, the superscripts stand for interface$=. Matching
u'®=* to the solution in the outer region gives the boundary
The next step in the analysis is to solve the hierarchy otonditions on Eq(16), u'(9* (¢— = w)=u*(©)(¢—0%).
asymptotic equations in each of the asymptotic regions, order gquation(17) requires thav'(©* not vary across the in-
by order, and to apply appropriate matching between thesgyface. Thusy'(@* appearing in Eq.(16) is a constant.
regions. Sections IlIB and Il C follow closely previous However, Eq.(16) will have a solution with the required
work [30-39. boundary conditions only for one unique value of this con-
stant. This value is known as the stall concentratigff)*
=pS. For Egs.(2), v5=—b+a/2. We assume that this con-
stant is not of the ordes. Then the solution to Eq.16) is

ul@* =[1+tanh&/(2y2)]/2, when the scroll interface is the
surfaceu=1/2 and the sense df is given by the interface

Ill. FREE-BOUNDARY EQUATIONS

A. Leading-order core

We begin with the core region. At lowest ordérder
e~ 1), Eq.(11b for thev field in the core gives

X(0). ye(0),e(0 =, (120  normalsN* as in Figs. 1 and 2.
Finally, the outer (%) solution is obtained from matching
whereX© is independent of and ¢ and to the interface solution'(©* =0%, v((§-0%)=0" 0" (&
— * o). Since the interface passes through all points in the
outer region at some time and sing€’ is independent of
Vc(O)Eeri_+e _i (13  time[Eq.(19)], necessarily °)(r,¢,s)=v®. This completes

the specification of the leading-order fieldsandv every-
where outside the core.

The simplest way to satisfy E¢L2) is to assume no leading-
order filament motion and s&X(®=0. Thus the filament

velocity goes to zero in the limi&— 0. If, on the other hand,
solutions to the reaction-diffusion equations exist with

ar (PM(,D.

C. First-order outer and interface regions

At ¢! order, Eqs(3) in the outer region give

leading-order filament motiorX(9#0, thenVe(®y¢(©) js a 0=u®f,(u®= )+ Df (uO* v9), (18
constant. Matching the core solution to the outer rediis-
cussed in the following sectiomvould, in fact, require %(®) .

g sectio a wWiat=g* (09, (19

to be constantand equal to the stall concentration as defined
later in Sec. Ill B. It is known thatv is not constant in the
core of stationaryrigidly rotating spirals in two dimensions where gi(vs)zg(u(o):1vs) and subscripts denote deriva-
[36,39. Thus, while we cannot definitely rule out scroll so- tives. For the kinetics in Eqs(2), f,(u(®*,v%=0, and
lutions with leading-order filament motion, any such solutionhence Eq(18) givesu®=0. [For kinetics(2), in the outer
will be very different from the known two-dimensional spiral region u®=0 for all k>0.] For these kineticsg™(v®)

solutions that have cores with nonuniform field§?). Direct

numerical evidence that(©=0 for scroll rings is given in
Ref. [41].

—_(0)x_ s
=u v°.

Equations(4) in the interface at next ordéorders® and
ordere?) give
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PPui= ) ) ) )
0= agz +ul(l)ifu(ul(O)i,US)+U|(l)tfv(u|(0)i,US)
oui (=
+cf ——, (20)
23
0=adv'M*/9¢, (21)
where
=V N —2H, (22

whereN™ is the normal to, an#i = is the mean curvature of,
the leading-order interfacab(®)=. Here,v(?= is the veloc-
ity in Eq. (5) for interfaces at leading ordé¢from Sec. Il A,
the leading-order filament motion is zerét leading order
in our coordinates®==rd©*¢>" and using the expres-
sion of the surface normal from the Appendix,
ct=—rdO*h*/ym*—2H", (23
wherem™ is the determinant of the metric tensor, amd is
the value ofh, evaluated at the interfaces(®)*. Matching
v'M* to the outer solution requirep'®*(£é— *ox)
=pM(£—07). From Eq.(21) v'™®* does not vary across
the interface;v'M*(r,s,&,t)=v'M*(r,5,t). Thus v'M*
=vM* wherev™®* is the outer concentration®) at the

PHYSICAL REVIEW E 66, 036214 (2002

Eq. (26) equates the normal velocity of the interface to twice
the mean curvaturél of the interface plus the speed of a
plane interface. This result for leading-order interface motion
is widely known, e.g. Ref423-28,33, although in the con-
text of excitable media it has been considered mainly in two-
space dimensions. What is important here is that we express
the free-boundary equations in a form appropriate for scroll
waves in three-dimensional media using a system of coordi-
nates based on the scroll filament. Explicit expressiong,for
m, and H in these coordinates are given in the following
section.

IV. EXAMPLES

In this section, we will apply the leading-order free-
boundary equation&5) and(26) to important specific cases
for which the equations simplify. We shall restrict our atten-
tion to cases in which scroll solutions do not depend on the
coordinates parametrizing the filament. This class of solu-
tions includes twisted scrolls with straight filaments, axisym-
metric scroll rings, and certain helical scrolls.

Frequently in this section we shall drop the superscripts, it
being understood that all relevant quantities are evaluated on
the leading-order interfaces(®)=. When necessary, we shall
distinguish the front and back interfaces; leading order is
assumed throughout.

The general expressions fby m, andH, which appear in
Eq. (26) are (see the Appendjx

interfacesd(9)*. h=0(1—rk cosd), (27)
The general solution of Eq20) is obtained by a double a2

variation of constants. This solution diverges for + o, in m=(1+W5)h=+ry7, (28)
general. On both interfaceB(®)* the required matching to
the finite outer solutions"")* (¢ ) =(¢0%) dic- — ——_[E(1+W2)— 2Fry¥ + G(r2+h?)],
tates a specific value af~. For Eqgs.(2), the solution is m3/2
simply u'®™*=0 and the value ot~ is (29

2 where

c'= i\/——v'(l)i. (24)

a E=rx)[—h¥+roksin®]+h2ck[ ¥ cos® +sind]
(The = signs arise here because of the sense of the interface dh ax
normals we have defined. see Fig) 1. trxogrhog, (303

This leaves Eq(19) for v*) in the outer region together

with the required boundary condition from matching that

vM=y'M= at the (moving interfaces. Thus Eq(19) and
Eq. (24), together withc™ obtained from Eq(22), give fi-
nally the free-boundary equations

) _ oW
=—x[hW2+o—rox¥ sin®]—h—, (30b

G=—h(¥3+W¥+r¥,)/r. (300

We have used the definitions
V=rgd/or, (31
x=o7+ P/ Js. (32

A. Filament geometry and scroll twist

The geometry of filaments and the twist of scroll waves
about these filaments is discussed in detail in several publi-

awWMot=u*—vS, (25
rg@=p* 2
——+=2Hii£v(l)i. (26)
m=
Noting that in our coordinates the interface normal velocity
is
r('I)(O)th_
V(O)i.Ni:_ —,
m=

cations, e.g., Refd.15,47,17,48 The twist 7,, of a scroll
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filament is the rate of angular rotation of the interface aboutvhere v represents the first-order slow field) and v*

the filament per unit arclength along the filame¢h,47. =u[r,e=®*(r)] is its value at ther interface. The quan-
More specifically it is given by the value of (@)JN/ds-(t  tities h, m, andH are given by Eqs(27)—(28).
X N) on the filament. In our coordinates Equations(34) and(35) are easily simulated numerically.
Thev field is discretized on a polar grid of radil’ with
100 N, XN, grid points. The center point at=0 is not included,

=7+ —— . ; i . .
W T s (r=0), so that the domain begins at the first radial grid paimt

=R /N, from the center. In our simulations, we typically we
i.e., 7,= x(r—0)/o. useAr=0.05 and 128 points in the direction. The inter-

The twist is composed of two components: one compofaces ®= are represented using the sarNg radial grid
nent arising from the torsiom of the filament and the asso- Points. Ther derivatives in the interface equation are com-
ciated rotation of the Frenet frame with displacement alongPuted by finite differences with one-sided formulas used at
the filament; the other component arising from the arclengtfihe innermost and outermost grid points. The values of
derivative of phasab along the filament. Recall thab is ~ are found by interpolation of the field. _ _
measured with respect to the Frenet frame. In generaL the Stal‘tlng from an |n|t|ab field and Valld(nonlntel‘sectlng
instantaneous twist associated with the two interfabes  interface curves, Eq¢34) and(35) are simulated using the
and ®~ need not be the samed */gs+ b /s, in gen- Eu[er t.imz'a stepping until an asymptotic state, steady or time
eral. This possibility does not appear in past treatments operiodic, is reached.
twisted scroll waves.

We are principally interested in solutions that do not de- C. Straight filament with constant twist
pend on the coordinate For these the curvature and torsion
of the filament must be constant. If both are nonzero th%wi
filament is helical. For concreteness, consider the filament t
be parametrized as

Consider first the simple case of a straight yet possibly
sted scroll. This is obtained as the linflk—0 in Eqs.
?33). With our assumption of independence, the twist, is
equal to the limiting value of the torsion.

With k=0 the quantities occurring in the free-boundary

X(s)=(Rcoss,Rsins, ys). equations simplify significantly to
The curvature and torsion are h=1, (36)
=g+ P2
K= —F—"">, T (/.
R+ 9 R+ 92 1 V(1+W?2)
_ 2(q+1112)3’2[ : +qw,}, (39

If y— 0 with finite R, one obtains a planar ring. In the limit
R—0 one obtains a straight filament with twist. While the h _ 2 2 N h |
Frenet coordinates are undefined for a straight filament, it i@/here q="1+7,r. For zero twist,q=1 and the problem

w
possible to define the coordinate frameRat 0 by continu-  educes to the case of 2D spiral waves.
ity.

Figure 3 shows solutions to the free-boundary equations
We shall focus ons-independent situations for which (34) and (35) for two values of twist. The solutions shown
d®=/9s=0. For such scroll waves the interfacds™ are

have reached a state of steady rotation.
functions ofr andt only: ®*(r,t). In this case the twistis _ ONe can derive a single universal equation for the shape
the torsion, which in turn is a constant, and the two interface@nd frequency of the steadyigidly rotating) twisted scroll
necessarily have the same twist. Finally, for this class o

{n Fig. 3. This has been done by Bernf#7] in the general
solutions, thes derivatives, Eqs(309 and(30b), drop out. case and by Karm@35] for the zero-twist(i.e., 2D) case.

One seeks a steady solution witleading-order frequency
w=®, for which the angle between the wave freht and
wave back @~ is independent ofr. In this caseW¥
For the s-iindependent case, we can write the free-=rd®/dr is the same for both interfaces. The angular sepa-
boundary equation$25) and (26) in terms of one two- ration between the two interfaces is found by integrating Eq.
dimensional fieldv(r,¢) and two one-dimensional curves (25) in the quiescent{) and excited ¢) regions to give

B. Numerical solutions

®*(r), each depending on time according to the change inv™® between the interfaceshyM=pM*
—vM~. This is independent af. Matching the change over
‘9_U:ui_vs (34) the quiescent and excited regions, one finds that the angular
ot ' separation between the interfaces is
AD=P*—d =275, (39

—v - ———H7, (39 o .
rh= rh= The separation is independent of twist.

036214-6



LARGE-EXCITABILITY ASYMPTOTICS FOR SCROL . .. PHYSICAL REVIEW E 66, 036214 (2002

(2) (b) (a) (b)

(d)

FIG. 3. Solutions of the free-boundary equations for a straight
filament. (a) Untwisted scroll, i.e., a 2D spiral wave art) a
twisted scroll with twistr,,=0.35. Light(dark gray areas denote
the quiescentexcited regions from the numerical solution of free-
boundary equation&4) and(35). These time-asymptotic solutions
rotate counterclockwise with constant frequency. The white curve is
the interface obtained from universal equatidf). Parameters are
a=1.0,b=0.1, and domain radiuBs=10.

1)+ L . FIG. 4. Nonstationary rotation of an axisymmetric scroll ring
The valuesy can be eliminated from interface equa- ¢om nymerical solution of free-boundary equatiaBd) and (35).

tion (26) to obtain a single universal equation describing therhe piots show the solution at four equally spaced time intervals

shape of the interface, over the rotation period. The quiesceftight gray) and excited
(dark gray regions are separated by the numerically computed in-
dw \I,(lJr\I,z) B terfaces(thin black curves The simulation domain of radiugg
q— + _ =r(q+¥?)—-B(q+¥?)°%2 (40 =5 is normal to the filament ring of radil8=6. The symmetry
dr r axis of the scroll ring is to the right of the simulation domain as

indicated. The white curve is the interface for a 2D spiral wave.

. ~ Parameters ara=1.0 andb=0.1.
where lengths have been rescaled using the frequency

=\Jor, 7,=7,/Jo. The value ofq is unchangedq=1
+72r2=1+72r2. The eigenvalud is given by H=

1 P(1+W¥?)
- +V,
2(1+Ww?)32 r

B=(uww)¥? u®=\2m%1-0v%/a. (42) k  Wcosd+sind

+2‘/1+«y2 1-rkcosd
Equation (40) gives the leading-order shap& and fre-

quency, viaB, of a twisted scroll wave with a straight fila- The polar coordinates in this description are only valid for

ment. For zero twist =1), the equation describes the r,=r/R<1. On substituting into the free-boundary equa-
leading-order shape of 2D spiral waves. Appropriate boundfions, Eq.(35) for & becomes

ary conditions for solving Eq(40) are obtained from the

large+ asymptotics of the equation. Figure 3 shows a com- . N

parison of solutions to the universal equation and time- (.I)i_(ZDterm3+E\If-cosd>—+sm<b— (45)

asymptotic solutions obtained by direct simulation of the r 1—rxcosd® '

free-boundary equations. Not surprisingly, the two solutions

are indistinguishable. The rotation frequencies are also th@here the 2D terms are those which appear for spiral waves,

same. Elsewher¢40,41], some solutions to Eq40) are o equivalently, a straight filament with zero twist.

compared with leading-order results obtained directly by Figure 4 shows the asymptotic, time-periodic evolution of

solving Egs.(1). an axisymmetric scroll ring obtained by numerically simulat-
ing free-boundary equation®4) and (35), starting from a

D. Axisymmetric scroll ring 2D spiral-wave solution. The filament ring has radRis 6

) ) ) ) ) so that the curvature ig=1/6. The simulation domain of
The next important case is an axisymmetric scroll ring OfradiusRSZS is normal to the ring. The symmetry axis of the

radiusR. This corresponds tg=0 in Eqgs.(33). The torsion  gcr)| ring is to the right of the simulation domain as indi-
and twist are zero and=1/R. We then obtain cated. Shown for comparison is the rigidly rotating 2B (
h=1—rx cosd, (42) =0) solution to the free—boundar_y equations. _It is aI;o
shown at four equally spaced time intervals over its rotation
period. (The period of thexk=0 is almost identical to the
m=(1+W¥?)h?, (43)  period of the scroll ring solution; see belgw.

(44)
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. . ] . ~ FIG. 6. Same as Fig. 5 except that the scroll ring has ralius
FIG. 5. Time series showing the instantaneous angular velocities- 12 j.e., half the curvature. The vertical bars to the right show half

of the interfacesw™ (top), and instantaneous separation of the in- the peak-to-peak variation of the=6 case. The horizontal bar
terfaces A® (bottom, for the axisymmetric scroll solution shown indicates one period of the=0 solution.

in Fig. 4. The horizontal bar indicates one period of ie0 solu-
tion. Quantities are from the interfaces at half domain radius

CR/pe2s What is of particular interest is the effect of curvature on
=Ry2=25.

the (mean frequency and on the average interface shape. For
this we consider the limit of small curvature and average the

With curvature, the interfaces do not have fixed shapefree-boundary equations over one period of the zero-
Instead, due to the explicit dependence of interface positiogurvature solution. It is most convenient to work in the ro-
® in the mean curvature, the interfaces move at speeds thiating reference frame for which the=0 solution is time
depend on the positio® about the curved filament. Hence independent:
the instantaneous angular velocities of the interfaces and 5
their instantaneous angular separation vary periodically in =¢— wt,
time. We show this quantitatively in Fig. 5 by plotting these
guantities extracted from the interfaces at half the domain
radius, R¢/2. In this case it is not possible to reduce the
free-boundary equations to a single time-independent univer-
sal equation, as has been done in the absence of curvature.
Only for k=0, the factors in co® and sin® drop out of the
free-boundary equations.

The filament of axisymmetric scroll solutions of the full
reaction-diffusion equationgl) is known to be time depen-
dent[10-12,9,1% In general, the radius of axisymmetric f{qfi(r)cos{éi(rwwt]+sir[3>i(r)+wt]}.
scroll rings shrinks with time and the ring translates in a r
direction perpendicular to the plane of the ring. However, we . .
stress that this motion is absent at leading ordet ifsee The average of th's term over one period of the unperturbed
Sec. Il A). Hence the solutions in Fig. 4, in which there is problem is zero, i.e., there are no'rgsonant terms at the lead-
no filament motion, are the correct dynamics of the reaction9 order. _Curvature does not explicitly enter the_ equation for
diffusion equations at leading order in The filament mo- the slow field. Thus, t®(«), the average equations for the

q g

tion seen in laboratory and numerical experiments comes xisymmetric scroll ring are the same as the equations for a
) . y P D spiral wave. As a result, the rotation period of an an
higher order ine.

_ . axisymmetric scroll ring can be expected to be quite close to

The terms due to curvature in the free-boundary equationg, 4t of the 2D spiral wave with the same kinetics parameters.
are of S|zeQ(K). Hence the fluctuations in tlhe interface This can be seen in Figs. 5 and 6 where the mean rotation
shape and instantaneous frequency seen in Figs. 4 and 5 gfgriod in both cases is very close to the period of the 2D
of this order. This is shown quantitatively in Figs. 5 and 6,spjral wave for the same conditions. Verification of the
where we show results from a simulation wikh=1/6 and  O(«?) scaling is beyond the precision of the numerical
k=1/12. The magnitude of fluctuations far=1/12 is al- scheme we have used. The mean interface separation is al-
most exactly half of that found fok = 1/6. most exactly that for a 2D spiral wave.

;(I’,ZD)=v(r,<p—wt),
OE(N)=D*(rt)— ot.

In the rotating coordinates, the curvature term in &®) is,
at lowest order ink,
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(a) (b)

(d) (c)

o N

FIG. 8. Nonstationary rotation of a helical scroll wave from
numerical solution of free-boundary equatio3g) and (35). The
plots show the solution at four equally spaced time intervals over
the rotation period. The quiescedight gray) and excited(dark
gray) regions are separated by the numerically computed interface

Our final example is a scroll with a helical filament. We (thin black curvg. The simulation domain of radiugs="5 is nor-
shall call ans-independent scroll wave with a helical fila- mal to the filament for whichk=1/6 and r,,=0.35. The white
ment a symmetric helix, in analogy with the axisymmetric curve is the interface for a straight scroll with=0.35. Parameters
scroll ring. Figure 7 shows such a state obtained from solua2réa=1.0 andb=0.1.
tion of the full reaction-diffusion equationd) and(2). The ) ) ]
twist of the scroll is equal to the torsion and so the scroll The interface equation contaif®(«) terms and so the
phase rotates exactly as does the Frenet coordinate fran€riodic variation in the interface speed and shape seen in
This helix arises from an instability of a straight, twisted Fig. 8 are ofO(x), just as for the scroll ring previously
filament (so-called sproing instabilily Such helices have Shown. TheO(«x) terms have zero mean and so the average
been studied numerically and analytically in the frameworkof the ® equation is the same as the equation for a straight
of filament dynamic$49,17,48. filament with twist up toO(«?) terms. Thus the mean inter-

Figure 8 shows results from simulations of the free-face shape and frequency can be predicted from the solution
boundary equation&4) and(35) for such a helix. The twist of universal equatior(40) up to O(x?). We find that the
is 7,=0.35, the same value is shown for the twisted straighthumerically computed rotation period of the free-boundary
filament in Fig. 3; the curvature is=1/6. The normal and solution shown in Fig. 8 is almost identical to the period of
binormal directions are horizontal and vertical, respectivelythe straight twisted scroll shown in Fig(t8.

Simulations are started from a solution for a straight, twisted

FIG. 7. Symmetric helix from numerical solution of Eq%) and
(2). The isosurfaces of the field are shown corresponding to the
interfacesd ™ and® . The helical filament is shown in white. The
parameters ara=1.0, b=0.1, ande=0.2

E. Symmetric helix

scroll and evolved until an asymptotic periodic solutior_l is V. CORE EQUATIONS
reached. As for the scroll ring, the interfaces are not of fixed _ _ _
shape during rotation. We return now to the equations in the core region. Solu-

For the helix, the expressions for m, andH appear in  tions in this region are necessary to provide a complete
the interface equatiof85) and do not simplify significantly ~asymptotic solution to the reaction-diffusion equations ev-
from the general expressior{7) and (28), so we do not €rywhere in space. In particular, the solution in the core re-
give them here. However, for small curvature, the interfacedion is necessary to regularize the cusp that would otherwise

equation is of the form exist in most cases as the wave frdnt and wave backb ~
come together in the vicinity of the filament. Unfortunately,
&= =(Straight terms+ «[A; (V= , W~ 1, 7,0 )cosd ™ the core equations cannot be reduced to one dimension and
hence must be solved numerically with boundary conditions
+A (¥ 7,1, 7)siNd ]+ 0(x?), determined from the outer solutions. Kességral. [36,39

have done this in the 2D steady case. Fortunately, for steady
where the straight terms are those appearing in the equati@piral waves in 2D and for the examples in the preceding
for the straight filament with twist,,, andA; and A, are  section, core solutions do not dictate the leading-order fre-
functions of the arguments shown. guency or interface shape. Hence, with regard to the impor-
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tant issues of selection of rotation frequency and scroldifferences between these equations, for a moving curved
shape, explicit core solutions are not required. For completescroll filament, and the core equations for a stationary 2D
ness we shall give the core equations at leading and firgpiral (straight motionless filamenare the curvature term
order (the Iowest order for which f|Iament cur.vature enters . yc(0),¢0). i in the expression oM and the terms con-
tehqeu;)i(r)erzlsequatlohsbut we shall not give solutions to these 5ining the time derivatives of the filament position at first

. . . (1) X (2) iti -
At order s°, Egs.(11) for the fields in the core region are 2nd sécond ordeX™’ andX”. In addition, because curva

ture dictates a nonstationary outer solution, curvature affects
OZVZC(O)UC(O)+f(uc(o)’vc(o))' (46) core solutions in a nontrivial way via the boundary condi-
tions on the core obtained by matching to the outer solution.

Jv°0) gt = MO =X (1), Fe(0),c(0) 47)

whereVe(© is defined in Eq(13), and VI. CONCLUSIONS

) 5 We have presented a systematic, order-by-order approach
720 69_+ 19 194 to a full matched asymptotic description of scroll waves in

ar2 r_&r_+r_2 9¢2 excitable media in the large-excitabilifgmall<) limit. A
large part of our purpose has been to specify a useful system
Asymptotic matching to the outer region gives the bound-of coc_)rdinates for the f_ree-boundary equations in_ three di-
ary conditions vc(O)(r__m) :v(O)(r_>O):vs and UC(O)(r_ mensions. These coordlna_tes are a natu_ral ex’gensmn of coor-
—w)=u=(r-0). dma;es u_sed to sf[udy spirals in tyvo d!mens!ons and they
At order &1, Egs.(11) give prow_de nice coordmates.f_or numerical s[mulat|pns. We have
considered some specific examples in which the free-
VZC(O)uc(l)nLu°(1)fu(u°(°) po0) = A1) (48) boun_dary equations simplify and we have shown numerical
’ ' solutions to these equations. While we have focused on a
(1)) 5+ — (11c(0) . c(0) 1) particular model, our approach can be readily applied to all
a0 3t=g(u"® v ) + D, (49 similar models of excitable media as in R€f35,37]. Com-
where parisons with full solutions to the reaction-diffusion equa-
tions are presented elsewhédd,41].
MDD = _Uc(l)fv(uc(O),Uc(O))+KVC(O)UC(O).n, The derivation of_ the free_—boundary equations doe_s not
require the assumption that filament curvature and twist are
D (2) 1 (1N Se(0)..c(0) | (1) Sc0). ol small. The operators appearing in our equations are, in fact,
NB=(X )+re§ ) VOO X M. yelOly et simpler than those in the singular-perturbation approach pio-
t. X (D7 (0),0(0), neered by Keenest al.[14,16,18. By considering the small-
e limit first, we thus are able to treat scroll waves whose
where filaments have larg@rder-ong curvature, and moreover, we
are able to capture th®(«) variations in interface motion
d d arising because of curvature.
)- The way in which the difficulty of curvature enters our
approach is that curvature eliminates the possibility of ex-
In order to close the steady version of E¢s6) and(47) for ~ actly stationary (rigidly rotating solutions of the free-
the steady spiral in 2D, Kesslet al.[36,39 have extracted boundary equations. Thus exact order-by-order solutions are
a compatibility condition from the steady version of E49).  Nnot stationary even in the smadltimit and this presents very
In the same way, in order to close the steady version oflifficult challenges for obtaining solutions to the asymptotic
Eqs. (48) and (49) for the steady spiral in 2D, one needs to equations. Nevertheless, it would be of interest to consider
extract a compatibility condition from the equation for the ~formally the small-curvature limit of the equations we have

field at next order. This next order equation is obtained. Because the large-excitability limit results in con-
siderable simplifications, we may hope that in these two lim-

v @] gt = ysL) — (D) 4 A(2), (500 its it will be possible to make progress on the problem of

filament motion. In particular, there is hope that equations of

where slow filament motion may be obtained in which coefficients

_ . o _ _ o are directly related to parameters of the original reaction-
N2 = (X(3)+ reﬁz)) .y €(0),,¢(0) (X(2)+ reﬁl)) .y c(0), (1) diffusion equations.

+ XD, Fe(0),62) 1. (X @) 4 D) 3(0)c(0)
+t. X(l)(H(O)UC(1)+r_K COS¢H(O)UC(O)). APPENDIX: COORDINATE SYSTEMS
In this appendix we give some useful properties of the
These expressions show explicitly how the curvature andoordinate systems used. We base our derivation on the
filament motion enter the equations for the core region. Thérenet equations
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aX at quantities are clear either from accompanying text or the use
9s ot, s =0okKn, of the superscript: denoting wave front/back.

In general, for a surface given parametrically as
on ob x%(X1,X5), the surface tangent vectoEs= gx/dx; define the
—=0(th—«t), —=-—0omn, surface coordinate bases with corresponding metric tensor
I8 78 m;; =E-Ej. If the interface is described by the two param-

wherer is the torsion and the curvature of the curvéiila-  €ters &i1,x2)=(r,s), asx*=X(s)+re[®(r,s),s], then
menj given parametrically by (s), ando=|dX/4ds|. _eve,
1. Outer coordinates ES—F e +h
. . . . . 2 ]
A point x in coordinates 1(,¢,s) is given by x=X(s) ¢

+re(e,s), where er=COSan+Sin¢b. The coordinate milzlJrq,z,
frame E,,E,,E3) for (r,¢,s) is
Ei=e, ms,=r2x*+(h%)?,
E,=rde ldp=re,, mS,=m5,=r¥y,
X 4d -
E3=£+ra—2—ht+rare m®=m$,m3,— (M3,)?=(1+P¥?)(h%)>+r?y,

S_ _r —rh- — - s
where h=0(1—r«x cosp). Hence the I(,¢,s) coordinates where rJA q(l SrKCOSCD)l A\I,A ro;, )g ort®s, er_
are not an orthogonal system. =g[®(r,s),s], €,=€,[P(r,s),s], andm® is the determi-

The expressions for the gradient and Laplacian operatord@nt of the metric tensor.
in (r,¢,s) coordinates can, however, be easily deduced by The 3D local coordinatesr (s,¢) are such that points
using the orthogonal coordinates, = ¢+ [ords’,s) and  near the surfacer(s,¢) are given byx= x5+ ¢N, whereN is
the associated change of variables, the unit normal to the surface. The coordinate frame
(E,;,E,,Es) associated tor(s,&) can be expressed in terms
_UTi_ (A1) of the interface coordinate fram&j,E3) via
de

1%
as
@

a0 g’ ds|,
E;=(1-£LDES— éL2ES=hy,ES+hyE5,
The coordinate frame forr(6,s) is
E,=— éLIES+ (1— éL3)ES=h, ES+ hyoES,
El= €,
E;=N=E]XE5/|E;XE},
Ey,=rde ldb=roe ldp=re,,
with LK =3,L;;m®, for i,j,k=1,2, whereL;;=dE{/x;-N
& are the fundamental forms amd® are the components of
de ' the inverse of the surface metric tensor. We have used the
Weingarten theorerft0:
The components; of the metric tensor for these orthogonal
coordinates are thusi;;=1, m,,=r?, andmss=h?. N _ —Z L} ES
The representation for the gradlent and Laplacian opera- axI
tors in orthogonal coordinates are standard. From their rep-
resentation in 1(,6,s) coordinates, one can use H41) to The unit normal is
obtain their representation in the nonorthogormalp(s) co-

ordinates. _ _ - s1/2
N=(h*W¥e’—h% +rxt)/ms'

2. Interface coordinates The components of the metric tensor associated to the

We consider properties of the local interface coordinate§oordinates (,s,£) are
(r,s,&) and, in particular, give properties of the coordinates

at the surface(interfaceé é=0. Where necessary we shall My =mishiy+ 2mihyhy+maht,,
distinguish intrinsic surface quantities from similar volume

quantities by the superscript We also use superscriptto Mpp= M 13, + 2M3hih o+ m3oh3,,
indicate volume quantities evaluated at the surface. In the

main part of the paper this superscript is rarely used; surface Maz=1,
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— — S S 2 S
M15= My =M3;N11051+ Mi5(hy1hos+hiy) +m3ohiohy,,
M 3= M3 = My3= Mgz,=0,

and the determinant is1=my{my,— miz.
The gradient operator is

2
VU—Z m"a—EJr N= Vu+auN
e IE IE
and the Laplacian is
2
1 J J Ju
20— | m¥2m U . V-
viu= m1/2,jE:1 IX; 3Xi mY? 3§(m 23
V2t azu 1 dmdu A2
Ut 582" 2m 9z a¢ (A2)

PHYSICAL REVIEW E 66, 036214 (2002
Myy=m3;—2€L4,+O(£2),
Mpp=M5,— 2€L oo+ 0(&?),

M= M, — 2£L 15+ O(£9).

Thus

_ 2 _ S 2

M= My3Myp— M7= M>+&m; +0(§9),
where

My = —2(Mil 5= 2miL 1o+ m3olyy).
Therefore

LM M o= —2H+0

2m 3 =oms T (&)= (6,

wherem'l are the components of the inverse metric tensor. WhereH is the mean curvature of the interface and is given

We need the last term in EGA2) at leading order irg,
which will be leading order ire when using the stretched
coordinate{= &/e. Expanding them;; using the definitions
of h;; gives

by [50]
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