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A two-species reaction-diffusion model is used to study bifurcations in one-dimensional excitable
media. Numerical continuation is used to compute branches of traveling waves and periodic steady
states, and linear stability analysis is used to determine bifurcations of these solutions. It is shown that
the sequence of symmetry-breaking bifurcations which lead from the homogeneous excitable state to
stable traveling waves can be understood in terms of an O(2)-symmetric normal form.

PACS number(s): 82.20.Wt, 82.20.Mj, 02.20.+b

I. INTRODUCTION

Wave propagation in homogeneous excitable media im-
plies bistability between states of different spatiotemporal
symmetries. Specifically, an excitable medium has a spa-
tially homogeneous steady state: the ground state of the
system. This state is linearly stable; however, certain
sufficiently large perturbations (beyond an excitability
threshold for the medium) do not relax to the homo-
genous state but instead evolve into propagating waves.
Such waves are neither spatially uniform nor time in-
dependent, and hence have broken spatiotemporal sym-
metry with respect to the coexisting homogeneous stable
state.

Despite extensive theoretical and experimental study of
waves in excitable media (e.g., Refs. 1-18), there has been
virtually no focus on the symmetry-breaking bifurcations
associated with them. Previous studies have either not
explicitly identified symmetry-breaking bifurcations, or
have identified the role of symmetry [18], but only for
weakly nonlinear state, i.e., states near bifurcations from
the homogeneous state. While the weakly nonlinear re-
sults are of importance, it cannot be assumed a priori
that they are applicable to the case of highly nonlinear
waves in excitable media.

In this paper we shall examine the sequence of
symmetry-breaking bifurcations which connect homo-
geneous steady states to stable one-dimensional traveling
waves in a model excitable medium [19,20]. Our primary
purpose is to show that the kind of symmetry-breaking
bifurcations which have attracted attention in other
physical systems [21-29], particularly those of hydro-
dynamic origin [30-35], play an important role in dy-
namics of excitable media.

II. SYMMETRY-BREAKING SCENARIO

Before presenting the model excitable system and its
various solutions, we describe a symmetry-breaking
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scenario which will play a central role in our analysis.
This scenario has been observed in a variety of pattern-
forming systems having reflectional symmetry and either
translational or rotational symmetry [21-35] (see also
Refs. [36,37] for a more general discussion). The scenario
is most simply captured in the following system of
differential equations (normal form):

i'=,LLr——r3 y

6=z, (1)
z2=(rt—1—2%)z,
where (r,0,z) are cylindrical coordinates and u is a bifur-
cation parameter. These equations possess several sym-

metries; that is, there are several transformations which
leave the equations invariant. These are

R(a): 6—-60+amod2w (rotation) , (2)
k: 0—>27—0, z— —z (reflection), (3)
T(B): t—t+B (time translation) . (4)

When one is interested in time-periodic solutions of the
equations, it is common to take the time translations
modulo 7, where 7 is the period. Then the above trans-
formations constitute a representation of the group
0O(2)X S!, where the rotations and reflections represent
O(2) and the time translations represent S'. Solutions of
(1) typically break the symmetry of the underlying equa-
tions. In particular, the symmetries of solutions will be
subgroups of the full group of transformations (2)—(4).

The trivial steady state »r =z =0 of (1) is left invariant
by reflection and all rotations and time translations, that
is, it is a fully symmetric state [Fig. 1(a)]. This state is
stable for 4 <0 and at p=0 loses stability via what is
known as a circle-pitchfork (CP) bifurcation. The bifur-
cating steady state states are given by
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FIG. 1. Illustration of the symmetry-breaking scenario dis-
cussed in the text. Shown is a bifurcation diagram together
with three representative phase portraits. The bifurcation pa-
rameter is u; the norm is a function which distinguishes
different states. CP denotes a circle-pitchfork bifurcation and
DP denotes a drift-pitchfork bifurcation. For u below CP, the
origin is stable: phase portrait (a). The branch is labeled homo-
geneous because the origin is fully symmetric. At CP, a circle
of steady states bifurcates from the homogeneous branch and
for 1 between CP and DP these states are stable: phase portrait
(b). At DP the circle of steady states undergoes a drift-
pitchfork bifurcation and for u above DP, there exist two stable
counterrotating limit cycles: phase portrait (c).

r Viu
ol=l6, |, (5)
z 0

where 6, parametrizes the circle of steady states [Fig.
1(b)]. This bifurcation results in a loss of rotational sym-
metry for the stable states of the system: the single, rota-
tionally symmetric state (r =z =0) bifurcates to a family
of states, each of which is not rotationally symmetric, but
which transform into one another under rotation. Each
of the bifurcating states retains reflection symmetry, how-
ever, as do all points which lie in the plane z=0.
Specifically, steady state (5) is left invariant by the trans-
formation, R(6y)oko R(—6,), an element of the group of
spatial symmetries (2) and (3) which corresponds to
reflection about the line 6=6,. Because states (5) are
steady, they are invariant under all time translations.
Thus each steady state (5) has the associated symmetry
group Z, XS,

At p=1 there is a secondary bifurcation at which the
nontrivial steady states lose stability to two counterrotat-
ing limit cycles [Fig. 1(c)]. These limit cycles are given by

r(t) Vi
0(1) | = |Bptct , (6)
z(1) +Vu—1

where ¢ =1V —1 are the wave speeds of the two limit
cycles. Here 6, parametrizes the phase of the orbit. This
transition to periodic orbits is known as a drift-pitchfork,
DP, bifurcation because just after the bifurcation, points
near the formerly stable circle of steady states begin to
drift slowly in one direction or the other. This is very
different from a Hopf bifurcation: at the transition, the
wave speed is zero and the amplitude of the periodic solu-
tions is finite.

The DP bifurcation breaks the reflectional symmetry
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of the system. Points on the limit cycles do not have
reflection symmetry because they do not lie in the plane
z=0. Reflection takes points on one periodic orbit to
points of the other, counterrotating orbit. In addition,
because points on the periodic orbits are not stationary,
they are not invariant under time translations. The rotat-
ing periodic orbits do, however, maintain a continuous
spatiotemporal symmetry: the symmetry of rotating
waves. Points on the periodic orbits rotate at constant
speed (as they must, due to rotational symmetry), and
hence it is possible to compensate for time translations
with rotations.  Specifically, the transformation
R (—ct)o T(2), for any ¢, leaves points on the z >0 period-
ic orbit invariant (and similarly for the z <0 orbit). The
symmetries of points on the periodic orbits form a one-
dimensional subgroup, parametrized by ¢, of the full sym-
metries (2)-(4). There are no further bifurcations as y in-
creases in the normal-form model. Both the CP and DP
bifurcations are intimately associated with the sym-
metries of the system and do not occur in systems
without symmetry.

As we shall make explicit shortly, in a one-dimensional
excitable medium, homogeneous steady states have the
symmetries of the trivial steady state in Fig. 1(a), spatially
periodic steady states have the symmetries of the circle of
steady states in Fig. 1(b), and periodic traveling waves
have the symmetries of the counterrotating limit cycles in
Fig. 1(c). Thus the normal form (1) contains the essence
of the symmetry breakings leading from homogeneous
steady states to traveling waves, with this exception:
there is no bistability between states of different sym-
metries in the normal form. In order to create simultane-
ously stable states, it is necessary for the solution
branches in excitable media to twist and turn, stabilizing
and destabilizing via saddle-node bifurcations. After a
short description of a model excitable system and numeri-
cal methods in the next section, the remainder of the pa-
per will be devoted to exploring the above symmetry-
breaking bifurcations in the model system.

III. MODEL AND METHODS

A. Model equations

Our study is based on the following two-species
reaction-diffusion model for a one-dimensional (1D) excit-
able medium [19,20]:

_@y_=62 w _

u
+ V), S~ 5 + ’ ’
o ax’ flu,v) o ax? g(u,v) (7)
where the species u and v are functions of x and ¢. The
reaction terms f,g are modeled by

flv)=e 'u(l—w)lu —uyv)], ®)

glu,v)=u—v, 9)
with

ug(v)=(+b)/a , (10)

where u,(v) is the excitability threshold for the fixed
point. Here a,b and € are parameters with € <<1 and the
physically significant range of u is 0<u <1 (see Fig. 2
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discussed below). We consider here only cases where
both species diffuse with the same diffusion coefficient,
which is set to unity by choice of length scale.

We rewrite Egs. (7)-(10) compactly as

du _ d’u
ar a2 + f(u) , (11)
where
B u(x,t) _ f(u,v)
u(x,t)= v(x,8) |° f(u)= g (u,v)

We shall be interested in three classes of solutions to
(11): spatially homogeneous steady states, spatially
periodic steady states, and periodic traveling waves.
Thus we impose periodic boundary conditions

u(x +L,t)=u(x,t), (12)

where L is the length of the periodic domain.
Steady-state solutions of (11) are given by
d%u
0=—+f(u), (13)
ax?
with homogeneous steady states satisfying the algebraic
equation

0=f(u) . (14)

By definition, traveling-wave solutions of (11) are time in-
dependent when viewed in a frame traveling at the wave
speed c, i.e., after a change of coordinates x —x —ct.
Thus traveling waves satisfy

d%u du
—_— . —_ _— . 1
0=F(u;c)= ax2+cax +f(u) (15)

Solutions to this equation include not only traveling
waves, but also homogeneous and periodic steady states
as special cases with ¢ =0. Hence all the solutions we
seek are captured in this single equation.

In addition to finding solutions, u, of Eq. (15), we are
interested in determining their stability via linear-
stability analysis. Let DF(u;c) be the linearization of F
about solution u with wave speed c:

9’ 9
DF(u;c)=—5 +c——+Df(u), (16)
dx ox
where Df(u) is the Jacobian of the kinetics f(u). Then
the linear stability problem is written

DF(u;c)i=Au, (17)

where A and @ are eigenvalues and eigenvectors. The
leading eigenvalues of (17), i.e., the eigenvalues with larg-
est real part, determine the stability of the state u.

Equations (15) and (17) are the equations of interest in
this paper. These equations are easily solved analytically
for the case of homogeneous steady states. For inhomo-
geneous steady states and traveling waves we resort to
numerical solutions.
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B. Numerical methods

To solve (15) numerically, we use standard techniques
of numerical analysis and parameter continuation (see,
e.g., [38-41]). We discretize the equation on a grid of be-
tween N =256 and 640 equally spaced points, x;=jh,
where the rigid spacing h =L /N. Spatial derivatives are
approximated by second-order centered differences which
incorporate the periodic boundary conditions (12).

After spatial discretization, system (15) consists of 2N
equations in 2N +1 unknowns: the function values
(u(x;),v(x;)) and the unknown wave speed c. This in-
determinacy results from the symmetries of the problem
and is independent of whether or not ¢ =O0; traveling
waves and periodic steady states are determined only up
to a spatial phase. To remove the indeterminacy and
select one member of the continuum of solutions, we ap-
pend the phase condition

-az()‘c‘ )=0, (18)
ox
where X is some selected point.

We use parameter continuation [40,41] to find
branches of solutions to (15). For this purpose, we ap-
pend another equation and unknown to Egs. (15) and
(18). The additional unknown is one of the kinetics pa-
rameters, a, of Eq. (10) as will be discussed in Sec. IV A.
We then consider solutions to be described by
({u(x;),v(x;)},c,a), and compute a branch, or curve of
solutions, in this (2N +2)-dimensional space. The addi-
tional equation is provided by the corrector step of the
continuation method. Specifically, after computing a pre-
dicted solution by adding a multiple of the tangent vector
to the curve, we impose the constraint that the difference
between predicted and final solutions be perpendicular to
this local tangent.

We solve the resulting system of 2N +2 nonlinear
equations by Newton’s method. The linear system is pen-
tadiagonal, except for the last four rows and columns
(those involving the periodic boundaries; the phase condi-
tion and wave speed dependence; and the continuation
and parameter dependence) and can be solved efficiently
via LU factorization at each Newton step.

After a solution (u;c) to (15) and (18) has been comput-
ed, the spatially discretized operator DF(u;c) of (16) be-
comes a 2N X 2N matrix, for which Eq. (17) is an eigen-
value problem. We used the algorithm of Sorensen to
calculate four leading eigenpairs (eigenvalues and corre-
sponding eigenvectors), for each state of interest. The al-
gorithm, described in detail in Refs. [42,43], uses an
amalgamation of the Arnoldi and QR methods (where Q
is an orthogonal matrix and R is an upper triangular one)
to compute eigenvalues within a desired range, and re-
quires only the action of the matrix on a vector.

Finally, to obtain the initial solution required for con-
tinuation, and also to determine the eventual fate of some
unstable states, we integrate (11) in time. We use Euler
time stepping, with a time step At =2h?/5 taken smaller
than h?/2, the numerical stability limit for a pure
diffusion problem. It is not difficult to construct
piecewise-constant initial conditions that evolve into
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stable traveling waves under time integration. These are
then used as a starting point to compute other traveling-
wave states, and eventually stationary states.

C. Symmetries

We conclude this section by noting that Eq. (7), or
equivalently (15), has precisely the symmetries of the
normal-form equations treated in Sec. II. With periodic
boundary conditions, translations in x are formally
equivalent to rotations, and Eq. (15) has the following
symmetries:

R (a): u(x,t)—>u(x +amod L,t) (rotation) , (19)
Kk: u(x,t)—u(L —x,t) (reflection) , (20)

T(B): u(x,t)—u(x,t +B), (time translation) . (21)

Just as for the normal form, the various solutions that we
consider in the next section have symmetries which are
subgroups of these spatiotemporal symmetries.

There is one additional symmetry of Eq. (15). Consider
the transformation u —1—u, v—1—v applied to the ki-
netics (8)-(10):

f—u,1—v)=—€e"u(l—u)

X |u —u‘h(v)+ﬁ%:£ )

g(l—u,1—v)=—g(u,v) .

Hence, when the parameters satisfy a =1+ 2b, the kinet-
ics, like the diffusion, transform antisymmetrically, and
Eq. (15) has an additional symmetry: F(1—u;c)
= —F(u;c). While this symmetry in the reaction terms
cannot be expected in realistic systems, this symmetry is

found in other models currently studied [44].

IV. RESULTS

We now present bifurcation diagrams for three classes
of solutions to (15): spatially homogeneous steady states
(HSS), spatially periodic steady states (PSS), and periodic
traveling waves (TW). We shall emphasize the sym-
metries of the solutions and their relationship to the
normal-form solutions in Sec. II.

A. Homogeneous steady states

Written in component form, Eq. (14) for the homo-
geneous steady states is

0=f(u,v)=€e 'u(1—u)[u —(v+b)/a], (22)
0=g(u,v)=u—v . (23)
The HSS solutions immediately follow:
u=v=0, (24)
u=v=1, (25)
=y=-2 26)
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We shall refer to these as the zero, one, and middle
branches, respectively.

Because the HSS’s are independent of x and ¢, they are
invariant under all symmetry operations (19)-(21) and
thus correspond to the point r =z =0 in the normal
form.

It is useful to consider briefly the organization of
homogeneous steady states in the (a,b) parameter plane.
Shown in Fig. 2 is the parameter plane with representa-
tive nullcline diagrams as insets. The u nulicline is the
curve on which & =f(u,v)=0, and the v nullcline is the
curve on which v =g (u,v)=0. The u nullcline consists of
the three lines ¥ =0, u =1, and u =u,(v)=(v +b)/a.
Only the solid portion of the ¥ nullcline, forming a back-
wards N, is physically significant for the model kinetics
[45]. The v nullcline is v =u. At (u,v) points where the u
and v nuliclines intersect, the system has a HSS.

There are four regions in Fig. 2, distinguished accord-
ing to the intersection of the v nullcline with the solid
branches of the u nullcline. In region I the v nullcline in-
tersects only the zero branch of the u nullcline. In region
II the v nullcline intersects all three branches. In region
IIT the v nullcline intersects only the one branch of the u
nullcline and in region IV it intersects only the middle
branch. Throughout most of region IV there are no
stable steady states and the homogeneous system is oscil-
latory (see below). Note that the diagram is symmetric
under the transformation b—a —b —1, as follows from
the symmetry of the kinetics discussed in Sec. IIIC. The
four-region diagram shown in Fig. 2 is known as a cross-
shaped diagram in the chemical-dynamics literature [46].

The stability of homogeneous solutions is easily found
analytically. For a periodic domain of length L, the
eigenmodes are trigonometric functions of 2wkx /L with

1 T
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0 0.5 1 1.5
a

N B A

FIG. 2. Phase diagram for the homogeneous states of the sys-
tem. The diagram is divided into four regions with representa-
tive nullcline diagrams in each. Only the solid backwards N-
shaped parts of the u nullclines are physically relevant. In re-
gion I only the zero branch is stable. In region II the system is
bistable. In region III only the one branch is stable.
Throughout most of the region IV there are no stable steady
states and the homogeneous system is oscillatory. The diagram
is symmetric under the transformation b—a —b —1. Hatching
illustrates the portion of region I in which the zero branch is ex-
citable. A symmetrically located portion of region III exists for
which the one branch is excitable.
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k integer. Substituting

sin
u+dexp(Ar) X [cos ](Zﬂkx /L)

into Eq. (11), with u any of (24), (25), and (26), and linear-
izing, we obtain

fu—Qmk /L) Lo T #,
1 —1=Qak /L | |5 |~ |5 | 7
where
fo=e H(1—w)u —uy(v)]
—ulu—ug()]+u(l—u)}, (27
fo=—€'u(l—u)/a . (28)

The eigenvalues are

hor =3{f, —1E[(f, =D +4(f,+ )1}, 29

Mes=hoy—Q2mk /L), k=12,..., (30)
with corresponding eigenvectors
7 1+A,y
v | 1

From (30), it is clear that if a HSS is stable to homogene-
ous (k =0) perturbations, then it is also stable to pertur-
bations with any k. Hence, to determine whether a
branch is stable, we need only consider the eigenvalues
Ao+ corresponding to k =0.

The stability of the zero and one branches is immedi-
ately found by noting that (28) implies f, =0 for u =0 or
u=1. Equation (29) then simplifies to Aq.=f,,
Ao_ =—1. For the zero branch, f, = —e b /a, which is
negative for positive a and b, and hence the zero branch
is stable in regions I and II. For the one branch, we have
Ao+ =f,=€ '[—1+(1+b)/a]. Thus the one branch is
stable for 1+b <a, i.e., in regions II and III.

The eigenvalues of the middle branch require more
algebra to compute, but it is not difficult to verify the fol-
lowing. In Region II (where the zero and one branches
are both stable) the middle branch has Ay, >0 and hence
is unstable. Along the curves b=1(a—1)[ 1£V'1—4€] in
region IV, the middle branch undergoes a homogeneous
Hopf bifurcation.

In region I when b is small, the zero-state is a stable
but excitable steady state. That is, an initial condition
sufficiently perturbed from the zero state returns to it,
but only after a substantial excursion. This can be
verified by direct simulation of the homogeneous system.
However, the definition of excitability is not exact (e.g.,
Ref. [1], p. 184) and it is not possible to say precisely
when the system is excitable. The hatched area in Fig. 2
illustrates approximately the parameter regime for which
the zero state can be considered excitable. A symmetri-
cally located portion of region III exists in which the one
state is excitable. In bistable region II, large perturba-
tions of the zero state lead to the one state rather than re-
turning to the zero state (and vice versa).
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FIG. 3. Bifurcation diagram for homogeneous steady states.
The value u is plotted as a function of a along the zero branch,
u=v =0, the one branch, u=v=1, and the middle branch,
u=v=b/(a—1). Solid (dashed) curves indicate the physically
relevant (irrelevant) states. The middle branch intersects the
one branch in a transcritical bifurcation, T, at a=1+b=1.01
and undergoes k =1 circle-pitchfork bifurcations, CP, at
a=1.0101 and @ =17.71 (not shown).

We are primarily interested in the excitable portion of
region I. However, to obtain a coherent bifurcation pic-
ture, it is also necessary to consider bifurcations occur-
ring in region II. We choose a as the bifurcation parame-
ter and show diagrams for a in the range 0 <a <2 with b
fixed at 0.01. The other parameters are also fixed for the
remainder of the paper: €= 1, and L =21.58.

Figure 3 shows a bifurcation diagram for the HSS solu-
tions. The zero branch is stable throughout. The one
branch becomes stable at a =1+ b in a transcritical bifur-
cation with the middle branch [47]. This bifurcation
marks the boundary between regions I and II of Fig. 2.

The eigenvalue Ay, of the middle branch, calculated
from formula (29), is plotted on Fig. 4 as a function of a.
When Ay, =(27k /L)% the middle branch becomes un-
stable to modes with wave number 27k /L). In particu-
lar, Ay, =(27/L)* at a =1.0101 and again at a =17.715
(not shown). At these values of a, the middle branch be-
comes unstable to kK =1 modes. These instabilities are
circle-pitchfork bifurcations through which the periodic
steady-state branch is created and eventually destroyed.
It can be seen from Fig. 4 that the middle branch is un-
stable to a considerable number of higher wave-number
perturbations which shall not be considered here.

B. Periodic steady states

Figure 5 shows a bifurcation diagram for the periodic
steady states which bifurcate from the HSS middle
branch. The norm we use to characterize the
PSS branch is the spatial average (v)=(1/L)[Lvdx.
Representative spatial profiles (u(x),v(x)) for the PSS
solutions are shown as insets. The letters CP, SN, and
DP indicate circle-pitchfork, saddle-node, and drift-
pitchfork bifurcations. The bifurcations delimit sections
of the PSS solution branch: each section is labeled by its
instability index, i.e., the number of (linearly indepen-
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FIG. 4. Leading eigenvalue, Ag., of the middle-branch steady
state. The eigenvalue crosses zero at a=1+b=1.01, corre- A P
sponding to the transcritical bifurcation in Fig. 3. Growth rates L
of nonzero wave-number perturbations can be inferred from this 0 :1 2

figure via Ay =Aoy —(2mk/L)®. The periodic steady-state
branch shown in Fig. 5 originates from k =1 circle-pitchfork bi-
furcations at a =1.0101 (see also Fig. 3), and at a=17.71 (not
shown). The middle branch undergoes numerous other circle-
pitchfork bifurcation with successively higher k <20. Tick
marks are at values A=(27k /L)? for L =21.58 and k integer.

dent) eigenvectors to which a solution is unstable.

At a=1.0101 there is the circle-pitchfork bifurcation,
through which the PSS branch arises from the HSS mid-
dle branch. A “circle” of PSS solutions is created from
the pair of bifurcating eigenvectors @ycos(27x /L) and
g sin(2mx /L ). Each inset in Fig. 5 actually shows one
member of such a circle of solutions. The PSS solutions
are not invariant under rotation; instead, rotations R (a)
transform PSS solutions into other PSS solutions. This
implies the existence for each PSS solution u(x) of a mar-
ginal mode du/dx, with zero eigenvalue [as can be
verified by substitution into (16) and (15)]. This marginal
eigenvector “points” along the circle of solutions, and is a
feature of all of the PSS and traveling-wave solutions.
(The corresponding mode for the normal form is the 6
unit vector.) Because the marginal mode is always
present, the Jacobian at any steady-state bifurcation has
two zero eigenvalues, rather than one. Marginal eigen-
vectors for two different PSS solutions are illustrated in
Figs. 6(a) and 6(c). Like the steady states (5) in the nor-
mal form [Fig. 1(b)], each PSS solution has an axis of
reflection symmetry. Consequently, all eigenvectors
along this branch are either reflection symmetric or
reflection antisymmetric, as can be seen in Figs.
6(a)-6(d).

Close to CP, the inset shows that PSS solutions resem-
ble the one branch, with a slight depression that deepens
as we move along the branch in the direction of increas-
ing a. The middle branch is unstable prior to the CP bi-
furcation, and hence, the PSS branch inherits from the
middle branch an instability index of 1. At a=1.489
there is a saddle-node bifurcation of the PSS branch
which increases the instability index from 1 to 2. As we

FIG. 5. Bifurcation diagram for periodic steady states (PSS).
The spatial average (v ) is plotted as a function of a. The thin
curve shows the homogeneous middle branch u =v=54/(a — 1),
from which the PSS solutions bifurcate. Dots indicate bifurca-
tion points: circle pitchfork, CP; saddle node, SN; drift pitch-
fork, DP. With decreasing (v), bifurcations occur at
a=1.0101 (CP), a =1.489 (SN), a =1.346 (DP) , a =0.464 (SN),
and a=0.576 (DP), and a=17.71 (CP; not shown). Numbers
label the number of unstable eigenvalues. Insets are spatial
profiles of u (thick) and v (thin) at (clockwise from lower right)
a=0.92, 0.58, 0.76, 1.02, 1.38, and 1.06. The pulse branch sha-
dows the middle branch: the profiles resemble u =v =1 near the
first CP bifurcation and resemble u =v =0 near the second CP
bifurcation. The parameter value a =1+2b=1.20 at which u
and v have shift-and-reflect symmetry is indicated by an aster-
isk.

continue along the branch, now in the direction of de-
creasing a, we encounter the drift-pitchfork bifurcation
at @ =1.346 which increases the instability index of the
PSS branch to 3. At DP, the Jacobian contains a Jordan
block: the bifurcating eigenvector coalesces with the ro-
tational mode du/dx. The drift pitchfork is responsible
for the creation of the traveling-wave branch, and will be
discussed in Sec. IV C.

As we continue along the PSS branch, the depression
in the u and v profiles continues to deepen and widen,
causing the average value (v) to decrease drastically.
There exist two small intervals throughout which two of
the three unstable eigenvalues form a complex conjugate
pair. As discussed in Sec. III C, at the parameter value
a=1+2b, Eq. (11) is invariant under the transformation
u— 1—u. This causes the PSS solutions to possess an ad-
ditional symmetry sometimes referred to as shift-and-
reflect 1—u(x +L /2)=u(x). Two eigenvectors at this
parameter value are shown in Figs. 6(a) and 6(b).

We encounter a second saddle-node bifurcation at
a=0.464 and a second drift-pitchfork bifurcation at
a=0.576, which successively decrease the instability in-
dex from 3 to 2 and then to 1. The DP is a termination



5060

1 1F
>
=
(a)
A1k 4}

X X

FIG. 6. Representative eigenvectors. The thin curves are the
underlying periodic or traveling-wave states u={(u,v); the thick
curves are the eigenvectors U=(&,0) whose eigenvalues are
closest to zero. (a) and (b) are antisymmetric and symmetric
eigenfunctions, respectively, for the periodic steady state which
has shift-and-reflect symmetry at a =1+2b=1.02 in Fig. 5. (c)
and (d) are eigenfunctions for the periodic state at the drift-
pitchfork bifurcation at @ =0.464. (c) is the antisymmetric mar-
ginal rotational mode du/dx which has coalesced with another
eigenvector to form a Jordan block. (d) is the symmetric eigen-
function which bifurcates at a nearby saddle node. (e) and (f)
are the real and imaginary parts of a complex eigenvector for a
traveling wave at a =0.217. These are associated with the near-
by Hopf bifurcation in Fig. 7.

point for the traveling-wave branch. The eigenvectors as-
sociated with these two bifurcations are shown in Figs.
6(c) and 6(d). It can be seen that the eigenvector which
bifurcates at SN [Fig. 6(c)] is reflection symmetric,
whereas the bifurcating eigenvector at DP [Fig. 6(d)] is
antisymmetric and identical to the translational mode
du/dx.

The PSS has become quite narrow and it now begins to
shorten as well. At a=17.715 (not shown in Fig. 5), the
PSS branch terminates, via another circle pitchfork, on
the homogenous middle branch.

C. Traveling waves

Shown in Fig. 7 is a bifurcation diagram for the
traveling-wave solutions. Here we characterize each
state by its wave speed ¢. As in Fig. 5, representative spa-
tial profiles, (u(x),v(x)), are shown as insets. The bifur-
cations are indicated as before with H abbreviating Hopf
bifurcation. The instability index of a traveling wave
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FIG. 7. Bifurcation diagram for traveling waves. The wave
speed c is plotted as a function of a. The thin line at ¢ =0
represents the periodic steady-state branch, and the thick curves
represent the bifurcating branches of traveling waves. Dots in-
dicate bifurcation points: drift pitchfork, DP; Hopf, H; and
saddlenode, SN. Bifurcations occur at a=1.347 (DP),
a=1.374 (H), a =1.408 (SN), a =0.218 (H), a =0.213 (SN),
and @ =0.576 (DP). Numbers label the number of unstable ei-
genvalues. Insets are spatial profiles of u (thick) and v (thin) at
(counterclockwise from lower left) a =0.24, 0.75, 1.17, 1.38, and
0.75. Note that the bifurcation diagram is symmetric about
¢ =0, and that the profiles of right-going waves are reflections
of the left-going waves. Stable traveling waves exist over the in-
terval 0.218 <a < 1.408.

with wave speed c is calculated in a frame moving with
velocity ¢ according to (16), and is given by the number
along the branch.

The traveling-wave branch arises from the PSS branch
via drift-pitchfork bifurcations, analogous to that
presented in Sec. II. At these bifurcation points, c,
which corresponds to z in the normal form (1), is zero
and the spatial profiles ¥ and v are reflection symmetric.
The drift pitchfork breaks the reflection symmetry and
gives rise to two branches of traveling waves, one right-
going (c >0) and one left-going (c <0), which are inter-
changed by reflection in x, as illustrated by the upper and
lower insets at a =0.75.

Beginning our tour around Fig. 7 at the DP at
a=1.347, following either the left- or right-going waves,
we note that the traveling-wave branch inherits three un-
stable eigenvalues from the PSS branch. Two of these
form a complex conjugate pair which undergoes a Hopf
bifurcation H at @=1.374. The Hopf bifurcation de-
creases the instability index to 1 and creates a pair of un-
stable tori, i.e., modulated traveling waves. (We have not
computed these unstable tori and they are not shown in
the figure). The last remaining unstable eigenvalue
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changes sign at the saddle-node bifurcation at a =1.408.

This, then, completes the sequence of bifurcations lead-
ing to the formation of stable traveling waves. They exist
over the interval 0.218 <a < 1.408. Thus the stable por-
tion of the traveling-wave branch extends well into the
excitable regime of the system a <1+b=1.01 (see Fig.
2).

The spatial profiles of the traveling waves follow the
same qualitative trend as those along the underlying PSS
branch. For a~1.4, u and v are near one, with a narrow
depression. This depression grows until, for a =0.2, u
and v are near zero, with a small spike. The difference
between the leading and trailing edges of the v profile is
more marked than that of the u profile, and the asym-
metry grows with |c|.

At the low-a end of the bifurcation diagram, two bifur-
cations occur in rapid succession: a Hopf bifurcation at
a=0.218 followed by a saddle-node bifurcation at
a=0.213. The real and imaginary parts of the bifurcat-
ing eigenvectors at H are shown in Figs. 6(e) and 6(f).
The complex eigenvalues at H become real as a is de-
creased and one of these eigenvalues goes to zero at SN.
Hence the H and SN bifurcations are probably associated
with the unfolding of a double-zero bifurcation [48]. If
this is the case, then the unstable tori created at the Hopf
bifurcation disappear via a global saddle-loop bifurcation,
by colliding with the singly unstable portion of the
traveling-wave branch close to the SN. Finally, the
traveling-wave branch is reabsorbed into the PSS branch
by a second drift pitchfork at @ =0.576.

V. DISCUSSION AND CONCLUSION

We have computed bifurcation diagrams for spatially
homogeneous steady states, spatially periodic steady
states, and periodic traveling waves along a particular
one-parameter path of a model excitable medium. In so
doing, we have shown how traveling wave states are con-
nected via symmetry-breaking bifurcations to a fully sym-
metric, homogeneous steady state. The middle-branch
steady state, which gives rise to the periodic steady states
and traveling waves, is itself connected to the excitable
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zero branch in a (nonsymmetry-breaking) transcritical bi-
furcation along the curve b=0 (Fig. 2). Thus we have
clearly identified the bifurcations which connect the two
most basic states of an excitable medium: the homogene-
ous excitable state and stable traveling waves.

We have not attempted a comprehensive investigation
of parameter space. Except for the homogeneous steady
states, we have not considered the effect of varying the ki-
netic parameters € and b. More importantly, we have
kept the length L fixed, and so have followed only one
branch of a continuum of solutions parametrized by L.
We have been content to keep these parameters fixed be-
cause much is already known about traveling waves in ex-
citable media [1]-[17]. Our purpose has been instead to
focus explicitly on the various symmetry-breaking bifur-
cations occurring in the system.

We conclude by mentioning the overlap between the
results presented here and other studies of reaction-
diffusion systems. In particular, Dockery and Keener
[12], and McCarty and Horsthemke [13] have computed
drift-pitchfork bifurcations to traveling waves in other
models or excitable media, though they did not identify
the symmetry breakings associated with these bifurca-
tions. Farr and Golubitsky [18] have considered in detail
Hopf bifurcations with O(2) symmetry for the Gray-Scott
model. While the Gray-Scott model is not a model of exi-
tability, the results of Farr and Golubitsky might apply
to excitable systems. For instance, outside the excitabili-
ty regime the model we have studied undergoes homo-
geneous Hopf bifurcations (region IV of Fig. 2). Hence
we expect there to be O(2)-symmetric Hopf bifurcations
in region IV. We have not explored this, however, and
we do not know whether there are traveling-wave
branches originating in region IV which stabilize in the
excitable regime. We leave this for future work.
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