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SECTION VII TRAVELING WAVES AND THERMAL CONVECTION 

TRAVELING WAVES IN AXISYMMETRIC CONVECTION: 
THE ROLE OF SIDEWALL CONDUCTIVITY 

Dwight BARKLEY and Laurette S. TUCKERMAN 
Department of Physics and Center for Nonlinear Dynamics, University of Texas, Austin, TX 78712, USA 

The results of a full numerical simulation of Rayleigh-Brnard convection in a cylindrical container of aspect ratio five are 
reported. Near onset, convection takes the form of five concentric rolls, which in fluids of moderate to large Prandtl number, 
are stable to nonaxisymmetric perturbations. As the Rayleigh number is increased, these ,,oils are succeeded by traveling waves 
when the sidewalls of the container have high thermal conductivity. For insulating sidewalls, transition occurs instead to 
steady four-roll states. A complete two-parameter phase diagram connecting these two scenarios is presented. 

1. Introduction 

In a recent paper [1] we described the occur- 
rence of traveling waves in simulations of 
Rayleigh-Brnard convection in a cylindrical con- 
tainer. While many studies, both experimental 
[2, 3] and theoretical [4-8], have explored time- 
dependent patterns in convection, our study was 
unique in that we considered the role of thermally 
conducting sidewalls in the formation of traveling 
waves. Our main observation was that in cylinders 
whose sidewalls are good thermal conductors, 
traveling waves occur for simple (non-binary) flu- 
ids. We found that for moderate to high Prandtl 
number fluids, the axisymmetric states (both steady 
and oscillatory) near convective onset are not sub- 
ject to the nonaxisymmetric instabilities [9] and 
chaotic dynamics [2] observed near convective on- 
set in lower Prandtl number fluids. Thus, the 
combination of high Prandtl number and high 
sidewall conductivity is, in many cases, sufficient 
to produce axisymmetric . . . . . .  ': - u~v~.n~ waves near the 
onset of convection. 

Our purpose here is to expand oil this earlier 
work. Previously we described only the cases of 
perfectly insulating and perfectly conducting lat- 
eral sidewalls. Here we describe the convective 

dynamics near onset over the entire range of side- 
wall conductivities. Our approach is the same as 
before: we use numerical techniques (both time- 
stepping and steady-state continuation) to solve 
the full time-dependent Boussinesq equations for 
a cylindrical geometry. We then use dynamical 
systems theory to analyze the bifurcations be- 
tween various steady and oscillatory states. 

2. Description of system and numerical methods 

Our results have been obtained from an initial- 
value pseudospectral code [10]. We have devel- 
oped methods which adapt the same code to 
perform steady state continuation [11] and linear 
stability analysis [12]. All computations reported 
are for an aspect ratio (radius/depth) F = 5. We 
have used 50 Chebyshev polynomials in the radial 
direction r and 16 in the vertical direction z, and 
have checked numerical accuracy by doubling this 
spatial resolution. The timestep used is 0.002, the 
maximum allowed by the Courant condition. (All 
times are expressed in units of the vertical thermal 
diffusion time t v -  d2/~, where d and x are the 
depth and thermal diffusivity of the fluid layer; 
distances are expressed in units of d.) 
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The plates at the top and bottom of the con- 
tainer, as well as the sidewalls, are rigid: boundary 
conditions u,. = u: = 0 are imposed on the veloc- 
ity. The top and bottom plates are taken to be 
perfect thermal conductors. To investigate the ef- 
fect of lateral sidewalls with finite thickness and 
thermal conductivity, we imposed the hybrid 
boundaz~j condition [13] p,h + i)~h = 0 on the side- 
walls, where h is the temperature deviation from 
the conductive profile. For ~ - ,n~,,, tanh (~rd~) this 
hybrid boundary condition approximates side- 
walls with a finite thermal diffusivity ~:,,, and 
thickness dw. We shall generally refer to ~ simply 
as the sidewall conductivity. 

The system, i.e. the equations and boundary 
conditions, is invariant under the operation of 
z-reflection, defined by 

(u~,ue, uz, h)(r,O,z) 

Uo,-..,-h)(r,O,-z). 

This symmetry will prove to be important in the 
dynamics we now describe. 

3. Results 

All detailed results reported here are for an 
aspect ratio F = 5 and a Prandtl number Pr = 10. 
For these parameter values we have found that, 
near the onset of convection, axisymmetric pat- 
terns are stable, once obtained, to nonaxisymmet- 
ric perturbations of the form exp(im0) for all 
m _< 5. We shall first describe the scenario ob- 
tained as a function of Rayleigh number for 
perfectly conducting sidewalls~ Thls scenario illus- 
trates both the nature of the traveling waves which 
we have investigated and the gioba| bifurcation 
which triggers them. We then briefly discuss the 
ease of perfectly insulating sidewalls. Finall3, we 
connect these two limiting cases in a comprehen- 
sive picture showing the dynamics of the system as 
a function of both Rayleigh number and sidewall 

conductivity. 

3.1. Cc~nducting sidewalls 

A schematic bifurcation diagram summarizing 
our findings for the case of perfectly conducting 
sidewalls (/~ = oo) is shown in fig. 1. We use as the 
bifurcation parameter the reduced Rayleigh num- 
ber E - (Ra - Ra¢)/Ra¢,  where Ra is the Rayleigh 
number and Ra¢ is the critical Rayleigh number 
for onset of convection. For F = 5, Ra¢ = 1734. 

We begin with a description of the stable states 
For negative e the conductive state is stable, as 
illustrated in phase portrait (c). At e = 0, a super- 
critical bifurcation breaks the reflection symmetry, 
giving rise to two symmetrically-related stable 
five-roll states [phase portrait (d)]. Fig. l(a) shows 
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Fig. 1. Schematic bifurcation diagram for the case of conduct- 
ing sidewalls, r is the reduced Rayleigh number, and A is a 
coordinate which distinguishes between different states. (a) and 
(b) are numerically calculated streamfunction contours of rep- 
resentative five-roll steady states at two values of e. Below the 
diagram are phase portraits at the five values of e denoted bv 
tick marks. Stable (unstable) states are denoted by solid 
(dashed) lines in the bifurcation diagram, and by solid (hollow) 
circles in the phase portraits. The traveling wave state (see ,fig. 
2) is denezed by bold lines. In phase portrait (c). the conduc- 
tive state is stable. In (d), a supercritical bifurcation from the 
conductive state has given rise to a pair of symmetrically 
related five-roll states. In (e) a second pair of (unstable) states 
has arisen via another supercritical bifurcation. The stable and 
unstable states approach one another and disappear via the 
saddle-node bifurcation in (t'). This results in a heteroclinic 
orbit which becomes the limit cycle in (g). 



290 D. Barkley and L S. Tuckerman / Traveling waves in axisymmetric convection 

2.2 

(~) 2.1 

2.0 

1,8 

1,7 

~ )  1 6 0 20 aO 60 80 100 120 140 

® 

Time 

Fig. 3. Nusselt number time series at the bottom plate for two 
values of e. The lower time series is for e = 1.39 (the same 
value as in fig. 2), and shows approximately one oscillation 
period just above the onset of traveling waves. The upper is for 

= 2.60. The period diverges at onset while the amplitude of 
oscillation remains approximately constant. 

Fig. 2. Instantaneous streamfunction contours in the r-z  plane 
of the traveling wave state at e = 1.39. Solid (dashed) contours 
denote clockwise (counter-clozkvdse) flow. Contours are shown 
at times t = 0, 19, 27, 34, 70, 89, 97, and 104. The numbers 
labc! ',:~wly varying quasi-five-roll and quasi-four-roU states. 

numerically obtained streamfunction contours in 
the r - ,  plane for one of these two symmetrically- 
related states. The left edge of the plot is at r = 0, 
i.e. the 'ter ot the cylinder; the right edge of the 
plot is at the cylin,aer's sidewall. Solid and dashed 
contours denote clockwise and counterclockwise 
flow, respectively. The five-roll state correspond- 
ing to the lower branch of the pitchfork is ob- 
tained from that corresponding to the upper 
branch by z-reflectioa, or equivalently, by chang- 
ing the solid contours of fig. l(a) to dashed ,'~on- 
tours (and vice versa) and reftectivg the contours 
in z. In phase portraits (c)-(g), as well as through- 
out this paper, z-refiectic: corresponds to reflec- 
tion through the origin. 

As e is increased, the size of the central (left- 
most) roll decreases [compare figs. l(a) and (b)], 
until it disappears at a critical value e, = 1.3843, 
when the stable five-roll state gives way to a 
large-amplitude low-frequency trave!ing wave 
(limit cycle), indicated by bold lines in fig. 1. 

Shown in fig. 2 are instantaneous streamfunc- 
tion contours for the traveling wave state just 
above it.' onset (e = 1.39). The central roll be- 
comes smaller and is then annihi:ated, while new 
rolls are continually created at the sidewall, lead- 
ing to an alternation between four and five rolls 
(for reasons which shall become clear). The eight 
contour plots in fig. 2 have been chosen to illus- 
trate this, and are not equally spaced in time. The 
transition to periodic behavior is a symmetry-re- 
storing bifurcation, as the states in the second half 

z-refl ; ~,,on to of the limit cycle are related by c-': 
those of the first half; this symmetry is manifested 
in the limit cycle of phase portrait (g) (see fig. 1) 
as well. 

In fig. 3 we show the Nusselt number for the 
bottom plate* as a function of time at two values 
of e. The lower plot is just above the onset of 
traveling waves (e = 1.39 as in fig. 2), and shows 
n D o r n x i m n t ~ l v  cm~ p~rlr~H r~f r~¢o;ll~t;rm Th,~ 

"glitches" at times 19 and 89 occur when the 
system loses a central roll [see fig. 2]. The rapid 

*By Nusselt number of the bottom plate we mean the ratio 
oi the total heat transferred through the bottom plate to the 
heat that would be transferred by conduction alone. Only in 
the case of perfectly insulating sidewalls are the Nusselt num- 
bers of the top and bottom plates the same. 
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changes in Nusselt number (at times approxi- 
mately 34 and 104) result from the gain of rolls at 
the sidewall. Note that just above onset, the travel- 
ing waves pause for considerable time in each of 
the two quasi-steady five-roll states. 

The upper plot in fig. 3 is for e well above the 
transition to traveling waves (e = 2.60). The oscil- 
lation period is greatly reduced and the system 
now passes quickly through the five-roll states. 
While the average Nusselt number increases with 
e, the amplitude of the oscillations does not. Thus 
the traveling waves axe born with finite amplitude, 
and the period of the oscillations diverges at on- 
set. Hence the tra~reling wave state does not arise 
from a Hopf bifurcation but rather from a global 
(heteroclinic) bifurcation. 

Returning to fig. 1, we describe the scenario 
leading to the global bifurcation which triggers the 
traveling waves. After the first supercritical bifur- 
cation [phase portrait (d)], the conductive branch 
undergoes a second supercritical bifurcation to a 
pair of unstable five-roll states [phase portrait (e)]. 
Because these new states are born from the al- 
ready unstable conductive state, they inherit tra- 
jectories which terminate on the stable five-roll 
states. Thus the new states, like the conductive 
state, are unstable. As e i~ increased beyond the 
second supercritical bifurcation, the stable and 
unstable five-roll states approach one another 
(pairwise) and collide in saddle-nodes [denoted 
by the half-filled circles in phase portrait (f)]; the 
connections between the steady states form the 
heteroclinic orbit. After the five-roll states disap- 
pear in the saddle-node bifurcations, trajectories 
no longer terminate on fixed points, but proceed 
around a linfit cycle [phase "-" '"~; '  v . . . . . .  (g)]- 

We note that there are two seating behaviors 
expected at such a heterociinic bifurcation. First, 
because the onset of traveling waves occurs at a 
saddle-node bifurcation, the Nussdt  number (or 
virtually any other measurable quantity) should 
approach its value at e, fike ( e , -  e) a/2. Second, 
the period of the traveling waves is expected to 
diverge like T - - ( e - e , )  -1/2. We have verified 
both of these behaviors in our simulations, though 

the range in e over which we find these scalings is 
quite small ( l e -  e,[ < 10-3) • 

3.2..Insulating sidewalls 

We now turn to the case of perfectly insulating 
sidewalls (tt = 0), summarizing our findings in an- 
other schematic bifurcation diagram (fig. 4). Trav- 
eling waves are not observed. Upon increasing e, 
the primary five-roll branch again loses stability 
via a saddle-node bifurcation, at a value e, = 
1.4119 quite close to the transition point e, = 
1.3883 for perfectly conducting sidewalls. How- 
ever, this time the transition is to another steady 
state, one having four rolls. A streamfunction con- 
tour plot for one of two symmetrically-related 
stable four-roll states is shown in fig. 4(a). The 
transition is strongly hysteretic: each four-roll 
branch can be followed by decreasing e until it 
disappears via a saddle-node bifurcation (of 
Eckhaus type [14]) at e = 0.1035, inducing a tran- 
sition back to the primary five-roll branch. 

The phase portraits (b)-(e) illustrate how the 
four-roll states intercept trajectories in such a way 

(a) I ...... 

..... ~ ~ - - - '  . . . . . . .  
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Fig. 4. Schematic bifurcation diagram for the case or insulat- 
ing sidewalls. Conventions are the same as in fig. l. The 
diagram differs from fig. 1 by the absence of traveling waves 
and by the presence of additional steady four-roll states (a)i 
Phase portrait (b) shows the emergence of two pairs of four-roll 
states via saddle-node bifurcation, leading to the bistable 
situation with eight convective steady states shown in (c}. (d} 
depicts the saddle-node bifurcation causing the disappearance 
of the five-roll states, leaving only the four-roll states (e}. 
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as to prevent the formation of the limit cycle. 
Phase portrait (b) shows the emergence of the 
four-roll states in a pair of saddle-node bifurca- 
tions (denoted by half-filled circles); the stable 
and unstable five-roll states are marked with solid 
and hollow circles as before [see fig. l(e)]. Phase 
portrait (c) shows the coexistence of the four-roll 
and five-roll states (the four-roll states are at the 
upper right and lower left; the five-roll states are 
at the upper left and lower right). Eventually the 
five-roll states collide in the pair of saddle-node 
bifurcations shown in (d). Thereafter, only the 
four-roll states exist on the invariant cir,'le which 
forms the limit cycle (traveling waves) t: the case 
of conducting sidewalls [compare figs. 4(d) and (e) 
with figs. l(f) and (g)]. 

3.3. Two-parameter phase diagram 

We now turn to our princ:,pal result and show 
how the above two scenarios are connected. Our 

findings are summarized in the phase diagram 
(bifurcation set) shown in fig. 5, illustrating the 
behavior of the system as a function of the re- 
duced Rayleigh number t and sidewall conductiv- 
ity /.t. Loci of saddle-node bifurcations delimit 
four regions, the dynamics in each of which is 
depicted by a schematic phase portrait. The curves 
4a and 4b are the numerically computed 
saddle-node bifurcations at the low-t and high-e 
ends of the four-roll branch; curve 5b marks the 
saddle-node bifurcation terminating the five-roll 
branch. Bifurcation diagrams at four values of/~ 
are also provided. Fig. 6 shows phase portraits for 
each of the four regions of fig. 5 obtained directly 
from our numerical simulations. 

The behavior at low sidewall conductivity is just 
that described for the case of perfectly insulating 
sidewalls (~ = 0), and the lower bifurcation dia- 
gram (8) is the same as fig. 4. For larger values of 
~tt [bifurcation diagram (~,)], the four-roll branch 
terminates in a second saddle-node bifurcation at 
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Fig. 5. Phase diagram showing the behavior of the system as a function of the two parameters # and e. The curves 4a and 4b mark 
the numerically computed saddle-node bifurcations at the low-r and high-E ends of the four-roll branch; curve 5b marks tk '  
saddle-node bifurcation terminating the five-roll branch. These curves delimit four regions (I-IV) with different dynamics. Each 
region contains a schematic phase portrait similar to those of figs 1 and 4. In region I, only five-roll states exist. Region II is the 
traveling wave regime. In region III, four- and five-roU states coexist, with separate basins of attraction. Region IV contains only 
four-roll states. To the right are bifurcation diagrams (a-iS) for four different values of t~. The conventions for the diagrams are as 
those of figs. I and 4, but oaly the upper half of each is shown. 
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Fig. 6. Numerically computed phase portraits corresponding 
to the four regions I - I V  of fig. 5. The parameter values are: (I) 
e = 1.0, ~ = 90, (II) e = 2.0, ~ = 80, (III) E = 1.1, ~ = 30, (IV) 

= 1.9, ~ = 15. The coordinates are the projections onto the 
most  unstable eigenvectors of tlze conductive state (at ~ = 1.40). 
In  each case four trajectories are shown whose initial condi- 
tions are approximately proportional to these eigenvectors. The 
numbers 4 and 5 are used to denote trajectories that terminate 
on stable four- and five-roll states. Points are equally spaced in 
time, indicating the speed of the trajectories through different 
areas of phase space. 

high ,~ (curve 4b). Thus the four-roU branches are, 
in fact, isolas. The saddle-nodes at the upper end 
of the four-roll branches produce traveling waves 
by the same kind of global bifurcation which 
produces them in the highly conducting case. Now, 
however, near onset the traveling waves spend 
long periods of time in quasi-steady feur-roll 

states. 
The larger the value of tu, the narrower the 

range of e over which the four-roll branch exists. 
Above # = 60, the curves 4b and 5b cross, so that 
high-E termination of the four-roll branch occurs 
below that of the five-roU branch [bifurcation dia- 
gram (/])]. Thus, above # = 60, the curve of five- 
roll saddle-node bifurcations (Sb) marks the 
transition to traveling waves, and below ~ = 60, 
this transition occurs along curve 4b. (In [1], this 
value of ~ is mistakenly given as 33.) At # = 80, 
curves 4a and 4b meet, and the four-roll branch 

disappears altogether: for higher ~, the sit J,ttion is 
identical to that of perfectly conducting sidewalls 
[bifurcation diagram (a)]. 

The crossing of the curves 4b and 5b defines the 
global eodimension-two bifurcation consisting of 
two pairs of saddle-nodes on the invariant circle. 
While no secondary bifurcations are to be ex- 
pected in the vicinity of this point, it does provide 
the organizing center for the dynamics which we 
have discussed: the dynamics in each of the four 
regions arises from small perturbations of this 
degenerate situation. 

(We note that even for perfectly insulating :tEe.- 
walls, the four-roll branches terminate in sad,~lo- 
node bifurcations at values of E above those shown. 
Specifically, the curve 4b meets the E-axis at e = 
6.23. However, at low values of ~t, this curve does 
not mark the transition to traveling waves. Instead 
the system makes a transition to a steady three-roll 
state. For ~ = 0 we have followed the three-roll 
branches down to e = 2.30, where they too termi- 
nate in saddle-node bifurcations. We have found 
it difficult to track '.he locus of three-roll 
saddle-node bifurcations for ~ > 4, but we do not 
believe that the three-rol~ branches exist for large 
values of ~; nor that they influence the limit cycles 
of region II.) 

4. Discussion and conclusion 

We now discuss the ~elevance of our results to 
experiments and to other theoretical studies• While 
we have described the situation in detail for a 
single choice of aspect ratio and Prandtl number, 
we believe these dynamics to be a very general 
feature of axisymmetric convection. We have run 
sim-iafions for other parameter values and have 
found that thermally conducting sidewaY_Is ge~0er - 
ally promote traveling waves. 

In our previous article [1], we studied the Prandtl  
number dependence of these scenarios (still for 
J-'= 5), and found the transition to be largely 
insensitive to Pr for Pr > 5. For lower Prandtl 
numbers, several factors destroy the picture we 
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have described here. First, the value e. for onset 
of waves depends strongly on Pr, reaching a mini- 
mum of e,(Pr = 1.7) = 0.909, and diverging to very 
large ~ at Pr = 0.7. Also, the domain of existence 
of the four-roll states changes, so that, for exam- 
ple, at Pr = 0.98, four rolls may be observed even 
with conducting sidewalls. More physically rele- 
vant is the fact that below Pr = 5, we have found 
the axisymmetric states to be unstable to a nonax- 
isymmetric perturbation of the form e ira0, with 
m = 1. (At Pr = 10, we have tested the stability of 
the steady states (for /~ = 0 and e¢, e = 1.3 and 
1.5) by determining that the most unstable nonax- 
isymmetric eigenvector has a negative growth rate, 
and that of the periodic states (for ~ = o¢, e = 1.5) 
by observing the decay of nonaxisymmetric per- 
turbations in full three-dimensional nonlinear sim- 
ulations.) 

We have also performed simulations with F = 
7.5, and Pr = 6.1 (the parameters used in [9]). We 
observe (at different e) the same transitions as 
described here: saddle-node bifurcations leading 
to traveling waves for thermally conducting side- 
walls, and to the loss of a roll for thermally 
insulating sidewalls (the sidewalls used in [9] were 
close to insulating, with ~ = 1.5). We note, how- 
ever, that these states ate also subject to nonax- 
isymmetfic instabilities in the relevant parameter 
range. 

Finally, we point out that traveling waves of the 
type we examined were first predicted to occur by 
Pomeau and Manneville [4] and have in fact been 
observed in simplified model equations of convec- 
tion by Pomeau et al. [5] in an axisymmetric 
geometry., and by Cross et al. [8] near a focus 
singularity at a comer. Nevertheless, such travel- 
ing waves have never been observed experimen- 
tally. Our full simulations show that tiffs results 
from sidewalls with low thennai conductivity. Ex- 
periments are generally conducted with ~ = d~(1), 
a regime for which we have never obtained travel- 

ing waves. By exploring the full range o: sidewall 
conductivities, we have found that there exist large 
regions of parameter space (such as region II of 
fig. 5) for which these waves can be :~btained 
experimentally. 
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