Secondary instability in the wake of a circular cylinder
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Secondary instability of flow past a circular cylinder is examined using highly accurate numerical
methods. The critical Reynolds number for this instability is found tRbg=188.5. The secondary
instability leads to three-dimensionality with a spanwise wavelength at onset of 4 cylinder
diameters. Three-dimensional simulations show that this bifurcation is weakly subcriticdl99®
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The von Kaman vortex street generated by flow past awhere p’ is the perturbation to the pressure that enforces
circular cylinder is, at low Reynolds numbers and underV-u’=0.
ideal conditions, a perfectly time-periodic, two-dimensional Floquet theory applies to linear differential equations
flow. This periodic state develops from steady flow at thewith time-periodic coefficients, in this case E&) with co-
primary wake instability, now well-characterized and known efficients given byU. In the absence of degeneracies, the
to correspond to a supercritical Hopf bifurcatibhSubse-  general solution can be expressed as a sum of solutions of
guent instabilities in the cylinder wake have been given atthe formu(x,y,z,t)exp(ot), whereo is a Floquet exponent
tention only recently and they are still not adequately underand each Floguet modeis a T-periodic function. Stability
stood. In this Brief Communication we discuss the use ofof U is characterized by the spectrum of Floquet multipliers,
highly accurate computational methods to explore she- u=exp(T): exponentially growing perturbations corre-
ondary instability in the cylinder wake. This is a global spond to multipliers outside the unit circle in the complex
three-dimensional instability of the two-dimensional, time-plane (u|>1).
periodic vortex street. From a combination of linear and non-  Because the cylinder is homogeneous in the spanwise
linear computations we derive quantitative data about thelirectionz, the Floquet modes must be of the form
bifurcation (such as critical Reynolds number and critical
spanwise wavelengttas well as insight into the qualitative T(x,y,z,t)=(lcos Bz, vcosBz, Wsin Bz), (3)
nature of the transition.

Our computational approach is summarized as followsor an equivalent form obtained by translationzinwhere 8
First we perform direct simulations of the incompressiblejs the spanwise wave number ads, andw are functions
Navier—Stokes equations to obtain 2-D wake flows forgf (x y t) only. In this way the 3-D stability problem for
140<Re=300, whereRe is the Reynolds number defined fixed Re reduces to a one-parameter family of 2-D stability
by Re=U..d/v; U, is the free-stream velocity far from the proplems that depend of. We integrate Eq(2) using a
cylinder, d is the cylinder diameter, and is the kinematic  method similar to that used to computk and employ a
viscosity. For the 2-D simulations we use a spectral elemenkryjov method to find the dominant Floquet multiplier and
method with high resolution on large computational do-corresponding Floguet mode as a function of the parameters
mains: meshes have 170 to 300 elements and a polynomifle and 8. A more detailed description of our numerical
basis of sixth to tenth order. The unsteady solution is intemethod is described in Ref. 3.
grated until it reaches an asymptotic time-periodic state  Figyre 1 shows the dependence of the dominant Floquet
U(x,y,1), that is U(xy,t+T)=U(x,y,t) whereT is the  myitiplier on spanwise wave numbgt for values ofRe
wake period(one shedding cyc)e These periodic flows are encompassing the secondary instability. For eRefihere is
then stored for use in our stability calculations. a Floquet multiplieru=1 at =0 because autonomous

The second step of our method is a Floquet stabilitytjme-periodic flows always have a neutrally-stable Floguet
analysis of 3-D disturbances to the 2-D wake. Consider amgde of the fornii; « gU/at.* This is a 2-D mode g=0)

infinitesimal perturbation of the 2-D flow given by becausaJ is a 2-D flow. ForRe= 140, the leading multiplier
, decreases monotonically as a function @f At Re=170,
u(x,y,z,t) =U(x,y,t) +u’(x,y,zt). (D this multiplier branch has a local maximum at finfe The

) L ) ) height of this maximum grows and shifts to a slightly higher
Ignoring terms quadratic in’, the evolution of perturbations \yave number aRe increases, reaching=1 at the critical
is determined by the Navier—Stokes equations linearizega|ues for the secondary instabilitiRe.=188.5, 3. =1.585.

aboutU: The critical wavelength\.=2#/3. corresponds to almost
exactly 4 cylinder diameters. These values compare quite
au’ 1 1 well with experimental observations discussed in the com-
- _(U. "—(uy’- i T+ — V&' ) ; - .
at (U-V)u'=(u"- V)V p vp Re Vi, @) panion article by WilliamsoR.For Re>Re, there is a band
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FIG. 1. Dependence of the dominant Floquet multiplier on spanwise wave 0.15 | . a, = 0.116 =
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neutral-stability curve shown in Fig. 2.
y ¢ n, period number

We now turn to the nonlinear classification of the sec-
o_ndary ms’;ablllty_. For this We cons!der the nor_mal form for @F|G. 3. Nonlinear character of the secondary instabiligy.A,, from 3-D
pitchfork bifurcation of a discrete-time dynamical system:  simulation atRe=195 (points. Curves show results from the normal form

3 5 at first and third order withu=1.041 andw;=0.116.(b) A, computed from
Ani1=pAnt alAn-I— O(An), (4) the data in(a) showinga;>0 and therefore that the secondary instability is
. . subcritical. The inset shows a bifurcation diagram based on the normal form
whereA,, corresponds to th@eal) amplitude of the bifurcat-  together with asymptotic states from 3-D simulatigpsints.

ing flow at periodn and a; is called the Landau constant. If
a1<0, the instability is asupercritical (soft) bifurcation. If

a4>0, the instability is asubcritical (hard bifurcation: tran- . . ) o
sition is discontinuous and hysteretic. m, it is sufficient to retain only these modes when the initial

To determine the nonlinear character of the secondar??ndition lies in th.is subspace. In our simulations we re-
instability, we performed direct simulations neRe, using ~ t@ined all modes withm|<M = 16.

the full 3-D Navier—Stokes equations. The most precise and e define the amplitudé\, of the 3-D flow aftern
direct way to analyze the nonlinear growth of the critical Periods(shedding cyclesby
mode is to follow the evolution of initial conditions of the 4

form U+U,, wherel, is a Floquet mode g8.. Moreover, A E{T f 10 |2dQ
because the Navier—Stokes equations preserve the subspace md“UZ Jo

of 3-D solutions spanned by wave numbgig, for integers

1/2

: ©)

where () is the 2-D cross-section of the computational do-
main andl¢(x,y,t,) is the Fourier coefficient of the velocity
field at period(or shedding cyclen and wave numbep,.

[ v e e e e —T T T To determine the value at,, we analyzeA, in the neigh-
L Stable ] borhood of_ the critical point (*+ €)Re., where e=(Re
6 - — —Re.)/Re. is a small parameter.
« [ . Figure 3a) shows the result of a 3-D simulation at
Ts5F Unstable i Re=195 (¢=0.03). Near the point of saturatioA, departs
© ] from the exponential growth described By, ;= ©A, . Ini-
U 4 - E tially this departure is governed by the third-order term in
< 7 max. growth 7 (4). One can quantify the deviation by evaluating
3 e Ap=(Ans1—pAy)/AS,
R W W YR SRR W (MY SN T SO Y SN N SN MY N
160 180 200 220 240 which according to the normal form id,=a;+O(A?).

Re This is plotted in Fig. &). Although at low amplitudea
fluctuates considerably, its mean value is almost constant
FIG. 2. Neutral-stability curve for the cylinder wake. Everywhere to the ; 5 ; ;
right of the curve there exist exponentially growing 3-D Floquet modes withumII the O(A”) term in (4) becomes important. From the

the indicated wavelength: the dashed—solid line indicates the mode with thdata we estimater;~0.116. Figure & ShOWS the growth
maximum linear growth rate. curve from the normal form truncated at third order. Excel-
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- g N o B _ of L=6 to 18 diameters. They report both haadd soft
W‘W transitions, although only the latter is relevant to the discus-
o 1 o ® sion here(the hard transition is observed Rte=160 and
W\ﬁ"‘-—’ does not correspond to a bifurcation from the 2-D flowhe
- g u ‘ - soft transition occurs aRe=180 and produces a 3-D flow
w ' that agrees qualitatively with Fig. 4. While this transition is
; " o attributed to supercritical behavior, they do not report growth
Mﬁw rates or 3-D results in the small hysteretic rang&effound
here. Noack and Eckelmahprovide indirect evidence of a
FIG. 4. Visualization of the streamwise vorticity field for the saturated statesupercritical bifurcation in a low-dimensional model of the
at Re=195. Light and dark surfaces correspond to positive and negatives_ny \yake. However, the critical values computed from their
streamwise vorticity with a magnitude tf,d/U..|=0.75. .
model compared to our results are 10% lower in Reynolds
number and 45% higher in wave number. Given the im-
lent agreement between the simulation data and the thirdnense computational requirements necessary for full resolu-
order normal form with positiver; clearly indicates that the tion of the cylinder wake, it is not surprising that previous
secondary instability is subcritical. computations failed to detect weak subcriticality.

To strengthen this conclusion we performed additional ~ In summary, we performed a combined linear and non-
3-D simulations at Re=185 and 190. At Re=190 linear computational study of secondary instability in the
(e=0.008, we again founda;=0.116. Below the critical Wake of a circular cylinder. From our linear stability calcu-
point atRe= 185 we found bi-stability between the 2-D flow lations we determined the precise critical values for the 3-D
(A=0) and a 3-D flow A # 0): initial conditions corre- instability of the 2-D wake. Using full 3-D simulations near
sponding toA,= 0.1 decayed back to zero, while initial con- the critical point, we estimated the Landau constant for this
ditions corresponding t&\,=0.915 evolved to a saturated bifurcation and provided the first clear numerical evidence
3-D flow with A=0.897. Using the values af;, Re,, and  that the secondary instability is subcritical. These calcula-
the asymptotic amplitudes from the nonlinear calculations, tions firmly establish the nature of the secondary instability
we constructed the bifurcation diagram shown in the inset tdor an infinitely long cylinder in an open flow.
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