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Past studies of systems showing mixed-mode oscillations have revealed behavior along arbitrarily chosen parameter paths sim-
ilar to that on the critical surface marking the break-up of invariant tori. Observations of this behavior in a model of the Belou-
sov—Zhabotinskii reaction is presented. Using the theory of circle maps, it is shown that near-critical behavior can arise along one-

parameter paths.

Phase locking has been observed in a variety of
systems including convective fluids [1], chemical
reactions [2], and numerous solid state devices
[3,4]. Recent studies have centered on the quasi-
periodic transition to chaos associated with the
breakup of invariant tori and have served to confirm
predictions made from the study of circle maps
[5-7]. Of particular importance is the critical line
(codimension-one surface) in parameter space on
which the underlying torus loses smoothness. On the
critical surface, phase locking occurs with full mea-
sure. Below this surface, phase-locked tongues are
separated by quasiperiodicity; above the critical sur-
face, phase-locked tongues overlap and chaos can oc-
cur. Only through the careful variation of two
parameters is it generally possible to obtain a path
confined to the critical surface. One-parameter paths
generically intersect the critical surface transversely
and are expected to show, in addition to phase lock-
ing, quasiperiodicity or chaos or both with non-zero
measure.

Nevertheless, there have been reports of systems
showing only periodic states along essentially arbi-
trary one-parameter paths[2,8-11]. The ordering of
these states along the parameter paths is like that of
phase-locked states on a torus, i.e. the ordering is
naturally described by Farey series. It is this “critical
behavior” along one-parameter paths which we
addres in this Letter.

We first illustrate the behavior we wish to under-

stand by showing results we have obtained from a
model of the Belousov-Zhabotinskii (BZ) reaction
(see below). The temporal evolution of the system
consists of complicated sequences of large and small
amplitude oscillations being associated with nearly-
harmonic behavior and the large amplitude oscilla-
tions being associated with relaxational behavior. We
label a periodic state with L large oscillations fol-
lowed by S small oscillations by LS. A more com-
plicated pattern consisting of n transitions between
large and small oscillations per period is labeled
L$...L5,

The ordering of states as a function of a control
parameter is governed by the concatenation rule
shown in fig. 1a: between two relatively simple par-
ent states is found the daughter state whose pattern
is the concatenation of those of the parent states. By
assigning a rotation number R to each of the states,
this ordering can be described by Farey series. We
define R to be L/(L+S), where L and S are, re-
spectively, the total numbers of large and small os-
cillations per period. Then the concatenation rule
implies that between two states with rotation num-
bers R,=p,/q, and R,=p,/q, lies the state with ro-
tation number R=(p,+p,)/(q.+q.), the Farey
mediant of R, and R,.

Over a range of control parameter, only periodic
states are observed and these states always obey the
concatenation rule. Thus, plotting R as a function of
control parameter we obtain a devil’s staircase (fig.
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Fig. 1. Representative dynamics. (a) Plots of log U versus time
for a model of the BZ reaction at three values of the control pa-
rameter B (see text). The variable U represents the concentra-
tion of a chemical species. At values of § between the 12 and 1°
states is found the 1217 state whose pattern is the concatenation
of the 12 and 17 patterns. The rotation number R is shown in
square brackets for the three states. (b) Devil’s staircase of peri-
odic states obtained from the model. Schematic representations
of the periodic patterns and the rotation number are given ex-
plicitly for five of the steps.

1b). This staircase strongly resembles that expected
at criticality (cf. results obtained for the sine circle
map [7]) even though only one (arbitrarily chosen)
parameter has been varied.

Behavior like that just described has been ob-
served in a variety of systems [8§-11], and yet there
has been no general explanation of the phenomenon.
(Maps of the interval which give rise to this behav-
ior have been studied [12]; certain systems with dis-
continuities have also been treated [13]. We provide
evidence that the mixed-mode oscillations shown in
fig. 1 are phase-locked states on a torus, and using
the theory of circle maps, we show how near-critical
behavior can arise along one-parameter paths. It
should be noted that periodic dynamics describable
with Farey triangles has also been observed in ex-
periments [8,14], but we shall not address this be-
havior here.

We have investigated a mathematical model of the
BZ reaction given by the following four differential
equations [15]:

220

PHYSICS LETTERS A

23 May 1988

A= —AB*—oad+g, V+8,
B=AB>*—yB+4,

U—a
U+a’

U=k'U(1=U)=b"(V+g,B)

V=k(U-V-gB).

The variables 4, B, U, and V represent the con-
centrations of chemical species in a well-stirred re-
actor; f1is the primary bifurcation parameter. Unless
stated otherwise, the remaining model parameters
are assigned the following values: «=0.02, y=0.12,
6=2.0x10"3, a=0.01, b’ =250, k' =100, k=0.1,
g1=0.1, &=—5.0x 1072,

The staircase in fig. 1 has ben obtained by inte-
grating the model equation at approximately 160
values of 8. The integration has been performed with
a one-step relative error tolerance of at most 10~ '°
(and in some cases as small as 10~ '3 to further verify
the periodicity of solutions). States with as many as
95 oscillations per period have been observed. The
staircase behavior continues for values of §less than
those shown, but non-periodic states are also found
(see below); for values of S above those shown, the
small amplitude oscillations terminate in a Hopf
bifurcation.

To verify that the behavior shown in fig. 1 did not
arise by some fortuitous choice of parameter values,
we have (1) decreased each of the parameters (ex-
cept B) by 10% and again varied S, and (2) varied,
one at a time, the parameters «, 4, and g, with g fixed
at 3.73x 1072, In each case we have again found
““critical behavior”.

Shown in fig. 2 is a phase portrait which illustrates
an important property of the model dynamics as-
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Fig. 2. Phase portrait of the 1° state illustrating the local separa-
tion of nearby phase-space points by the flow (arrows indicate
the direction of increasing time). The dashed curve added in the
enlargement represents a portion of the separatrix that trajecto-
ries must cross to undergo a relaxation oscillation.
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sociated with the dichotomy in the amplitude of the
oscillations (large or small amplitude only). There
is a region of phase space in which the vector field,
particularly the U-component, varies rapidly in mag-
nitude and direction. This gives rise to a separatrix
in the phase space which trajectories must cross in
order to make a large amplitude relaxation oscilla-
tion. As will be important below, this means that
there is a region of phase space in which the flow ¢,
greatly separates, over short times, very nearby phase-
space points.

We now provide evidence that the periodic states
lie on an invariant torus. We have found it conve-
nient to analyze the dynamics with the next maxi-
mum map for the variable B, i.e. the map F: B,~ B, ,
where B, denotes the nth relative maximum of B.
This map is a “one-dimensional projection™ of a
Poincaré map *', and as such, it captures the features
of the dynamics important to us here.

Fig. 3 illustrates the evolution of the dynamics as
B is varied through the interval corresponding to the
12 state. The state is born via a tangent or saddle-
node-of-periodic-orbits (SNP) bifurcation: the sta-
ble-unstable pair of periodic orbits initially sepa-
rate, but eventually reunite in another SNP
bifurcation at the other end of the 12 interval. This
is exactly the behavior of phase-locked states along
a path through an Arnol’d tongue {16]. In particu-
lar, the stable and unstable fixed points of the third
maximum map (F?*) pair up differently at the two
ends of the 12 interval. (We can assume continuity
of the underlying Poincaré maps.) This supports the
existence of an invariant torus formed by the closure
of the unstable manifold of the unstable limit cycle.
We have checked many of the periodic states and in
each case we have found this same behavior.

Note that the near-infinite siope of the maps in fig.
3 is a reflection of the local separation of trajectories
shown in fig. 2; very nearby points can be greatly
separated under application of the maps. It is this
which has prevented us from numerically visualizing
the unstable manifold of the unstable period orbit
directly. We have not been able to generate points on

' Embed the dynamics in R" (n sufficiently large) by
B(t)»(B(1),...,d"B(t)/dt"). Let P be the Poincaré map for
the section dB/d¢=0, then the graph of F is a projection of the
graph of P. (F is not, in general, single valued and not, strictly
speaking, a map. )
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Fig. 3. Evolution of the 12 state. The third iterate of the next max-
imum map is shown at (a) £=3.73528x 10~2: tangent bifurca-
tion into the period-three state, (b) £=3.7342x10~%
stable-unstable pair of periodic orbits, and (c¢) p=
3.73042 % 10~ 2 tangent bifurcation out of the 1° state (enlarge-
ment reveals a quadratic tangency ). The maps were generated by
perturbing the system away from the stable periodic orbit. (d)
Sketch of invariant sets for the:Poincaré map corresponding to
(b). The vertical coordinate is unspecified. Solid (hollow) cir-
cles denote stable (unstable) periodic orbits. These orbits pair
up u~s etc. in (a) and s—u’ etc. in (c). The unstable manifold of
the unstable orbit is assumed to be qualitatively as shown in (d).

that part of the unstable manifold corresponding to
the long arc between u and s” in fig. 3d. This results
in gaps in the maps of fig. 3. While we assume that
the actual next maximum maps are well behaved in
the gaps, we cannot be certain of this.

We turn to the theory of circle maps to explain why
the model dynamics resembles that found on the
critical surface. Consider the space of continuous
maps from the circle to itself, C°(T!, T'), and the
subspace Diff(T!) of (orientation preserving) dif-
feomorphisms of the circle. (See fig. 4.) The parts
of the boundary of Diff (T!) consisting of maps with
a point of zero or infinite slope are labeled S and §
respectively. In modeling the break-up of invariant
tori with circle maps, S represents the critical surface
on which the break-up occurs.

We now show that “critical behavior™ exists along
S as well as along S. First note that quasiperiodicity
and phase locking are invariant under time reversal.
Thus, given any family f, in Diff(T') uSUS, there
is a corresponding family ;' which shows, at any
given value of u, the same dynamics (quasiperiod-
icity or phase locking) as f,. Because maps on S are
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Fig. 4. Schematic diagram showing a portion of the space C°(T!,
T') and the subspace Diff(T'). Representative maps are shown
at three points in C°(T!, T'). The parts of the boundary of
Diff(T') labeled S and § consist of al! invertible maps in C°(T',
T') with a point of zero or infinite slope, respectively. Py repre-
sents the family of maps corresponding to the model path. Pj is
shown crossing S to illustrate that, at values of 8 below those in
fig. 1, the maps develop a quadratic maximum and more com-
plex dynamics (including chaos) are found.

the inverses of maps on S, critical behavior must ex-
ist on both.

The model parameter path corresponds to a fam-
ily near S (indicated by Py in fig. 4) because along
the model path the corresponding maps all have near-
infinite slope. Thus the model dynamics is similar to
that along the critical surface, not because the model
path lies on S, but instead because it lies extremely
close to §.

Fig. 4 shows why it is not necessary to simulta-
neously vary two parameters in order to obtain a path
very near S, and thus why one-parameter families of
circle maps can show near-critical behavior. Unlike
S, S represents an asymptotic limit for differentiable
maps of the circle. Thus in families of circle maps,
large parameter changes can result in very small
changes in the distance to S.

In a forthcoming publication [17] we show that
this asymptotic limit holds in higher dimensional
dissipative systems. Our investigations of the BZ
model (a four-dimensional system) bear this out: we
have generated numerous maps but have never ob-
served the nearly vertical slopes to pass through the
infinite limit and change sign. Because of this, the

222

PHYSICS LETTERS A

23 May 1988

BZ reaction exhibits dynamics, along arbitrarily cho-
sen one-parameter paths, like that found on the crit-
ical surface. Our results on near-critical behavior are
not limited to the BZ reaction, but are applicable to
many physical systems having strong local sepera-
tion of orbits.

I wish to thank M. Schumaker, H.L. Swinney, L.
Tuckerman, and J. Vastano for their critical readings
of the manuscript.
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