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Laboratory experiments and numerical computations are conducted for plane channel flow with a 
streamwise-periodic array of cylinders. Well-ordered, globally stable flow states emerge from 
primary and secondary instabilities, in contrast with other wall-bounded shear flows, where 
instability generally leads directly to turbulence. A two-dimensional flow resembling Tolhnien- 
Schlichting waves arises from a primary instability at a critical value of the Reynolds number, 
R r= 130, more than 40 times smaller than for plane Poiseuille Bow. The primary transition is shown 
to be a supercritical Hopf bifurcation arising from a convective instability. A numerical linear 
stability analysis is in quantitative agreement with the experimental observations, and a simple 
one-dimensional model captures essential features of the primary transition. The.secohdary flow 
loses stability at R2= 160 to a tertiary flow, with a standing wave structure aIong the streamwise 
direction and a preferred wave number in the spanwise direction. This three-dimensional flow 
remains stable for a range of R, even though the structures resemble the initial stages of the 
breakdown to turbulence typically displayed by wall-bounded shear flow. The results of a Floqpet 
stability analysis for the onset of three-dimensional flow are in partial agreement with 
experiment. 0 I995 American Ins&z&e o$ Physics. 

1. INTRODUCTION 

The transition to turbulence in wall-bounded shear flows, 
like those in channels, pipes, and boundary layers, is a basic 
problem of both fundamental and practical importance. Such 
flows are called open because fluid passes across boundaries 
into and out of the system. The furbulent transition in these 
systems is strikingly abrupt: as the Reynolds number R is 
increased, instability leads to the sudden, unpredictable tran- 
sition from a laminar state to turbulence. Because the result- 
ing turbulent flow has a very large number of degrees of 
freedom, concepts from hydrodynamic stability and dynami- 
cal systems theory have had limited success in describing the 
onset of turbulence in open fluid flows. 

As an example, consider plane channel flow. Linear- 
stability calculations’ predict that the laminar state becomes 
unstable at a critical Reynolds number, R, =5772.22. Experil 
ments, however, display a snap-through transition to turbu- 
lence at a smaller value of R that depends sensitively on 
external disturbanceszz3 (typically R-1000). Experimentally, 
there are no simple, stable states mediating the transition to 
turbulence, and numerically there are no known simple flow 
states below R-2900 (for pressure-driven fl~w).~~ As a re- 
sult, there is no universally accepted picture for the onset of 
turbulence in plane channel flow. 

The situation is different for closed flows, where fluid is 
confined by system boundaries. Here the transition to turbu- 
lence is more completely understood. Two prototypical 
closed flows are Couette-Taylor flow between rotating cyl- 
inders and Rayleigh-Bdnard convection. As the control pa- 
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rameter (Reynolds or Rayleigh number) is increased in these 
systems, the simple laminar or conductive state becomes un- 
stable to complex flow patterns through a sequence of bifur- 
cations. Each bifurcation leads to a state that is more com- 
plex than those preceding, and each state is stable over some 
range of control parameter. The flow becomes chaotic or 
weakly turbulent only after several (but finitely many) such 
bifurcations.’ This measured progression toward turbulence 
has enabled many detailed, quantitative comparisons be- 
tween theory and experiment, ranging from the primary in- 
stability through the onset of chaos.’ 

In this paper we examine an open shear flow in which 
instabilities yield stable secondary and tertiary flows. The 
flow geometry, shown in Fig. 1, is plane channel flow geo- 
metrically perturbed in the streamwise direction by the peri- 
odic’placement of small cylinders near one channel wall. By 
examining this Ilow, which was originally studied by Kar- 
niadakis et al. ,I0 we are able to understand the initial stages 
of the transition to complex dynamics in an open flow’r and 
to make quantitative comparisons between experiment and 
numerical computations. 

In Sec. II we review previous work on instabilities in 
spatially periodic channel flows and introduce the governing 
equations and scalings. Our experimental and numerical ap- 
proaches to the problem are described in Sets. III and IV, 
respectively. The results for the primary instability are pre- 
sented inSec. V, and those for’secondary instability are given 
in Sec. VI. Section VII contains the conclusions and sugges- 
tions for future work. 

II. PRELIMINARIES 

A. Previous work 

In technological applications ranging from microelec- 
tronics to nuclear reactors, advective heat and mass transport 
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FIG. 1. Plane channel flow with spatially periodic perturbations in the 
streamwise direction, x.l’ Unless otherwise noted, x is referenced to the first 
cylinder (see Fig. 2), y to the channel half-height, and z to the center span. 
In units of the half-height h (0.794 cm in the experiment), the streamwise 
cylinder spacing is L=6.66, the cross-channel cylinder location is 
y,*= -0.5, and the cylinder diameter is d=0.4. In the experiment, the span 
S=40. In the stability computations, the span is assumed to be infinite. 
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Chamber 

FIG. 2. Schematic diagram of the channel flow experiment. 

leading to a stable, ordered, three-dimensional (3-D) state. A 
phase portrait of this flow indicates that it is periodic in the 
laboratory frame. 

is commonly augmented by placing obstructions (“rough- 
ness elements” or “eddy promoters”) in the flow 
domain.10112-16 The obstructions can induce instability in an 
otherwise laminar flow. Such unsteady laminar flows can 
provide good mixing with low dissipation, an attractive al- 
ternative to turbulent mixing, where pumping costs are 
higher and large shear stresses may threaten structural integ- 
rity (such as in blood oxygenators). The placement, size, and 
geometry of the obstructions are frequently determined em- 
pirically. 

To model the effect of roughness elements on transport, 
previous channel flow experiments have been performed 
with geometric perturbations located periodically in the 
streamwise direction. In heat transfer studies on channel 
flows with spatially periodic triangular grooves, Greiner 
et aZ.17 observed that enhanced heat transfer first occurs in 
downstream locations of the channel at R-200 and moves 
upstream with increasing R; the unsteadiness was observed 
to be intermittent over a broad range of R. Similar observa- 
tions have been reported by Stephanoffr3 for channel flow 
with two wavy walls. For the geometry of Fig. 1, KozIu’~ 
observed the onset of unsteady flow for Rb200. There have 
been no previous experiments investigating details of hydro- 
dynamic stability in spatially periodic channel flows. 

Previous numerical simulations have investigated both 
primary and secondary transitions in spatially periodic chan- 
nel flows. For two-dimensional (2-D) simulations of the ge- 
ometry illustrated in Fig. 1, Karniadakis’” presented evi- 
dence for a supercritical bifurcation to traveling waves at 
Ri===150. Furthermore, Karniadakis et aLlo found that the 
spatial perturbations did not significantly alter the character- 
istic flow structures from those in plane channels-the dis- 
persion relation and structure of the modes excited by the 
geometry in Fig. 1 compared well with those of Tollmien- 
Schlichting modes in plane channels. Amon and Patera” 
found similar results for the primary instability in a channel 
flow geometrically perturbed by rectangular grooves parallel 
to the z axis. They also studied the onset of three- 
dimensionality in this tlow. From a temporal Floquet stability 
analysis of the fundamental spatial modes, they found that a 
2-D traveling wave, which is stable over a range of R above 
the primary transition, undergoes a secondary instability 

B. Notation and scaling 

Unless explicitly noted otherwise, all quantities will be 
presented in nondimensional form, as described in this sec- 
tion. The fluid flow in the spatially periodic channel is gov- 
erned by the nondimensional incompressible Navier-Stokes 
equations: 

dU 
;It+N(u)=-Vp+R-l v2u, 

v*u=o, (2) 
where u=(u,u,w) is the velocity and p is the static pressure. 
Here N(u) represents the nonlinear term: 

N(u)=(u.V)u. (3) 

Lengths are scaled by the channel half-depth h (see Fig. 
1). Because we will be considering flows in the spatially 
periodic channel driven under constant fluid flux conditions 
(see Sec. III A), the natural velocity scale is the centerline 
velocity UC1 of parabolic how in a plane channel with the 
prescribed ll~x.~*~ The velocity U,r is measured directly in 
experiment, as described in the next section. In the numerical 
computations, we also consider constant flux conditions (see 
Sec. IV). The velocity scale is given by Uc,=3Q/4h, where 
Q is the flux per unit spanwise length through the channel 
Q=j-h_/,u dy.(jv7 By fixing Q=$ and computing in a geom- 
etry with h=l, all quantities obtained from Eqs. (l)-(3) are 
properly scaled. The experimental Reynolds number is given 
by R = hUcllv, where v is the kinematic viscosity of the 
working fluid (water). All other physical quantities are non- 
dimensionalized in terms of these scales: time t(hlU,J, wave 
number k( l/h), frequency, and growth rate (U&). 

III. EXPERIMENTAL SETUP 

A. General features 

The experiments are performed in a water channel with 
half-depth h=0.794 cm and span S=31.75 cm (see Fig. 1). 
Figure 2 shows a schematic diagram of the experimental 
setup. The test section, which contains an array of 21 cylin- 
ders, is 112 cm in length. Upstream of cylinder 1 (numbering 
from upstream to downstream) a channel entrance length of 
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FIG. 3. Parabolic profile in the channel at x= - 10.4, I= -5.1 (dimension- 
less units) at R = 131.5 for the experiment. The channel walls are located at 
y = Z-O.794 cm. The curve is a parabolic fit to the experimental points. 

127 cm ensures a .fully developed plane Poiseuille flow for 
Rg1400.z’ The channel walls parallel to the x-z plane are 
constructed from glass plates of nominal 1.0 cm thickness. 
The glass walls are stiffened using aluminum ribs (5.7 cm 
X5.7 cm cross sectionj attached to the center span of both 
channel walls. Variations in the channel wall spacing, deter- 
mined using interferometry, are less than 2% overall and less 
than 1% in the region of the channel containing the cylin- 
ders. The cylinders are made from stainless steel that is cen- 
terless ground to a diameter d=0.3175+0.0004 cm. 

Fluid is continually recirculated through the channel. 
Water is pumped from a reservoir, through a 5 ,um filter, and 
into a tall standpipe maintained at constant level by an over- 
flow drain. The fluid is then metered to the experiment by a 
control valve. This arrangement maintains constant mass flux 
through the channel because the pressure drop across the 
control valve is much larger than that across the rest of the 
experiment. A ten to one 2-D contraction region with a 
matched cubic profile22 reduces the background turbulence 
of flow into the channel entrance, while a diffuser provides a 
smooth transition from the channel exit to a settling chamber 
for the fluid. From the settling chamber, the fluid then drains 
back into the reservoir to repeat the cycle. A thermostatically 
controlled water bath regulates the temperature to 20.05 “C 
by directly circulating the working fluid through an indepen- 
dent flow loop. The section of the flow circuit from the con- 
trol valve through the settling chamber is mounted on an 
optical table that pneumatically isolates the flow from me- 
chanical vibrations. 

Velocity and flow visualization measurements are con- 
ducted using a microcomputer based data acquisition system. 
Simultaneous measurements of streamwise velocity at differ- 
ent locations are obtained from two single-component for- 
ward scatter laser Doppler velocimetry (LDV) systems. A 
third LDV system monitors the laminar Poiseuille flow up- 
stream of the cylinder array. Because the upstream flow is 
parabolic at the values of R we consider, the velocity scale 
U,, is obtained directly from the upstream measurements. 
Figure 3 shows an upstream parabolic profile. Hot film 
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FIG. 4. Velocity power spectrum at R=l35 from a hot film probe in the 
cylinder-array section at x=624, y=O, and .z=13.6. The integral of the 
spectrum is equal to the variance of the velocity time series. 

probes, calibrated in situ by LDV, yield a turbulent intensity 
of Ci.O7% (Fig. 4), which compares well with the 0.05% tur- 
bulence intensity obtained for channel experiments in wind 
tunnels.3 

Electrochemical flow visualization is performed using 
the pH indicator thymol blue.23 With the spatially periodic 
cylinders serving as electrodes, neutrally buoyant blue dye is 
produced near the cylinders, and is subsequently advected by 
the flow. Although the dye fronts are properly interpreted 
only as streaklines, information about the flow field (e.g., 
wavelength) can be obtained by observing the motion of the 
dye produced simultaneously at different cylinders. To in- 
crease the dye contrast, the flow is back-illuminated using 
sodium vapor lamps. A CCD video camera is used to view 
the flow; the video signal is recorded using a time lapse 
video recorder and is simultaneously digitized using a frame 
grabber. Digital image processing is performed to enhance 
and analyze the images. 

B. $ontrolled disturbances 

Controlled disturbances, often used to probe open 
flows 3~‘1-z6 are imposed in the experiment by two different 
methods: either by pulsing briefly the flow rate or by oscil- 
lating time periodically a foil inserted in the flow. The flow 
rate is pulsed by briefly opening for a time At-4 (nondimen- 
sional) and then closing a bypass valve in parallel with the 
control valve (Fig. 2). Because the flow-rate change propa- 
gates through the channel as a pressure wave, the pulsed 
disturbance excites a step change in the entire flow simulta- 
neously to within about 2 ms (the length of the experiment 
divided by the speed of sound in the fluid). During the flow- 
rate pulse, u(y = 0) typically increases by 30%. With com- 
puter control, the triggering of the flow-rate pulses is syn- 
chronized with the acquisition of a velocity time series for 
each disturbance. This synchronization enables an impulsive 
disturbance to be identically repeated and recorded multiple 
times (typically 10-20) for fixed conditions. Greatly im- 
proved signal-to-noise ratios are obtained by averaging sets 
of time series. 

Time-periodic disturbances are imposed by oscillating a 
foil inserted in the flow through a port located at x= -4.8. A 
schematic of the foil is shown in Fig. 5. The motion of the 
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FIG. 5. End and side views of oscillating foil used to impose time-periodic 
disturbances at the inflow to the cylinder array. The protuberances extend a 
distance I,, in the z direction, and are separated by a distance I,. See Table 
T for the sizes of I,, I,, and Is. 

foil does not change the Ilow rate through the channel. The 
foil oscillations, driven by direct coupling to a stepper motor, 
are symmetric about y =0 with angular amplitude 4; the an- 
gular velocity of the,foil versus time is a square wave. The 
disturbance amplitude is increased by increasing $ with a 
fixed oscillation period. The foil position is continually 
monitored by a rotary shaft encoder with a resolution of bet- 
ter than &lo. 

The foil alone imposes 2-D disturbances in the channel 
flow. To impose 3-D disturbances, protuberances are 
mounted magnetically on one side of the foil, as shown in 
Fig. 5. By changing the placement and number of protuber- 
ances, 3-D disturbances of various initial spanwise wave- 
lengths can be studied. The dimensions and placement of the 
protuberances for 3-D disturbances are listed in Table I. 

TABLE I. Disturbance foil parameters. Unless otherwise noted, the foil 
oscillation frequency is fixed to 0.18720.003 and the angular amplitude 4 is 
equal to 36” for both 2-D and 3-D time periodic disturbances. 

No. of 
protuberances 4 lb 4 

1 19.36 0.88 ... 0.318 
2 11.86 0.88 14.12 0.42 
4 7.22 0.88 7.22 0.78 
5 5.87 0.88 5.87 0.90 
6 4.90 0.88 1.90 1.09 
8 3.62 0.88 3.62 1.40 

#Computed by replacing I, with I,. 
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IV. NUMERICAL COMPUTATIONS 

We have performed numerical linear-stability calcula- 
tions of both steady and unsteady flows in the periodic chan- 
nel geometry to compare with the experimental findings. In 
the steady-flow case, our stability computations provide a 
direct and accurate determination of the bifurcating fre- 
quency and of the critical Reynolds number R 1. For the un- 
steady (time-periodic) secondary now, our computations pro- 
vide an estimate of the critical spanwise wave number and 
critical Reynolds number R,. 

A. Time-dependent simulations 

We use 2-D time-dependent simulations to obtain both 
the steady and time-periodic flow fields, whose stabilities are 
then investigated. The time-dependent simulations are car- 
ried out using a spectral-element program (PRISM) developed 
by Henderson at Princeton University.27 In the spectral- 
element methodology the computational domain is divided 
into K elements, and within each element both the coordi- 
nates and solution variables (velocities and pressure) are ap- 
proximated by Nth-order tensor-product polynomial expan- 
sions. A high-order time-splitting scheme is then used to time 
step the Navier-Stokes equations (1)-(3).1gY27-31 

In our computations the flow is assumed to be spatially 
periodic in the streamwise (x) direction; e.g., for 2-D flows 
u(x+nL,y,t)=u(x,y,t), where L is the cylinder spacing 
and n is an integer determining the number of geometrical 
periods in the computational domain. The significance of as- 
suming a periodic velocity field will become apparent in Sec. 
V. For all results reported, the number of spectral elements 
per geometrical period is fixed at 36. The polynomial expan- 
sions in our computations are typically of order N=9. 

No-slip conditions on the velocity are imposed at the 
channel walls and at the cylinder surface. Since the pressure 
gradient Vp, like the velocity u, satisfies periodic boundary 
conditions in the streamwise direction, the pressure p must 
have the form p(x,y,t)=po(x,y,t)+pl(t)x, where p. is 
the streamwise-periodic part of the pressure, 
po(x+nL,y,t) =p”(x,y,t), and p1 is the streamwise-mean 
pressure gradient responsible for driving the flow. For 
constant-flux conditions (Sets. II B and III A) the mean pres- 
sure gradient p1 is time dependent when the flow is unsteady. 
This requires that pi be computed at every time step, such 
that the flux be the prescribed constant value, Q  = $. 

To obtain the base tlows needed for our stability compu- 
tations, we simulate Eqs. (l)-(3) for a variety of Reynolds 
numbers in the range lOOGR<180. Initially at R = 100 we 
start from a uniform state; thereafter, we use final conditions 
from one simulation as the initial conditions for the next. In 
all cases, the simulations are run for a time sufficient to 
obtain well-converged asymptotic states that are then stored 
for use in our stability computations. In the case of steady 
flows, this requires storing only the final flow field. In the 
case of time-periodic states, this requires the storing of a 
number of velocity fields (snapshots) over one time period. 
We find that 32 velocity fields equally spaced over one pe- 
riod are sufficient for representing the periodic Aows, i.e., at 
intermediate times the flow field can be interpolated to well 
within the overall accuracy of the simulations. 
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I 
B. Stability analysis 

I Let U(x,y,t)=[U(x,y,t),V(x,y,t)] be a 2-D velocity 
field (steady or time periodic) whose stability is sought. An 
iufinitesimal perturbation u’ to this velocity field evolves ac- 
cording to the linearization of Eqs. (l)-(3): 

du’ 
z=-DN(U)u’-Vp’+R-’ V2u’, (4) 

I V.u’=O, (5) 
I 
I where DN(Uj is the (possibly time-periodic) linear operator: 

DN(U).u’=(U.V)u’+(u’.VjU (6) 

and p’ is the perturbation to the pressure. 
In the case of 2-D stability computations, the perturba- 

tion u’ is itself 2-D: u’(x,y,t)=u’(~,y,t)+u’(x,y,t). For 
our 3-D stability computations, we consider the geometry to 
be infinite in the spanwise direction z. Thus, it is sufficient to 
consider perturbations ii of the form 

~‘(x,y,z,t)=Re[u’(x,y,t)e~~;‘~+u’(x,y,t)e’~z~ 

+iw’(x,y,t)eikG], (7) 

where k, is the spanwise wave number of the perturbation. 
Because Eqs. (4)-(6) are linear in u’, modes with different 
kz do not couple; hence, we may treat k, as a parameter and 
consider each k, mode separately. Further details are given at 
the end of this section. 

By defining L(U) to be the right-hand side of the linear- 
ized equations, 

L(U)=-DN(U)u’-Vp’+l+ V’u’, 6) 

subject to the incompressibility constraint, we may write 
Eqs. (4)-(6) for the evolution of infinitesimal perturbations 
compactly as 

f-g==L(U).u’. (9? 

If U=U(x,yj is a steady flow, then L(U) is a constant 
operator whose eigenvalues o determine whether infinitesi- 
mal perturbations to U grow or decay: eigenvalues with a 
positive real part correspond to growing modes. If 
U=U(x,y,t) is a time-periodic flow, then L(U) is also time 
periodic, and the stability of U is determined by the Floquet 
multipliers p of this periodic operator. In this case, Floquet 
multipliers inside the unit circle in the complex plane corre- 
spond to decaying modes, and multipliers outside the unit 
circle correspond to growing modes. 

The method used to find the relevant eigenvalues or mul- 
tipliers is the same in both the steady and periodic cases. We 
define the operator A by 

A(U)=exp( loTL(Ujdt). (10) 

Formally, A represents integration of the linear svstem (9) 
over time interval T, i.e., the operator A takes u’(t=O) to 
u’(t= T). In the case where U is time periodic, T is the 
period of the flow and A is equivalent to the linearized Poin- 
care map associated with the periodic orbit. The eigenvalues 

of A are then precisely the Floquet multipliers I*. In the case 
where U is steady, T is chosen for computational conve- 
nience, but is otherwise arbitrary. In this case, it is more 
common to consider the exponents o obtained from p using 
the relation c+=(ln &T. 

From the operator A we find the eigenvalues of interest 
via subspace iteration starting from an initial Krylov sub- 
space. Variations of the method have been used in other sta- 
bility calculations.“0y32-36 We do not attempt to find all the 
eigenvalues of A; we find only its dominant eigenvalues 
(those with the greatest magnitude), for these are the eigen- 
values associated with instabilities. We use a Krylov space of 
dimension 8-20 and obtain converged eigenvalues with 
20-40 iterations of the operator A. Convergence varies con- 
siderably with the eigenvalue spectrum, however, and we 
have not always obtained a converged spectrum (see Sec. 
VI). The eigenvalues we report are accurate to better than 
I%, which is sufficient for our purposes. 

Application of the operator A [i.e., integration of (4)- 
(6)] requires two principal changes to the methods used to 
integrate Eqs. (l)-(3). First, we replace the nonlinear opera- 
tor N(U) with the linear operator DN(U), where U is the 
velocity field obtained from time-dependent simulations. If 
U is time periodic, then DN(U) is obtained at any time t by 
interpolation from stored values of U at 32 times over one 
period. Second, for 3-D perturbations, the operator V is re- 
placed everywhere in Eqs. (4)-(6) by (V,+iks), where V2 
is the 2-D gradient. This follows from the substitution of 
expression (7) for u’ into the linearized Navier-Stokes equa- 
tions. Thus, we only compute u’ on a 2-D domain and treat 
kL as a parameter. 

V. PRlMARY INSTABILITY 
In this section we present results showing that in the 

spatially periodic channel (1) the primary instability is 
strongly convective and no absolute instability appears, even 
with large increases in control parameter, and (2) the primary 
transition is supercritical and the resulting secondary flow is 
stable for a range of control parameter above onset. 

A. Convective instability 

The behavior at transition depends strongly on whether 
the instability is absolute or convective.37 In the case of an 
absolutely unstable flow, virtually any small perturbation will 
eventually be amplified to the point where it will be observed 
as it fills the entire flow domain [Fig. 6(a)]. Even in cases 
where the nonlinear evolution does not lead to a nearby state, 
as in the case of a subcritical bifurcation, it is not necessary 
to impose specific disturbances to the flow in order to ob- 
serve an instability. This is in part the reason that bifurcation 
points can be accurately determined in closed flow experi- 
ments: the instabilities are usually absolute.38 

Convective instabilities, which can dominate in open 
flow~,~~ are less straightforward to study. Since convective 
disturbances advect out of any finite length open system in 
finite time [Fig. 6(b>],4o instability triggered by random noise 
can be detected only if the noise is amplified to detectable 
levels during the time of flight through the system. Thus, the 
more perfect (i.e., quieter) the laboratory flow facility, the 
more difficult it is to detect the onset of a convective 
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FIG. 6. Space-time diagrams illustrating the distinction between absolute 
and convective instability. (a) If an initially localized disturbance grows to 
fill all space, then the instability is absolute. (b) If the disturbance advects 
more quickly than it spreads, then the instability is convective. 

instability.3 Moreover, beyond the transition point where lin- 
ear growth rates are sufficiently large to produce detectable 
signals within the time of flight through the system, there 
will generally be a band of unstable modes, and the flow 
dynamics can be quite irregular due only to the linear growth 
of a random mixture of uncorrelated modes. 

In the absence of imposed disturbances, instability in our 
experiment is first marked by the appearance of a small 
broad peak in the power spectra for H-180 (Fig. 7). The 
time variations in the velocity time series are indistinguish- 
able from instrumental noise. If the background turbulence 
intensity is increased (by reducing the mechanical isolation 
of the channel; Sec. IV), the onset of waves is observed at 
smaller R. At larger R the time series displays oscillations 
whose frequency is relatively well defined, but whose phase 
and amplitude are quite variable. This behavior is reflected in 
power spectra that show a dominant peak with increased 
height and width. With R >200, the oscillations become quite 
irregular, and spectra become broad and decrease nearly 
monotonically in power with increasing frequency (Fig. 7). 
Flow visualization reveals the presence of 2-D waves whose 
appearance, particularly for lower values of R above transi- 
tion, is intermittent. 

Direct evidence for a convective primary instability is 
provided by imposing pulsed flow rate disturbances (Sec. 
III B), and observing the subsequent evolution. Figure 8 

FIG. 7. Velocity power spectra at two values of R for the cast : of no im- 
posed disturbances to the flow. The onset of unsteady flow is seen as broad- 
band peaks. The measurements were obtained by laser Doppler velocimetry 
at x=117.1, y=O, and z=-5.1. The frequency and power spectral density 
are dimensionless. 
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FIG. 8. Velocity time series measurements at R =165 showing the convec- 
tive nature of the primary instability. Following a square flow-rate pulse 
(between times 10 and 14), the velocity decays rapidly to a steady state 
(parabolic profile) upstream of the cylinder array (x=-10.8). Within the 
periodic array of cylinders, the pulse disturbance excites a wave packet that 
advects downstream. The velocity initially evolves similarly at upstream 
(x=37.2) and downstream (x=117.1) locations separated by a distance 1X. 
The tail of the wave packet first advects past the upstream location, then past 
the downstream location. For all three time series, y =0 and z= -5.2. 

shows time series at three locations in the experiment. Up- 
stream of the cylinder array (x=-10.8 in Fig. 8), the veloc- 
ity u(y =0) quickly returns monotonically to UC, after the 
end of the pulse. This time series demonstrates that the Poi- 
seuille flow in the channel entrance is absolutely stable37741 at 
these Reynolds numbers; the time scale for the return to the 
parabolic profile is -0. 1 1R (approximately equal to 18 in 
Fig. 8), as obtained directly from the development length for 
Poiseuille flo~.~l By contrast, within the cylinder array (X 
=37.2 and 117.1 in Fig. 8), velocity time series evolve rap- 
idly to oscillatory’ behavior; moreover, velocities at points 
with the same (y ,r) and separated along x by an integer 
multiple of L (as in Fig. 8) initially evolve nearly identically 
because the flow pulse excites an L periodic wave packet 
within the cylinder array. The nonzero group velocity of the 
wave packet can be seen by comparing the time series at the 
upstream and downstream points: the oscillations quickly de- 
cay’ upstream but continue to evolve downstream. Eventu- 
ally, the wave packet advects out of the experiment and the 
velocity everywhere becomes steady. 

Flow visualization of impulsive disturbances in Fig. 9 
provides another view of the convective instability. A pulse 
in the flow rate at t =0 excites a 2-D disturbance with several 
modes present. This disturbance quickly evolves into 
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FIG. 9. Dye visualizations illustrating the convective instability at R =138. 
Dye fronts at upstream (after cylinder 8) and downstream (after cylinder 16) 
locations are shown at four different times following a flow rate pulse end- 
ing at t=O (cf. Fig. 8, t=14). The fronts are produced electrochemically at 

I 
I the cylinders, whose locations are indicated by thin vertical lines and num- 

bered arrows. Near z=O, channel wall braces block a direct view of the 
I flow; dashed lines are drawn to guide the eye. The two-dimensional distur- 

bance quickly evolves into a traveling wave packet with wavelength L/2, as 
seen by t=SO. The wave packet has advected out of the upstream region by 
t = 100, but can still be seen in the downstream region. By t=200 the wave 
packet has advected out of the experiment. Dye is produced at cylinders 8 
and 16 only; in the absence of any imposed disturbances, dye streams in 
continuous sheets from the dye-producing cylinders. 

a 2-D traveling wave of wavelength L/2 (wave number 
k=1.9), as is seen by the presence of two dye fronts per 
cylinder spacing at t =50 in Fig. 9. This flow wavelength of 
one-half the geometric period L is in agreement with numeri- 
cal simulations and previous experiments.‘“‘19 (Note, how- 
ever, that the flow deviates slightly from a strict traveling 
wave because the cylinders break translational symmetry in 
the streamwise direction.) At t = 100, the packet can be seen 
only in the downstream regions of the experiment. Finally, 
by t=200 the wave packet has advected out of the experi- 
ment. 

Transition in numerical simulations is also strongly af- 
fected by the presence of convective instability, where 
boundary conditions play an essential role. With streamwise 
periodic boundary conditions, a disturbance that advects out 
of the downstream end is fed back in at the upstream end, 
and convective instability cannot be distinguished from ab- 
solute instability; after the onset of instability, a time series 
from a fixed spatial point shows limit cycle behavior that 
continues without interruption.” If, however, inflow- 
outflow streamwise boundary conditions are imposed, then 
the convective nature of the instability can be observed:42 
time series from fixed spatial points then show limit cycle 
behavior only for a finite time period, as in the experimental 
time series of Fig. 8. 

B. Onset of instability: Supercritical bifurcation 

A transition is supercritical (continuous) if the exponen- 
tial growth of linear modes is ultimately saturated by nonlin- 
earity at lowest order.43 The secondary flow arising from a 
supercritical primary instability typically has a simple or- 
dered structure resulting from the competition between a 
small number of modes. On the other hand, if nonlinearity is 

FIG. 10. Velocity time series at R = 110.5 showing the decay of pulse dis- 
turbances below the onset of the primary instability in (a) experiment and 
(b) simulation. The points CM) in (a) correspond to a fit of the data to (14). 
The time series in both experiment and simulation are taken at the same 
location relative to the cylinder array (x=3.9 from the nearest upstream 
cylinder; y  =O); in the experiment, z=-5.1. 

destabilizing at lowest order, then the transition is subcriti- 
cal: there is a discontinuous hysteretic jump to a finite- 
amplitude state, and for a range of R (R C RI) the tinite- 
amplitude state is bistable with the steady laminar state. 
Many modes can compete during the formation of the sec- 
ondary flow, increasing the possibility of disorder. For ex- 
ample, in plane channel flow the primary instability is 
strongly subcritical’>’ and the onset of turbulence can occur, 
even for R five times smaller than the critical value RI. 

The simple traveling wave nature of the secondary flow 
arising from the convective instability (Figs. 8 and 9) sug- 
gests that the primary instability is a supercritical Hopf bi- 
furcation; our results show that this is indeed the case. (Note 
that a pitchfork bifurcation is not allowed, because continu- 
ous translational symmetry is broken in the periodic geom- 
etry; there is no comoving frame of reference in which the 
waves are steady.) For the present, we ignore spatial effects 
due to convective instability and focus on the dynamics at 
the center of evolved wave packets, where spatial variation is 
small. 

The behavior in the vicinity of a Hopf bifurcation is 
captured by the Hopf normal form,43 

where A is a complex amplitude, g is a positive real constant 
in the case of a supercritical bifurcation, o is the growth rate, 
and w is the frequency. With A =, deirp, Eq. (11) becomes- 
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FIG. 11. The onset of the primary instability R, is determined from a plot of 
growth rate crvs R; R1=129.3 from the experiment (0) and RI-134.0 from 
the linear stahility analysis (A). The solid lines are quadratic fits. 

dJ& dq 
-=-=.A4((T--gJzPj, dt=oL 
dt 

Here Re{A} can correspond to the time periodic part of any 
velocity component at some spatial location, and close 
enough to the bifurcation point, CT will be proportional to the 
parameter distance from the onset, i.e., U-E, where 
e==(R-R1)IRI. 

Below transition all disturbances decay, and the equation 
for the modulus ,,v$ becomes {for .,d sufficiently small) 

d&’ 
dt=.Pf5T. (13) 

Hence, in the final stages of decay, Re(A} will be an expo- 
nentially decreasing sinusoid. This behavior is observed in 
the experimental and numerical velocity time series for 
R<R, , as Fig. 10 illustrates. Note that equivalent spatial 
points in the measured and simulated velocities evolve 
nearly identically and differ in the mean by only 1%. 

We obtain u at each R in the experiment by fitting the 
exponentially decaying oscillations in the measured velocity 
time series to 

u=b+Ao exp(at)cos(wt+ y), (14) 
with b, A,, 0; w, and y as free parameters: (14) fits the data 
well, as Fig. 10(a) illustrates. 

Figure 11 shows plots of a(R) from both experiment and 
the linear stability computations, The critical value R , for the 
onset of the primary instability is obtained by extrapolating LT 
to zero growth rate. The range of R shown in Fig. 11 is 
sufficiently large that there is deviation i?om linear depen- 
dence on the parameter R (the relation V-E is expected to 
hold only for small &j; hence, u-(R) is fit to a quadratic. We 
estimate R r = 129.3 +6.0 for the experimental data, where the 
uncertainty includes an estimate of systematic as well as sta- 
tistical errors. From the linear stability calculation we obtain 
RI= 134.0, which is 3.6% larger than the experimentally de- 
termined value. 

For R>R, the oscillations no longer decay exponen- 
tially, but, as seen in Fig. 12(a), they grow until saturated by 
nonlinearity (before the tail of the wave packet advects past 
the probe in the experiment). From the Hopf normal form, A0 
has a stable asymptotic value at saturation given by Aa 

o.00’A-c 
“.“4 “. I 

E  
“.J 

FIG. 32. Experimental evidence for a supercritical primary transition. (a) 
Growth and saturation of disturbances above the onset of the primary insta- 
bility is illustrated by a velocity time series at R =I512 (y =O, r=-5.1). A 
least-squares fit to (15) is also shown (m). The decay of the time series near 
t=lSO is due to the advection of the wave packet past the point of obser- 
vation. (b) Saturation amplitudes A, (0) and A 1 ( l ) vs e=(R - R,)IR, . 

= a - 6. High er or - d er nonlinearity is also responsible 
for harmonic generation not contained in the normal form. 
The harmonics A, scale as &n+1)‘2 for n=1,2,3,... . To in- 
vestigate for R >R, , we fit saturated regions of the velocity 
time series to 

u=b-!-A, cos(wt+yo)+Al cos(2wt+yl), (1% 

with b, A,, Al, a, ~0, and yI as free parameters. With 
R t = 129.3 for the experiment, linear regression fits of A0 and 
A, vs E yield exponent estimates of 0.50+0.01 for A0 and 
0.95t0.02 for A, in the experiment [see Fig. 12(b)]. 

The time-asymptotic amplitude (i.e., the amplitude suf- 
ficiently far downstream) is independent of the form of im- 
posed disturbances. Figure 13 shows that downstream the 
amplitudes measured for flows triggered by impulsive distur- 
bances agree within 5%-10% with the amplitudes measured 
for flows triggered by 2-D time-periodic disturbances, even 
though the upstream amplitudes can differ considerably for 
different disturbances. The frequencies of the time-periodic 
disturbances are fixed to within 5% of the natural frequencies 
selected by impulsive disturbances; measurements made for 
a range of disturbance frequencies reveal a resonance re- 
sponse peaked near the frequency selected by impulsive dis- 
turbances. For fixed R, the initial time-periodic disturbance 
amplitude can be varied by altering the angular foil ampli- 
tude 4: as 4 increases, A, measured upstream increases in 
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FIG. 13. Plots showing the insensitivity of the downstream saturation am- 
plitude of the secondary flow to the form of imposed disturbances. (a) 
Downstream (x=117.1) amplitude of fundamenta1 A,, as a function of R, 
both for impulsive disturbances (a) and for two-dimensional time-periodic 
disturbances with +36” (A). Also showrrfor time-periodic disturbances is 
the upstream amplitude [at x=37.2, 1215 upstream of x=117.1(0)]. (b) 
Amplitude A, as a function of the disturbance foil displacement c5 at R =150 
for time-periodic disturbances [x=37.2(0) and x=117.1(A)]. The solid 
horizontal line indicates A,, from impulsive disturbances. In both (a) and (b), 
y=O, r=-5.2, and A,, represents the root-mean-square @MS) amplitude of 
the fundamental. 

value from less than to greater than A0 for impulsive distur- 
bances, as Fig. 13(b) illustrates, while the downstream am- 
plitude converges to the same value as for the impulsive 
disturbances. ’ 

The secondary tiow in the spatially perturbed channel 
has characteristic frequencies very similar to those for plane 
channel flow.” Figure 14 demonstrates that the frequencies 
of the traveling waves in the spatially perturbed flow lie 
within approximately 10% of the least stable linear modes 
(Tollmien-Schlichting waves) in plane Poiseuille flow, and 
also the traveling waves share a similar weak dependence of 
frequency on R. 

While cylinders are used to provide spatial periodicity in 
the channel, the flow is very different from unbounded flow 
past a cylinder. In the latte; case, the frequency of vortex 
shedding depends strongly on R near the onset,44 and the 
oscillations are self-sustaining, because the transition arises 
from an absolute rather than convective instabihty.37Z45*46 Al- 
though spatially periodic channels exhibit strongly inhec- 
tional velocity profiles near the geometric perturbations, such 
profiles rapidly relax to a more nearly parabolic shape, yield- 
ing a mean vorticity field similar to that present in channel 
flow.” As a consequence, flow structures display the charac- 
ter of channel modes rather than cylinder wake modes. Kar- 
niadakis et aLlo found numerical evidence that suggests cyl- 

FIG. 14. Comparison of frequencies in the spatially periodic channel how 
and in plane channel (Poiseuille) how. Experimentally measured frequencies 
before (A) and after (M) the primary transition; numerical linear eigenfre- 
quencies for spatially periodic channel flow before transition (thick solid 
line); traveling wave frequencies from simulations after transition (thin solid 
line); and linear eigenfrequencies for plane Poiseuille flow (dashed line)?’ 
The flow in the plane channel is globally stable in this Reynolds number 
range. 

inder wake modes may be important if the channel flow is 
not fully developed. 

C. One-dimensional (1-D) model system 

We now present a one-dimensional (1-D) model that il- 
lustrates very simply the dynamics that results from a super- 
critical convective instability. One-dimensional models, most 
notably the Ginzburg-Landau equation, have been widely 
used to illustrate and understand essential features of convec- 
tivel instabilities.“*46+47 However, the Ginzburg-Landau 
model is not well suited for our purposes, since the unstable 
mode at onset has a zero wave number. For modeling the 
primary instability in the channel, we require the following: 
(1) the primary bifurcation must be supercritical (i.e., non- 
l&ear terms should saturate the instability); (2) the instability 
must be strongly convective (i.e., the group velocity should 
not only be nonzero at onset, but also remain convectively 
unstable far above onset); (3) the equations must be periodic 
in space to model the periodic channel geometry; and (4) the 
bifurcating wave number must be nonzero. A simple model 
having ail of these characteristics is the convective Swift7 
Hohenberg equation, that is, the Swift-Hohenberg model 
with a first-derivative advective term: 

cY,*= E(x)*-*3-c &*-(a;+ 1)9, 

where * is a real amplitude and E and c are parameters with 
E a periodic function of x. 

If E is independent of x, the homogeneous state (p=O) 
becomes unstable in a supercritical bifurcation at E=O. The 
critical wave number of the instability is k= 1 and the group 
velocity at onset is c. Hence, by choosing c large (-lo), the 
primary instability will be strongly convective. We make 
E(x) periodic with wave number k=$, so that the spatial 
periodicity of the equation will be twice that of the waves at 
onset. [Recall that the spatial period of the channel is twice 
the period of the waves arising at the primary instability (Fig. 
o).] To model an open system, we impose the boundary con- 
ditions ~,U=~,,,~=O at both ends of an interval [OJOO]. 
The general phenomena do not depend sensitively on the 
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FIG. 15. (a) Space-time diagram illustrating supercritical transition arising 
from convective instability in a model, Eq. (16). Points where $>0.34 are 
shown as black. Parameter values are given in the text. The solution 
is initially dominated by wave number k= f [the wave number of the “ge- 
ometry” E(x)]. As the wave propagates out of the system, the solution 
evolves to a state with wave number k= 1 (the unstable wave number of the 
system). (b) Time series at x=90 [indicated by a vertical dashed line in (a)]. 
(c) Spatial profile t=5 [indicated by a horizontal dashed line in (a)]. 

type of boundary conditions used; however, for reasons men- 
tioned earlier, the boundary conditions must not be periodic. 

Figure 15 shows the results of numerical simulations of 
(16) for c- 10 and E(x) =&25+sin(x/2). There is a transition 
to a well-ordered saturated state that advects through the sys- 
tem. Figure 15(a) shows a space-time plot and Figs. 15(b) 
and 15(c) show, respectively, a time series at a fixed spatial 
location and a spatial profile at a fixed time. The space-time 
plot in Fig. 15(a) is strikingly similar to that obtained by full 
numerical simulations of the Navier-Stokes equations for 
flow in the periodic channel geometry.“’ Initially, the solu- 
tion has a wave number k= 3, but evolves to a state domi- 
nated by the k= 1 mode. The time series in Fig. 15(b) is quite 

similar to the experiment time series in Fig. 12: the ampli- 
tude saturates briefly and is followed by a decay as the state 
advects past the spatial point. 

VI. SECONDARY INSTABILITY 

In many open flows, secondary instability marks the be- 
ginning of a rapid progression to turbulence.“4748-50 In spa- 
tially periodic channel flow, however, the 2-D traveling 
waves undergo a secondary instability to a well-ordered, 
stable, 3-D flow with an additional periodicity in the stream- 
wise direction that is different from that of the secondary 
flow?* In this section we describe the tertiary state and 
present data for the onset of the secondary instability and for 
the selection of spanwise wave number of the subsequent 
flow. 

A. Qualitative description: Standing waves 

The secondary instability, like the primary instability, is 
convective, which presents difficulties in observing it in a 
finite length system. The secondary instability is even more 
difficult to observe than the primary instability, because 
small-amplitude fluctuations grow initially only via the pri- 
mary instability mechanism; the secondary instability 
mechanism comes into play only after the secondary flow 
reaches sufficient amplitude. In our experiment without im- 
posed disturbances, 3-D flow is observed only for R well 
above 200 after a strong 2-D flow is established. The 3-D 
behavior appears irregularly along the span and is stronger 
near the span walls, where 3-D disturbances are larger. 

We must impose 3-D disturbances if the secondary in- 
stability is to develop sufficiently to be observed during the 
time of flight through our experiment. (The 3-D time- 
periodic disturbances imposed in our experiments are de- 
scribed in Sec. III.) Beyond the bifurcation point for the sec- 
ondary instability, the traveling waves develop nearly 
sinusoidal variations in the spanwise direction z with a stand- 
ing wave behavior in the streamwise direction, as Fig. 16 
illustrates. That is, at a fixed time, the spanwise phase of the 
wave downstream is shifted by 180” relative to the wave 
located upstream. Compare, for example, the dye front be- 
tween cylinders 13 and 14 with that between cylinders 8 and 
9 in Figs. 16(a) and 16(b). Dye fronts from intermediate 
cylinders show the standing wave at other phases. Dye fronts 
become nearly 2-D between cylinders 10 and 11 in Fig. 
16(a). The front does not become completely flat, because 
cylinders are not necessarily located at the nodal lines of the 
standing wave and because the dye fronts are indicators of 
the streaklines rather than streamlines in the flow. Farther 
downstream (not shown in Fig. 16), another 180” phase 
change can be observed in a dye front just before the channel 
exit. The streamwise wave number of the tertiary flow at 
onset is 0.09?0.02 and increases with increasing R.52 

The standing wave pattern does not drift downstream: 
for fixed experimental conditions, the phase of the standing 
wave is locked in the lab frame. Evidence for this can be 
found in power spectra from a probe fixed in the laboratory 
frame-the spectra show only one fundamental frequency, 
that of the imposed disturbance. These spectra are qualita- 
tively indistinguishable from those of 2-D time periodic dis- 
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FIG. 16. One-half cycle of the three-dimensional standing wave state at 
R = 170 arising from secondary instability. (a) The standing wave pattern is 
visualized with dye produced electrochemically at the nearest upstream cyl- 
inder for each wave front. Cylinder locations are indicated by thin vertical 
lines and numbered arrows. Each dye front is recorded separately in time, 
but the temporal periodicity of the flow allows all dye fronts to be combined 
in this composite image. Near r=O, channel wall braces block a direct view 
of the flow; dotted lines are drawn to guide the eye. (b) Streamwise local 
maxima of the standing wave dye fronts are shown upstream (dashed line) 
and downstream (solid line) by plotting the distance from the nearest up- 
stream cylinder x, as a function of .z. In both (a) and (b) initial three- 
dimensionality is imposed on the flow by two protuberances on the distur- 
bance foil, illustrated at the far left in (a). The center-to-center spacing of the 
protuberances imposes an initial wave number kt=0.42; the flow selects 
A&=0.9. 

turbances; however, in any other reference frame, the stand- 
ing wave would lead to an additional spectral component. 
We speculate that the phase of the standing wave is locked 
because our method of imposing disturbances fixes the phase 
at the inlet (see Sec. VI C). 

B. Onset of secondary instability 

We have determined the critical Reynolds number R2 for 
the onset of the secondary instability by finding the crossover 
from downstream decay to downstream growth of imposed 
3-D disturbances. To distinguish growth from decay, the am- 
plitude of the wave is compared at successive streamwise 
maxima. For example, compare the dye front between cylin- 
ders 8 and 9 to the dye front between cylinders 13 and 14 in 
Fig. 16(b). A rough estimate for R, can be obtained by com- 
paring upstream-downstream dye front pairs for several val- 
ues of R (see Fig. 17). For sufficiently small R (e.g., R  = 145 
in Fig. 17), the sinusoidal variation along z that is present 
upstream does not appear downstream; thus, 3-D distur- 
bances decay. For larger R, however, the downstream dye 
fronts are more distorted than the upstream fronts (e.g., 
R = 190 in Fig. 17), indicating that the 2-D traveling wave is 
now 3-D unstable. 

8 18 8 16 a 13 8 

R= 145 R= 150 f J-160 Rx R= 190 

FIG. 17. Gnset of secondary instability illustrated by dye visualization. Lo- 
cal standing wave maxima are shown simultaneously at upstream and down- 
stream regions of the experiment for several Reynolds numbers. The im- 
posed disturbance decays @rows) as it advects downstream for R<160 (R 
>160). As in Fig. 16, k,” is 0.42. 

A quantitative determination of R, is made by analyzing 
digitized dye fronts. The location of the dye fronts is deter- 
mined by thresholding the image intensity and averaging 
along the streamwise direction. The amplitude of each dye 
front is characterized by the RMS value of its streamwise 
position. Care is taken to compare dye fronts with similar 
mean streamwise positions relative to the upstream dye- 
producing cylinder; a typical result is shown in Fig. 16(b). 
This analysis yields the ratio of downstream to upstream 
amplitudes of the 3-D component in the flow. Figure 18(a) 
shows this amplitude ratio as a function of R. Taking the 
point where the amplitude ratio crosses 1 to be the onset of 

a 
1 .o --------___ 

0.8 

kz 0.9 

0.81 ., ., , , 
140 150 160 170 180 R 190 

FIG. 18. (a) Ratio a of the downstream to upstream standing wave ampli- 
tude as a function of R. For R<160, n<l (amplitude decays downstream), 
while for R>160, a>1 (amplitude grows downstream). (b) Spanwise wave 
numbers k; as a function of R for upstream (M) and downstream (a) loca- 
tions. In both (a) and (b) kl] is 0.42, and each data point represents the 
average for seven digitized dye fronts like those shown in Fig. 16(b). 
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FIG. 19. Images showing the selection of the spanwise wave number  
k,=O.9 at R=190.  Upstream flow disturbances are caused by the foil with 
protuberances at z locations indicated (W). The  initial form of the flow 
disturbances is seen by dye visualizations at cyl inder 2  for R = 160.  The  
wave numbers  of the initial d isturbances are given below the dye front 
images. (No image for cylinder 2  with k~=O.31 is available.) 

the secondary instability, we obtain Rz=160+5, which is 
well separated in Reynolds number from the primary insta- 
bility at R1=129.3. 

The onset of secondary instability is found to occur at 
R,=160, independent of selected variations in the imposed 
3-D disturbance? changes in the foil oscillation frequency 
by +5%,, in the foil amplitude C$ between 25” and 50” (Fig. 
5), and in the protuberance length I, between 0.88 and 3.5 
(Fig. 5  and Table I). 

C. Selection of spanwise wave number 

The spanwise wave number k, of the secondary flow is 
measured by fitting the peaks and valleys of the dye front 
images to parabolas and then computing the distance be- 
tween these extrema. Figure 18(b) shows that k, is essen- 
tially independent of the streamwise location and of R over 
the range investigated. 

Figures 19 and 20 illustrate the selection of k,-=O.S) for a  
range of different imposed spanwise wave numbers ki (see 
Fig. 5 and Table I). The initial form of 3-D disturbances 
introduced to the flow can be seen in the upstream dye visu- 
alization of Figs. 19 and 20. W ith protuberances well sepa- 
rated along z, the dye fronts are 2-D, except for small “val- 

k,= 0.9 

L  
I 

FIG. 20. Selection of wave number  k,=0.9 for an  initial d isturbance with a  
wave number  of 1.40 (R = 190).  

kz 

FIG. 21. Growth rate of the secondary instability as  a  function of the span-  
wise wave number  determined from a  Floquet analysis for the geometry 
shown in Fig. 1  for R = 150  (e) and  R = 160  (A). Interpolation gives values 
for the onset  of the secondary instability: R2= 152  and  440.8. 

leys” located at the same z position as the protuberances; 
with an increasing number of protuberances, the valleys 
move closer together, and the dye front appears nearly sinu- 
soidal. This inlet behavior sets the initial condition on the 
phase of the standing wave that evolves downstream. 

Downstream for ki-0.9, the standing wave is observed 
to maintain k,- ki (kz=O.78 and ki=l.O9 in Fig. 19). W ith 
kz significantly smaller, the standing wave evolves directly 
to k:-0.9 (kf=O.31 in Fig. 19-also see Figs. 16 and 17 for 
which kt = 0.42). In the case of k: = 0.3 1, counterpropagating 
waves evolve from a localized three-dimensionality at z=O 
on the disturbance foil; as the flow progresses from upstream 
to downstream, these waves propagate to the span walls and 
form the state that is observed in Fig. 19. For kt significantly 
larger than 0.9, counterpropagating waves of k,=0.9 are ob- 
served, but the waves are just beginning to propagate from 
the span walls toward the center (Fig. 20); the waves are 
expected to develop fully into standing waves sufficiently far 
downstream, although the present channel is too short to 
confirm this conjecture. All runs satisfied Zb/Z,<l. For 
1,/l,> 1, the effect of the imposed disturbance persisted 
throughout the streamwise length of the channel, but we be- 
lieve that even in this case a preferred wave number would 
be selected in a longer channel. 

D. Comparison with Floquet stability analysis 

Using the numerical Floquet stability analysis described 
in Sec. IV, we examine the 3-D stability of the 2-D traveling 
wave state. The 2-D traveling wave base flows at R = 150 and 
R = 160 are obtained by direct simulations. The most detailed 
stability analysis is performed for Floquet modes in the n =l 
computational domain (i.e., for a  single period of the peri- 
odic array of cylinders).53 Figure 21 shows the magnitude of 
Floquet multipliers versus k, ; a linear interpolation between 
the maximum of each curve yields R,=152 (where I,LL] goes 
through 1) for a mode with wave number kZ=0.8. The Flo- 
quet multiplier is complex at the bifurcation point, and is 
given by p.,=O.964+0.2671’. 

We also investigate how the spectrum of multipliers de- 
pends on the streamwise periodicity of the Floquet mode. 
For these computations, we fix R = 150 and k,=O.8, and vary 
the streamwise periodicity of the Floquet modes by comput- 
ing in domains of period nL, n>l. We  classify the modes 
according to the domain size n; the leading multipliers for 
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TABLE II. Floquet multipliers for R = 150 and k,=0.8 from linear stability 
analysis for secondary instability. Between the two period-l eigenvalues 
shown, there are no other period-2 modes; however, there may be additional 
period-3 and period-4 modes. 

Spat% 
period 

1 
4 
4 
3- 
2 
3 
3 
4 
1 

W-4 M-4 14 

0.949 139 0.277 078 0.9888 
0.170527 0.967 495 0.9824 
0.651889 0.728 031 0.9773 
0.351565 0.910 218 0.9758 

-0.2908 0.921402 0.966 
-0.192885 0.936128 0.9558 
-0.738626 0.562692 0.9285 
-0.843 916 0.316 609 0.9014 
-0.718767 0.327 159 0.809 

iz <5 are listed in Table II. Although the single IZ = 1 mode 
has the multiplier of largest magnitude, the multipliers are 
very closely spaced in magnitude. We have attempted to 
compute the stability of modes with n = 10, but without suc- 
cess. Our method for computing multipliers depends upon 
gaps in the multiplier spectrum; apparently, for large II the 
spectral gaps are too small (the multipliers are too closely 
spaced) for us to achieve convergence with a reasonable 
computation time (i.e., within 100 iterations of the operator 
A defined in Sec. IV). 

The computed value of R2= 1.52 is in reasonable agree- 
ment with the experimentally determined value of 
R,=1605, and the computed critical wave number 0.8 
agrees with the measured value, 0.920.2. Experiment sug- 
gests that the instability corresponds to a mode with n=lO. 
Since the multipliers obtained from the computations for 
smaller values of n are closely spaced (for fixed R and k,), 
and since the spatial Floquet exponents are small for n large 
(the spatial exponent is zero for y1= 1):’ the bifurcation point 
for the dominant n = 10 mode should be at approximately the 
same point as for the n =1 mode. Nevertheless, we cannot 
explain why an n-10 mode is dominant in the experiment. 
This could be due to nonlinearity or to the method of impos- 
ing disturbances. Finally, we note that all multipliers we 
computed for the secondary instability are complex. In par- 
ticular, the critical mode for n=l is complex, and this cor- 
responds to a bifurcation to a nonzero secondary frequency 
in the laboratory frame. Such a secondary frequency is not 
observed in experiment, perhaps due to the phase locking of 
the standing wave as discussed in Sec. VI A. 

E. Beyond secondary instability 

We have not investigated in detail flows well beyond R,, 
but we note that the appearance of broadband subharmonics 
in the power spectra indicates another transition in the flow. 
For R>190, the power spectra of data acquired near the inlet 
show only the fundamental and harmonics [Fig. 22(a)], while 
downstream [Fig. 22(b)], a broad subharmonic peak appears. 
The appearance of this peak only in downstream spectra sug- 
gests that the additional frequencies are not the result of sub- 
harmonics being advected from the disturbance foil at the 

10-a x = 37.2 
10-3: I 
10-d: 

10-5-i 

10-6, 

1 o-7 

1 o-8 
0 0.1 0.2 0.3 0.4 1 

1 o-2 

0 0.1 0.2 0.3 0.4 f c 

FIG. 22. Velocity power spectra from simultaneous upstream (x=36.9) and 
downstream (x=117.1) measurements for R far above the onset of the sec- 
ondary instability: R =207. Upstream the flow is periodic while downstream 
the spectrum contains a broad subharmonic peak. Both spectra were re- 
corded at y=O and z=-5.2 3-D time-periodic disturbances with @=0.9 
have been imposed. 

inflow. These spectra are reminiscent of broad subharmonic 
peaks seen in other transitional wall-bounded shear flows.s4 

VII. DISCUSSION AND CONCLUSIONS 

Instability of the steady laminar state in spatially peri- 
odic channel flow does not necessarily lead to a disordered, 
high-dimensional, turbulent state,‘0~18120 as is typically the 
case in open flows. Our laboratory experiments and numeri- 
cal computations demonstrate the existence of stable flow 
states with low-dimensional dynamics arising from primary 
and secondary transitions in a spatially periodic channel 
flow. 2-D waves are stable for a range of R above the pri- 
mary transition at RI= 130, and stable three-dimensional 
waves arise from secondary instability at Rzw160. The ex- 
perimental and linear stability results are in good agreement 
for the onset of both transitions, the frequency (0=1.2) and 
streamwise wave number (4n/L = 1.9) of the secondary 
flow, and the spanwise wave number (0.9) of the tertiary 
flow. 

In our laboratory experiments, we visualize and charac- 
terize 2-D and 3-D wave states that are observed only fleet- 
ingly in typical wall-bounded shear tl-z~ws.~ The supercritical 
primary instability in the spatially periodic channel leads to 
stable 2-D channel modes similar to the Tollmien- 
Schlichting modes of plane channel flow” (and different 
from modes associated with bluff body vortex shedding).M 
The 3-D tertiary flow observed experimentally with stream- 
wise wave number (0.1) is a “detuned” mode (the stream- 
wise period is neither the same as nor a subharmonic of the 
2-D secondary flow), similar to those found in other 
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wall-bounded shear flow~.~~ The observed 3-D waves remain 
stable as they propagate down the channel, in contrast to 
waves in plane channels and boundary layers, which are ob- 
servable for a few wavelengths (if at all) before the flow 
becomes turbulent.4gY55 Our Floquet stability analysis shows 
that the most unstable mode is a “fundamental” (both the 
secondary and the tertiary flows have the same streamwise 
period): however, detuned modes of increasing wavelength 
are nearly equally unstable, so at linear order there is not a 
strong selection for any particular streamwise mode. A small 
second frequency (0.008) from stability analysis is not ob- 
served in the experiment. 

Convective instability plays a crucial role in the periodic 
channel flow. Transition triggered solely by background dis- 
turbances yields a misleading picture of onset. The intermit- 
tent transition and variation in transport properties observed 
over a broad range of R , in earlier experiments13,17 can be 
understood as arising from the convectively unstable ampli- 
fication of uncontrolled (ambient) disturbances. Controlled 
disturbances with different spatial and temporal properties 
help elucidate both linear and nonlinear aspects of transition, 
but as we have emphasized, it is also important to verify that 
asymptotic behavior is independent of the properties of the 
disturbances. Our results suggest a way convective instabil- 
ity may be used to advantage in engineering Rows employing 
unsteady laminar transport: just above the onset of unsteadi- 
ness, the approach to asymptotic conditions occurs more rap- 
idly when well-chosen time-periodic disturbances are intro- 
duced locally upstream. Our simple 1-D model successfully 
mimics the essential features of the primary transition and 
demonstrates that convective instability in an open tlow need 
not evolve spatially to turbulence, as might be inferred from 
other 1-D model results?6’57 

dur results, in conjunction with previous simulations,10 
suggest that geometry can play the role of an additional 
“control parameter” in channel flow. Variations of this pa- 
rameter can unfold the bifurcations, leading to different flow 
states. For example, the spatially periodic channel considered 
here is conceptually obtained from plane channel flow by 
setting the “geometrical parameter” to some nonzero value; 
as a consequence, the primary transition changes from sub- 
to supercritical. Hence, there must exist some intermediate 
value where the bifurcation is degenerate, i.e., crosses over 
from subcritical to supercritical. Under certain circum- 
stances, this situation may permit chaotic dynamics arbi- 
trarily close to the laminar state.’ 

The onset of’ turbulence in spatially periodic channel 
flow remains unexplored. The broad subharmonic peak we 
observe for R>190 may signal the onset of chaos, as is the 
case for some closed flo~s.~~ For R2300, the power spectra 
are broadband with no sharp spectral components. Future 
studies should examine this flow to determine whether the 
flow undergoes a transition from convective to absolute in- 
stability, and whether the flow is low or high dimensional. 

Future studies should further examine transport in the 
spatially perturbed geometry. Can concepts from nonlinear 
dynamics be exploited to obtain more efficient transport of 
heat or mass using channels with spatially periodic perturba- 
tions? Channels with spatially periodic forcing should serve 

as a test bed for applications, as well as for addressing fnn- 
damental questions about instabilities and transition in open 
flows. 
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