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Abstract

The dynamics of axisymmetric and twisted scroll rings under homogeneous periodic forcing is studied numerically. The
collapse of axisymmetric rings can be enhanced or retarded significantly with resonant forcing. Twisted scroll rings exhibit
the phenomenon of resonant drift in a direction normal to the axis of the central filament. The scaling of mean and fluctuating
axial drift due to forcing is determined. Evidence is provided showing that the appropriate symmetry group for the dynamics
of the unforced twisted scroll ring isSE(2) × R. Ordinary differential equations based on symmetry considerations explain
the dynamics without resorting to laws of filament motion and the local geometry hypothesis. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Wave propagation in reaction–diffusion systems
with excitable dynamics occurs in a wide variety of
chemical and biological contexts. Examples include
unstirred Belousov–Zhabotinsky reagent [1,2], cata-
lytic surface reactions [3],Xenopuseggs [4], and
cardiac tissue [5,6]. This last example is particularly
important because waves of electrical activity are
thought to be responsible for certain types of cardiac
abnormalities (arrhythmias) leading to death [5–7].
In two-space dimensions, waves in excitable systems
typically take the form of spirals rotating about a
point that is roughly fixed in space [2], although com-
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plex dynamics (meandering) is also observed [8,9].
In three-space dimensions one finds scroll waves that
are organized around one-dimensional curves known
as filaments. The geometry of these filaments ranges
in complexity from simple rings to complicated links,
knots, and tangles [10–15].

In this paper we consider what happens to scroll
waves when parametric forcing is applied homoge-
neously to a three-dimensional excitable medium.
To motivate this study we first recall the basic phe-
nomenology of homogeneous parametric forcing of
spiral waves in a two-dimensional excitable medium.
This problem has been considered extensively experi-
mentally and theoretically [16–27]. Fig. 1 summa-
rizes the most notable effect of weak forcing on a
rotating spiral wave. In Fig. 1(a) is shown a rotating
spiral wave in a standard reaction–diffusion model of
excitable media (presented in the next section). The
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Fig. 1. Effects of periodic forcing on spiral-wave dynamics. (a) Periodically rotating solution of the reaction–diffusion model considered
in this paper (model parameters are:a = 0.8, b = 0.05, andε = 0.02). Gray-scale shows values of the slow species and the white curve
shows the path of the spiral tip. (b) Conditions as in (a), except with parametric forcing in 1–1 resonance with the spiral rotation frequency,
(b = 0.05+0.0035 sin(1.7434t)). (c) The effect of parametric forcing in the vicinity of a 1–1 resonance.∆ denotes the frequency detuning
and line segments show the secondary radiusR2 of the “tip paths”.

spiral rotates about a fixed center with frequencyω1

and the path of the tip is a circle. Fig. 1(b) shows
that a linear drift can be produced by resonant para-
metric forcing of the medium: forcing frequencyωf

equal to the natural frequencyω1. Fig. 1(c) shows the
dynamics for forcing near such a resonance. Letting
∆ = ω1−ωf denote the detuning between natural and
forcing frequency, andR2 denote the large secondary
radius resulting from the forcing, then in the vicin-
ity of the resonance these are related byR2 ∼ 1/∆,
and at resonance (∆ = 0), R2 = ∞. The drift speed
at resonance grows as the amplitude of the forcing
(not shown). Note that the curves in Fig. 1(c) are not
from reaction–diffusion simulations but rather from
ordinary differential equations based on the relevant
symmetries of the system [26].

The primary motivation for our study is to un-
derstanding forced spatio-temporal patterns from the
point of view of symmetric bifurcation theory. The
two-dimensional case is well understood [26,27],
but only recently has analysis been undertaken of
periodic forcing on three-dimensional structures in
excitable media using bifurcation theory [28]. This
dynamical-systems approach to understanding spiral
and scroll wave dynamics is important because it of-
fers an alternative to the laws of filament dynamics
most often used as a theoretical basis for understand-
ing scroll-wave behavior [13,14,29–32].

A secondary motivation for considering periodic
forcing comes from potential applications to cardi-
ology. The spiral motion resulting from resonant or
near resonant forcing on spiral waves, as illustrated
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in Fig. 1, has been known for some time and this ef-
fect has been proposed as a method for treating cer-
tain cardiac arrhythmias [16–18,20,23,24]. The idea
is to use periodic or nearly periodic voltage stimuli to
remove spiral waves from cardiac tissue by inducing
drift of an offending spiral wave to a boundary (e.g. the
heart’s surface) where the wave cannot be sustained.
The potential advantage here is that treatment can be
accomplished using considerably lower voltages than
are currently required in cardiac defibrillators. Heart
tissue is three-dimensional, however, and so it is of
some interest to understand how parametric forcing
acts in the case of three-space dimensions. A prelim-
inary understanding the dynamics of these waves in
the absence of the complexities of heart models is
of fundamental importance. As far as we are aware,
there have been no published numerical or experimen-
tal studies of how parametric forcing affects scroll
waves.

We shall address what happens to scroll waves
when weak, homogeneous parametric forcing is ap-
plied to a three-dimensional excitable medium and
to what extent the resulting dynamics can be un-
derstood from low-dimensional dynamical-systems
analysis. We consider briefly the axisymmetric scroll
ring, but focus mainly on the twisted-scroll ring. We
provide accurate numerical data for the dynamics
and compare with predictions of dynamical-systems
theory.

2. Model and methods

For our numerical simulations, we use the two-
variable reaction–diffusion equations

∂u

∂t
= f (u, v) + ∇2u,

∂v

∂t
= g(u, v) + Dv∇2v, (1)

where the functionsf (u, v) and g(u, v) express the
local reaction kinetics of the two variablesu and v.
The diffusion coefficient for theu variable is scaled to
unity, and thusDv is the ratio of diffusion coefficients.
For the reaction kinetics, we use

f (u, v) = 1

ε
u(1 − u)(u − uth(v)),

g(u, v) = u − v (2)

with uth(v) = (v + b)/a. This choice differs from
traditional FitzHugh–Nagumo equations in a way that
allows for fast computer simulations [33,34]. We ap-
ply periodic forcing by sinusoidally varying the ex-
citability threshold through the parameterb: b(t) =
b0 + A cos(ωf t). The amplitudeA and frequencyωf

(or equivalently periodTf = 2π/ωf ) of the forcing
are the parameters varied in this study. We keep the
other model parameters fixed ata = 0.8, b0 = 0.01,
ε = 0.02, andDv = 0. Without forcing, the medium
is strongly excitable. In two dimensions, the equations
generate rigidly rotating spirals with small cores very
similar to that shown in Fig. 1(a). These spirals are
far from the meander instability [35] and initial con-
ditions converge quickly to rotating waves.

We use a third-order semi-implicit scheme
to time-step f , combined with explicit Euler
time-stepping forg and the Laplacian term. In the
evaluation off and in the diffusion ofu, we take
into account thatu ' 0 in a large part of the do-
main, and thatf (0, v) = 0. We use a 19-point stencil
with good numerical properties (isotropic error, mild
time-step constraint) for approximating the Lapla-
cian operator. Neumann boundary conditions are
imposed in the horizontal (x and y) directions. We
generally impose periodic boundary conditions in the
z-direction to allow solutions to move freely in that
direction, although we have carried out some tests
with Neumann boundary conditions in thez-direction
as explained in Section 3.2.1. We initially simulate
with numerical parameters corresponding to moderate
resolution: square box of lengthL = 36 on a side,
grid spacingh = 3

7, time-step1t/ε = 2.4. For high
accuracy studies of the twisted scroll ring, we use a
higher resolution ofL = 24, h = 2

7, 1t/ε = 0.6.
Complete numerical details for the three-dimensional
simulations are given in [34].

We define the scroll filament to be the intersection
of the two iso-surfacesu = 1

2 andv = uth(
1
2). In two

dimensions this defines the spiral tip [33]. For param-
eter values in this study, two-dimensional spirals trace
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out small circles (similar to that in Fig. 1). In three di-
mensions, filaments undergo small-scale circulations
at the period of wave rotations (corresponding to ro-
tations in two dimensions) and also slower large-scale
motions associated with movement of the scroll struc-
tures in three-space. We are primarily interested in
these slow motions.

Focusing on filaments rather than the full concen-
tration fields reduces the complexity of the structures
to be analyzed. However, even this is not sufficient to
obtain a low-dimensional description of scroll waves.
For the waves we consider here the filaments are or are
close to simple geometric objects (lines and circles)
and this allows us to reduce the infinite-dimensional
dynamics to the dynamics of simple geometric objects
described by a few coordinates (centers, radii, etc.) and
we need only to save this small number of quantities
during long simulations. For scroll rings, the obvious
object to fit is a circle. For axisymmetric rings, the
numerically computed filaments are circles to within
numerical precision. For twisted rings, the filament
is composed of two pieces, one approximately a line
and the other approximately a circle. We focus on the
nearly circular part of the filament and find the best
approximating circle.

We have used the following algorithm for our fitting.
First consider finding a best fit sphere to a set of points
(xi, yi, zi) in three dimensions [36]. DefiningQi =
x2
i + y2

i + z2
i , the following set of equations gives the

center(a, b, c) of the sphere:

a


 var(x)

covar(x, y)

covar(x, z)


+ b


 covar(x, y)

var(y)

covar(y, z)




+c


 covar(x, z)

covar(y, z)

var(z)


 = 1

2


 covar(x, Q)

covar(y, Q)

covar(z, Q)


 , (3)

where var and covar refer to variance and covariance
of the data points. The radius then is calculated as

r =
√

a2 + b2 + c2 + Q̄ − 2ax̄ − 2bȳ − 2cz̄,

wherex̄ = mean(x), etc. Eq. (3) becomes nearly sin-
gular if the points are nearly coplanar as in the case of
a scroll ring. The size of the eigenvalue closest to zero

gives a measure of how close the points are to a plane,
and the associated normalized eigenvector gives a unit
normal for a family of planes. Replacing the nearly
singular direction with the equation of the plane go-
ing through the mean position(x̄, ȳ, z̄) allows us to
calculate the center and radius of the best fit circle,
which we denote(X, Y, Z) andR, respectively. In this
way full concentration fields are projected onto four
scalars. In addition, we output the unit normal vector
and the error in the fit. The latter is used to assess the
validity of fitting a circle to the approximately circular
filament of the twisted scroll ring in Section 3.

3. Results

3.1. Axisymmetric scroll rings

A scroll ring is an axisymmetric solution of the
reaction–diffusion equations which contains a spiral
pattern in each azimuthal slice; see Fig. 2. The filament
formed from the “tips” of these spirals is a planar
ring. We take the axis of symmetry to be thez-axis.
The dynamics of scroll rings are necessarily limited to
changes in radius,R, and position,Z, along the axis of
symmetry. In a singly diffusive medium (Dv = 0) it is
well established that an axisymmetric ring drifts and
shrinks at a speed inversely proportional to its radius
(e.g. [13,15,37–39]).

Under parametric forcing of the medium, there are
two possibilities for the behavior: either the solution
becomes non-axisymmetric, in which case one could
expect the scroll filament to become non-planar and
possibly quite complicated, or else it remains axi-
symmetric, in which case the dynamics of the forced
scroll ring can still be captured by measurements of
R and Z. In practice we have limited ourselves to
weak periodic forcing and have found no evidence of
symmetry-breaking under these conditions.

For our numerical simulations, we start with an
initial condition created by the complex polynomial
p(z1, z2) = z2 (see Appendix A). We then simulate
for two to three rotations of the scroll in the absence
of forcing to enable the scroll ring to settle into a state
with approximately constant period. We take this state
as an initial condition for our forcing experiments.
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Fig. 2. Axisymmetric scroll ring. Shown is the iso-surfaceu = 1
2 (clipped halfway through the volume). The filament (white) forms a

planar ring parameterized by the radiusR and locationZ along the symmetry axis. Model parameters are as given in Section 2. The
domain has sides of lengthL = 40.

The radiusR and center(X, Y, Z) are obtained via the
fitting procedure described in Section 2. The(X, Y )

values of the center are found to be constant as ex-
pected for the axisymmetric ring. Note that while we
simulate scroll rings in cubical domains, the solutions
are axisymmetric to a high degree of precision. This
is similar to the situation in two dimensions in which
spiral waves behave as though in an infinite medium as
long as the spiral centers are more than a wavelength
from domain boundaries [35,40].

Fig. 3 shows filament paths for weak periodic forc-
ing of a scroll ring in two cases, one near frequency
resonance and the other away from resonance. Away
from resonance, the scroll ring collapses in almost
the same way as in the absence of forcing: the path
in R–Z-coordinates is straight (averaged over the
small-scale circular motions) untilR becomes very
small. The only difference between this and the un-

forced case is that the small-scale circular motions
associated with the scroll wave rotations are slightly
altered under forcing.

Close to resonance, however, there is a sizable devi-
ation from straight line collapse inR–Z-coordinates.
Recall the effect of parametric forcing on a spi-
ral wave. As a frequency resonance is approached,
the secondary radius of the quasiperiodic tip path
grows asR2 ∼ 1/∆, where ∆ ≡ ω1 − ωf . Thus
the near-resonant motion of the scroll ring can be
understood simply as the large-scale quasiperiodic
motion of a forced spiral wave (inR–Z-coordinates)
superimposed on the natural shrink and drift dyna-
mics. Note that the shrink and drift rates are them-
selves not constant but proportional to 1/R. Thus as
R → 0, the shrink and drift speeds increase, whereas
the bi-periodic motions due to forcing do not. This
accounts for the uncoiling of the filament path as



112 R.-M. Mantel, D. Barkley / Physica D 149 (2001) 107–122

Fig. 3. Periodic forcing of a scroll ring. Plotted is the path of a scroll ring inR–Z-coordinates for (a) forcing away from resonance
(Tf = 4.2) and (b) near resonant forcing (Tf = 3.5). The period of the unforced ring is not constant butT1 ≈ 3.3.

R → 0. There is also a small shift in the rotation
frequency of the scroll asR → 0 but this seems to
have little effect on the dynamics.

The fact that resonant forcing of a spiral wave in-
duces a linear drift leads to the conjecture that resonant
forcing at the appropriate amplitude and phase could
be used to stabilize a collapsing scroll ring. That is,
if the forcing-induced drift can be adjusted to coun-
teract the shrink, then the radius of the scroll ring can
be stabilized, though drift along the axis of symmetry
would still occur. Likewise, for the same amplitude
and frequency, but another choice of phase for the forc-
ing it should be possible to greatly accelerate the ring
collapse or to enhance the drift along the symmetry
axis.

We have numerically tested this hypothesis and the
results are shown in Fig. 4. Collapse of the scroll ring
can be significantly accelerated or delayed with quite
small forcing. With effort we have succeeded in sta-
bilizing the scroll ring at a constant radiusR for more
than 100 wave rotations (over 300 time units). There-
after the ring begins to collapse. Thus we have found
that stabilization of the ring with fixed-frequency forc-
ing is probably possible but difficult in practice be-
cause the resonance condition must be satisfied to a
very high degree. The problem is compounded by the
fact that once forcing is applied, the rotation frequency
of the scroll changes slightly. It should be possible to
completely stabilize a scroll ring either by further ad-

justing the forcing period and phase or by applying
feedback control to the forcing.

In principle one could attempt a low-dimensional
dynamical-systems description of the forced scroll
ring (similar to the description considered in the fol-
lowing section of the twisted scroll ring). Ashwin
and Melbourne [41] have done this by considering
the scroll ring to be a stable state of the system.
However, as axisymmetric scroll rings are nearly
always transient structures we have not pursued a
low-dimensional description of these states.

Fig. 4. Periodic forcing of a scroll ring. Plotted isR versust for
resonant periodic forcing (Tf = 3.31, A = 0.00125). Shown is no
forcing (middle curve), forcing at a phase that gives most rapid
collapse, and forcing at a phase that give maximum stabilization.
Collapse of a scroll ring is delayed for approximately 100 wave
rotations.
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Fig. 5. Twisted scroll ring. Iso-surfaceu = 1
2 (left), clipped iso-surface with filament (middle), and clipped iso-surface and filament from

above (right). Arrows emphasize the change in “spiral phase” in rotating around the filament (cf. Fig. 2). Note, these images illustrate the
structure of fields for the twisted ring, but this is not the asymptotic state. The domain has sides of lengthL = 40.

3.2. Twisted scroll rings

A twisted scroll ring is a solution to the reaction–
diffusion equations with an approximately circular fil-
ament in which the phase of the “spiral” varies with
azimuthal location. Instead the spiral phase changes
around the ring by a multiple of 2π . We consider the
simplest case of a once-twisted scroll ring (Fig. 5)
for which the phase change is 2π . Topologically there
must be another filament passing through the center of
the filament ring [10], see also [13]. Thus even though
one generally refers to the state as a twisted scroll ring,
the filament consists of two pieces.

An initial condition for a twisted scroll ring is gen-
erated by the polynomialp(z1, z2) = z1z2 (see Ap-

Fig. 6. Two views of the filament for the asymptotic twisted scroll ring. Top view showing projection ontox–y-coordinates (left) and side
view with the z-axis vertical (right). The ring is nearly planar and the central filament is nearly straight and parallel to thez-axis. The
domain has sides of lengthL = 24, that used for most simulations.

pendix A). The straight part of the filament is then
parallel to thez-axis (the periodic direction in most of
our simulations). Starting from the polynomial initial
conditions, we simulate the reaction–diffusion equa-
tions long enough for the system to reach an asymp-
totic state. During the initial transient evolution, the
ring shrinks until the interaction between the ring and
the central filament stops the contraction. This final
asymptotic state provides the initial condition used
for our forcing experiments. The state in Fig. 5 is
not this final asymptotic state, but we choose to show
this early time state because the structure of the fields
is clearly seen. Fig. 6 shows the filaments for the
asymptotic state. It can be seen from the top view that
the ring is indeed very close to circular and that the
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central filament is close to straight. Before describ-
ing the forcing studies, it is necessary to consider in
some detail the dynamical properties of the unforced
state.

3.2.1. Dynamics of the unforced twisted scroll ring
The important issue from our point of view is

what symmetry group is appropriate for describ-
ing the dynamics of the state, for this will dictate a
low-dimensional description of the forced dynamics.
Unlike the untwisted scroll ring, the twisted scroll
ring has no spatial symmetries (apart from the ar-
tificial periodic symmetry when periodic boundary
conditions are imposed in our numerical treatment).
This is why the ring is not exactly a circle in this case.
However, the twisted scroll ring has a space–time
symmetry: under time evolution the wave uniformly
rotates and drifts according to

u(t) = Tc1tRω1tu(0), (4)

whereu = (u, v), Rγ is a rotation through angleγ
about some fixed axis, andTd is a translation of dis-
tanced in that same direction. Henceω1 is the rota-
tion frequency andc1 is the drift speed. In our case
the rotation axis is parallel to thez-axis so the drift is
also in thez-direction.

To verify this, we have simulated the twisted ring
for hundreds of wave rotations and have measured the
drift and rotation of the solution. We then applied the
inverse transformations to the time dependent solu-
tion: T−c1tR−ω1tu(t). The resulting state was found to
be steady, i.e. the twisted scroll ring is arelative equi-
librium of the system. We have verified that to a high
degree of precision the axis of rotation and direction
of translation are parallel to thez-axis.

It is very significant that the rotation and translation
axes align with thez-axis. It has been shown that in au-
tonomous systems with three-dimensional Euclidean
symmetryE(3), the evolution of a non-symmetric rel-
ative equilibria is generically rotation about an axis
together with translation along the same axis [41–43].
This is as we have found. However, the symmetry
analysis indicates that the axis points in an arbitrary
direction. This is reasonable because a state with no
spatial symmetry should drift in an arbitrary direction

for there is nothing to determine a specific direction.
However, this is not in agreement with our observa-
tion that the motion has a preferred direction: thez-
axis.

It is possible that the imposed periodic boundary
conditions in thez-direction are alone responsible for
selecting this preferred direction and that in an infi-
nite medium the axis of rotation and drift would not
align with the central filament. We have conducted a
number of numerical tests to examine the effect the
imposed vertical boundary conditions have on this re-
sult. We have simulate twisted scroll rings in domains
with large vertical extent, up toLz = 240, with both
periodic and Neumann boundary conditions to see if
any evidence can be found for drift not aligned with
the central filament.

The strongest numerical evidence that the vertical
drift is not dictated by the vertical boundary condi-
tions is the following; see Fig. 7. We have conducted
simulations that can be run for a very long time with-
out the need to impose periodic boundary conditions.
We do this by imposing Neumann boundary condi-
tions on all boundaries while effectively co-moving
with the scroll ring. In these simulations, when the
scroll ring drifts past the middle of the domain, the
entire solution is moved downward exactly one grid
spacing. Specifically, starting from the bottom of the
domain, the solution on each horizontal grid plane is
copied to the grid plane just below. The solution at
the bottom plane of grid points (bottom boundary) is
discarded and the solution at the top plane of grid
points is unchanged. This is done every time the scroll
ring crosses the middle of the domain. Hence the ring
can be kept inside the domain during a long simula-
tion without imposing periodic boundary conditions.
At each step, the moving procedure affects only the
solutions at the top-most and bottom-most grid planes.
As a test of whether there are global consequences
to this, we have considered different vertical domain
lengths, up toLz = 120 and find no variation in re-
sults with this length. We have also tested moving the
solution downward by several grid points each time
the scroll ring passes the midplane and find this has no
measurable effect. We find in all simulations we have
carried out that the asymptotic state of the system is
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Fig. 7. Twisted scroll ring in a domain with Neumann boundary
conditions on all sides. Upward drift of the scroll ring is com-
pensated by appropriate downward motion of the fields (see text).
Lx = Ly = 24, Lz = 72.

a relative equilibrium and that the drift is entirely in
the vertical direction, i.e. parallel to the central fila-
ment.

We believe that even in an infinite medium the
axis of rotation and drift would still align with the

central filament. Our argument is as follows. Without
loss of generality we can take the direction along
which the central filament extends to infinity to be
thez-direction. In each two-dimensional slice normal
to thez-axis one finds a spiral pattern away from the
axis. This can be seen to some extent in Fig. 5. As with
usual two-dimensional spiral waves, these spirals be-
have nicely under rotations (around thez-axis) because
small rotations result in small changes in the fields,
even arbitrarily far from the axis. However, small rota-
tions around any axis not parallel to thez-axis produce
arbitrarily large changes in the fields, i.e. rotations act
discontinuously on the state. Consider for example a
small rotation around thex-axis. This would rotate
the direction of the central filament and thus move
the filament through a distance that would become
unbounded asz → ∞. Thus we argue that a twisted
scroll ring in an infinite domain (supposing such a
state exists) can be a relative equilibrium only if the
axis of rotation and drift are aligned with the central
filament.

We therefore conjecture that the relevant symme-
tries will include only the two-dimensional Euclidean
symmetries in the plane perpendicular to the filament
and the one-dimensional Euclidean symmetry along
the axis of the central filament. Rotations about axes
not parallel to the central filament should be excluded
from a description of the dynamics. Thus the relevant
symmetry group for the dynamics of a single twisted
scroll ring isSE(2) × R. This is consistent with our
numerical experiments which are themselves repre-
sentative both of other simulations and of what would
occur experimentally.

3.2.2. Periodic forcing of a twisted scroll ring
We now turn to the effect of periodic forcing on

the twisted scroll ring. In this section we present our
numerical results and in Section 3.2.3 we discuss the
interpretation in terms of dynamical-systems theory.
Qualitatively, forcing does not change the wave fronts
much away from the filament. Forcing can introduce
significant changes in the shape of the filament, how-
ever (Fig. 8). The central filament is noticeably helical.
The ring is distinctly oval, not centered around the cen-
tral filament, and not confined to a plane. Despite this
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Fig. 8. Filaments of twisted scroll ring with parametric forcing. Forcing is at resonanceTf = T1 = 2.9925 with amplitudeA = 0.002.
There is considerable change in shape from the unforced case.

the ring remains, in some sense, perpendicular to the
filament where it passes through the ring’s “center”.
While the ring is not circular, fitting to a circle is still
a valid method for projecting onto a small number of
variables: the “center”(X, Y, Z) and “radius”R.

The interesting dynamical aspects of the forced
scroll ring along the filament axis (Z-coordinate) and
perpendicular to the axis ((X, Y )-coordinates) are
independent and thus we consider these separately.
The important behavior in theX–Y dynamics is res-
onant drift. That is, if the twisted scroll ring is forced
at resonance, then drift occurs inX–Y exactly as
for spiral waves. This is shown in Fig. 9 where we
plot X–Y paths for five forcing frequencies at fixed
forcing amplitude. The similarity to the dynamics of

Fig. 9. The effect of near-resonant and resonant periodic forcing on the twisted scroll ring. TheX–Y position of the “center” of the scroll
ring is shown (see text). Five values of the forcing periodTf are shown at fixed forcing amplitudeA = 0.0005.

spiral waves in Fig. 1 is apparent. (Note that in the
absence of forcing, the dynamics in theX–Y plane
is a rotating wave, i.e. the center of the best fit circle
traces out a circular path.)

Typical drift dynamics in theZ-coordinate under
periodic forcing is shown in Fig. 10. Not surprisingly,
the instantaneous drift speed varies at the forcing pe-
riod. What is at issue here is how the drift scales with
forcing amplitude. To quantify this we define the in-
stantaneous drift speedc(t) = dZ/dt , which can then
be separated into mean and fluctuating partsc(t) =
c1+C(t), whereC(t) is periodic with zero mean over
the forcing period:〈C(t)〉Tf = 0. In Fig. 11, we show
the modification of the mean drift induced by forcing
by plottingc1 − c0

1 as a function of forcing amplitude,
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Fig. 10. Axial drift dynamics,Z(t), under parametric forcing. Parameter values areA = 0.001 andTf = 2.9895.

wherec0
1 is the drift without forcing. The mean drift

speed is seen to scale asA2 for small forcing ampli-
tude. Fig. 12 shows|C|, the maximum ofC(t), as a
function of forcing amplitude. Here it is seen that the
magnitude of the fluctuating drift is proportional to
forcing amplitude for small forcing. In summary, we
find the following scalings as the forcing amplitude
goes to zero:c1 − c0

1 = O(A2) andC(t) = O(A).

3.2.3. Dynamical-systems description
One can understand qualitatively the dynamics of

twisted scroll rings with simple ordinary differential
equations (ODEs) incorporating appropriate symme-
tries. More specifically, the dynamics of these scrolls

Fig. 11. Dependence of mean drift speedc1 on forcing amplitude, wherec0
1 = 0.165705 is the drift speed without forcing. The dashed

line has slope 2. The induced change is quadratic in the forcing amplitude.

can be captured in terms of vector fields equiv-
ariant with respect to the correct symmetry group
[28,42,43]. Assuming as discussed in Section 3.2.1
that the symmetry group for twisted scroll rings is
SE(2) ×R, then the following ODEs can be obtained
[28]:

φ̇ = f1(A, t), Ṗ = eiφf2(A, t),

Ż = f3(A, t), (5)

where the variableP = X + iY and the functionf2

are complex whileφ, Z, f1, andf3 are real.A is the
amplitude of forcing. Eqs. (5) are equivariant with



118 R.-M. Mantel, D. Barkley / Physica D 149 (2001) 107–122

Fig. 12. Amplitude of the fluctuating drift as a function of forcing
amplitude. Plotted is the maximum of the fluctuating drift|C|
normalized by the mean drift speedc1. In the unforced case
the drift speed varies by approximately±1% due to numerical
inaccuracies, while at a forcing amplitude ofA = 0.002 the drift
speed varies by nearly±50%.

respect to transformations of the groupSE(2) × R:

Rγ




φ

P

Z


 =




φ + γ

eiγ P

Z


 ,

Tabc




φ

P

Z


 =




φ

P + a + ib

Z + c


 , (6)

whereRγ is rotation by angleγ about the vertical axis
andTabc is translation of(X, Y, Z) by (a, b, c). The
triple (X, Y, Z) in the ODEs corresponds to a projec-
tion of twisted scroll solutions intoR3. In particular,
it corresponds to the position in physical space of es-
sentially any well-defined, well-behaved point of the
solution. We have in mind the center of the best fit cir-
cle used numerically to project the state of the system
into R3, and hence we use the same notation in the
ODE model (this should not cause any confusion).

In the absence of forcing (A = 0), the functions
f1, f2, andf3 are constants which we write as

f1(0, t) = ω1, f2(0, t) = s1, f3(0, t) = c1.

(7)

This corresponds to a state which rotates inX–Y -
coordinates with frequencyω1 and drifts inZ with
speedc1. To see this one integrates theφ̇-equation to

obtain: φ(t) = ω1t + φ0. Substituting this into the
equation forṖ gives:

Ṗ (t) = s1 ei(ω1t+φ0). (8)

Integrating this and thėZ-equation gives

P(t) = P0 + R1 ei(ω1t+φ0+δ1), Z(t) = c1t + Z0,

(9)

whereR1 ≡ |s1/ω1| and δ1 = ∓π/2 depending on
the sign ofs1/ω1.

Solution (9) then corresponds to a twisted scroll
ring whose central filament is parallel to thez-axis.
In the reaction–diffusion system there is a family of
such states obtained by translations in three-space
combined with rotations about thez-axis. In the
ODE system this family is captured by the arbitrary
constantsP0, φ0, and Z0. In our numerical simula-
tions we impose Neumann boundary conditions in
the x–y-directions and this means that the system is
not exactly symmetric with respect tox–y transla-
tions and rotations about the vertical axis. However,
in practice the effect of the boundaries is extremely
weak as long as filaments do not get too close to the
boundaries. This is exactly as for spiral waves and
this is why the assumption of translational symmetry
is appropriate for these waves [35,40].

If we consider all twisted scroll rings in the
reaction–diffusion equations with filaments aligned
with the vertical, then there are in fact four families
of states related by two independent reflection sym-
metries not described by Eq. (5). One may reflect the
system inz, or in thex–y plane, or both and thereby
obtain other solutions. Reflecting inz gives a state
that drifts in the opposite direction from the original,
but rotates in the same direction. Reflecting in the
x–y plane gives a state that drifts in the same direc-
tion but rotates in the opposite direction, and finally
reflections in both directions give a state that drifts
and rotates in the opposite direction from the original.

We now turn to the description of periodic forc-
ing. For A > 0 the functionsf1, f2, and f3 are
time-periodic with the forcing periodTf = 2π/ωf

[28]. The dynamics then follow almost exactly the
treatment in [26–28]. In the ODE system theP , i.e.
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X–Y , dynamics do not depend on theZ-dynamics
and Eq. (5) forP is in fact as for two-dimensional
rotating spiral waves. It is for this reason that the
resonant drift dynamics of the scroll ring in Fig. 9 is
identical to the resonant drift for spiral waves. The
cause of the drift is essentially as follows. With peri-
odic forcing at frequencyωf , the equation forṖ will
contain terms, in addition to those in (8), of the form

ei(ω1+kωf )t

for all integerk. Any term of this form integrates to a
term of the same form as long asω1 + kωf 6= 0. At
a resonance, whereω1 + kωf = 0, integration gives a
term inP(t) that is linear int : this is the resonant drift.

For theZ-dynamics, we must consider the form of
f3 for weak parametric forcing at frequencyωf . Let
the amplitude of the forcing be denotedε and letc0

1 be
f3 in the absence of forcing (ε = 0). Then expanding
in a Fourier series:

f3(ε, t) = c0
1 +

∞∑
k=−∞

ĉk(ε) eikωf t

= [c0
1 + ĉ0(ε)] +


∑

k 6=0

ĉk(ε) eikωf t




= c1 + c̃(t), (10)

where we have dividedf3 into its mean and fluctuating
parts, c1 and c̃(t) respectively, both of which may
depend onε.

Integrating theŻ equation, we have

Z(t) = c1t + C(t) + Z0,

where

C(t) ≡
∫ t

0
c̃(t ′) dt ′.

For forcing with zero mean (as for the sinusoidal forc-
ing applied to the reaction–diffusion equations) then
ĉ0 = O(ε2) as shown by Wulff [44]. This gives the
scalings found numerically in the reaction–diffusion
simulations for the mean drift speed:c1 = c0

1+O(ε2).
For the fluctuating drift, one would expect that

forcing at frequencyωf would couple directly to the
first Fourier mode in Eq. (10) to give a coefficient

ĉ1 scaling at first order in the forcing amplitudeε:
ĉ1 = O(ε). This agrees with the results from the
reaction–diffusion simulations in which the fluctuat-
ing drift scales asC = O(ε) in the limit of small
forcing.

4. Conclusion

We have accurately simulated two types of
three-dimensional scroll structures in a reaction–
diffusion model of excitable media with para-
metric forcing. Our particular focus has been
on understanding the behavior of these states
from a dynamical-systems viewpoint. For this
we have projected the concentration fields of the
reaction–diffusion equations into a four-dimensional
space by computing scroll filaments and then fitting
appropriate filaments to circles. We have shown that
in principle it is possible to stabilize an axisymmetric
scroll ring with parametric forcing. However, without
some method of feedback control this is difficult in
practice.

We verified that the unforced twisted scroll ring is
a relative equilibrium of the reaction–diffusion equa-
tions (there is a frame of reference in which it is a
steady state). We have argued on the basis of our nu-
merical experiments that the dynamics of a twisted
scroll ring are not those of a generic relative equilib-
rium in anE(3) equivariant system. Rather, the dy-
namics are governed by the symmetrySE(2) × R.
Finally we have carefully investigated twisted scroll
rings under resonant and near-resonant periodic forc-
ing and have shown that their behavior can be un-
derstood from the viewpoint of symmetric bifurcation
theory, namely resonant drift occurs in a direction per-
pendicular to the central filament and drift along the
central filament is modified.

The periodic forcing we have considered here is
essentially equivalent to the dynamics near a Hopf
bifurcation. The locus of Hopf bifurcations from rigid
spiral rotation and to spiral meander in two dimensions
is known [35] for the reaction–diffusion equations (1)
and (2). It would be of some interest to consider the
Hopf bifurcation undergone by the axisymmetric and
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twisted scroll rings and in particular to establish where
the instability occurs in parameter space.

Finally, we stress that the approach taken here to
understanding waves in three-dimensional excitable
media is very different from the approach of filament
dynamics. The description of three-dimensional struc-
tures in terms of filament dynamics requires the “local
geometry hypothesis” that filaments move according
to their local curvature and twist which are generally
assumed to be small [29–32]. These assumptions do
not hold for most compact structures such as rings,
links and knots, apparently because these structures
exhibit substantial non-local filament interaction
[13,14]. On the other hand, the dynamical-systems
approach does not preclude filament interaction, but
instead relies only on the basic symmetry properties
of solutions. We hope to study other organizing cen-
ters (linked rings and knots) from this viewpoint in
the future.
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Appendix A

Here we describe the method used for generating
initial conditions. This is essentially the method pi-
oneered by Winfree et al.1 which derives from a
standard method of embedding an algebraic knot in
three-space [47]. Think of a scroll wave as a stack of
two-dimensional slices containing spirals. Then one
can generate scroll initial conditions via two map-
pings: a mappingφ generating two-dimensional spi-
rals with a known tip location, and a mappingf
that stacks the spirals in the desired three-dimensional

1 The method is due to D. Epstein, A. Winfree and T. Poston,
unpublished in the original form (see [14,45,46]).

structure. The mappingφ is of the formφ : R2 →
R

k, wherek is the number of fields. In our casek =
2, that isφ gives the two field values(u, v) at each
point in the plane. The stacking mapf : R3 → R

2

sends points in three-space to the two-dimensional
slices. The compositionφ◦f thus assigns(u, v) values
to each point in three-space, i.e. generates the initial
conditions.

A.1. Two-dimensional spirals

A simple initial condition for spiral waves is a sector
of excitation. Expressed in polar coordinates(r, θ),
the excited region can be taken as lying between a
wave front atθ = θ0 and a wave back atθ = 0. For
kinetics (2), excited regions correspond tou = 1 and
refractory regions tou = 0. Thus we takeu to be
initially piecewise constant withu = 1 for 0 ≤ θ <

θ0, and u = 0 otherwise. We takev to be initially
piecewise linear withv = vmin ' 0 at the wave front
and v = vmax at the wave back. Thus we have the
following expression forφ:

(
r

θ

)
φ→





 1

vmax
θ0 − θ

θ0


 if 0 ≤ θ < θ0,


 0

vmax
θ0 − θ

θ0 − 2π


 if θ0 ≤ θ < 2π

(A.1)

where we have setvmin = 0. In practice we usevmax =
a andθ0 ≈ π .

A.2. Complex polynomial maps

For simplicity assume thatφ generates a spiral
whose tip is at the origin inR2. (For the precedingφ
this is approximately true.) Then the set of points in
R

3 that are mapped to the origin by the stacking map
f comprise the filament. It is easy to find a continu-
ous mapping that gives rise to a single straight scroll
wave. However, as soon as filaments are joined to
form rings, finding continuous maps with the appro-
priate kernel becomes more difficult.
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Interesting filaments geometries can be generated
from complex polynomial maps. Given a non-constant
polynomial in two complex variablesp(z1, z2), the
equationp(z1, z2) = 0 describes a hyper-surface in
C

2. Denote this byV . Now look at the intersection
of V with a small three-sphereSε centered about
some pointq on V and defineK = V ∩ Sε. As V

is a two-dimensional manifold intersectingSε trans-
versely, the real dimension ofK must be one. In
the simplest caseK is a circle embedded into the
three-sphereSε. However, if q is a critical point of
the polynomial, thenK need not be topologically a
circle, and ifK is topologically a circle it can be em-
bedded in a knotted way. This provides a method for
obtaining the stacking mapf itself as the composi-
tion of two mappings:f = p ◦ s, wheres mapsR3

to a three-sphere inR4, andp is the polynomial map-
ping taking points inC2 ∼= R4 to C. The points inR3

that are mapped to the origin inC under the compo-
sition can be chosen viap to be some desired curve
or curves.

The standard mapping fromR3 into S3
ε is the

stereographic map:




x

y

z


 s→ 1

R2 + ε2




2ε2x

2ε2y

2ε2z

(R2 − ε2)ε




∼= 1

R2 + ε2

(
2ε2x + i2ε2y

2ε2z + i(R2 − ε2)ε

)
, (A.2)

whereR2 ≡ x2 + y2 + z2. Points insideS2
ε ⊂ R3 are

mapped to the lower hemisphere, points outsideS2
ε

to the upper hemisphere ofS3
ε .

In numerical simulations we are only interested
in a subset ofR3, usually a cube, and it is neces-
sary to scale the simulation volume such that un-
der the mapping (A.2) this volume covers a sizable
portion of the sphere. Scaling the volume to the
cube [−2ε, 2ε]3 will cover over 70% ofS3

ε , which
is a good choice for most initial conditions. For
the twisted scroll ring, it is necessary to scale the
z-direction differently. Ideally thez-coordinate of
the simulation cube should be scaled to [−∞, −∞]

and this can be accomplished via the tan func-
tion.

By appropriate choice of the polynomial map we
can takeε = 1

2 in the definition ofs. Moreover, as we
are only interested in a subset ofR3, it is possible to
use a simpler mapping by dropping the pre-factor in
(A.2) and using


 x

y

z


 s→




x

y

z

R2 − 1
4


 ∼=

(
x + iy

z + i(R2 − 1
4)

)
. (A.3)

This describes a parabolic surface that touches the
sphereS3

1/4 at (0, 0, 0, −1
4).

In summary, we generate our initial conditions by
scaling the simulation volume to the cube [−1, 1]3, or
[−1, 1]2 × (−∞, −∞) for the twisted scroll ring, and
then apply the following composition of mappings:

wheres is given by (A.3),p is chosen according to the
desired filament structure, andφ is given by (A.1).
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