Observations of a torus in a model of the Belousov-Zhabotinskii reaction
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The first observation of quasiperiodic oscillations in a model of the Belousov—Zhabotinskii
reaction is presented and the evolution along two parameter paths of the associated torus is
described. Comparison is made with experiment and the hysteresis—-Hopf normal form. The
model dynamics is shown to be more complex than that of the normal form. The torus is also
shown to be related to two other features of the BZ reaction: (1) the transition from small
amplitude to mixed-mode oscillations and (2) alternating periodic—chaotic sequences.

I. INTRODUCTION

It is well known that in a continuous flow reactor many
chemical reactions can exhibit sustained temporal oscilla-
tions. Studies of the Belousov—Zhabotinskii reaction in well-
stirred flow reactors have revealed much more than simple
periodic oscillations; a rich variety of more complex dynami-
cal behavior has been found both in experiments and in sim-
ulations.''° Among the more interesting and important ex-
perimental observations is that of quasiperiodic
oscillations.'*~!* Such oscillations are generally described as
containing two incommensurate frequency components
(two peaks in the power spectrum at frequencies whose quo-
tient is irrational). More precisely, such oscillations corre-
spond to trajectories in the state space of the system which
wrap densely on the surface of a torus.

The existence of quasiperiodic oscillations in the BZ sys-
tem is important for the following reason. It has been
shown'*!> that quasiperiodicity can result from nonlinear
interaction between two elementary bifurcations in the BZ
system: the Hopf and the hysteresis bifurcations. It is also
known that quasiperiodicity often gives rise to other com-
plex behavior, e.g., chaos, in nonlinear systems. 2! Thus it
has been suggested that the interaction of the Hopf and hys-
teresis bifurcations may account for much of the complex
dynamics seen in the BZ reaction and that a mathematical
model of this interaction, the hysteresis-Hopf normal form,
may provide a comprehensive description of this dynam-
iCS.22'23

Until now, quasiperiodicity has not been observed in a
model of a chemical reaction (excluding the case of coupled
oscillators**) and it has not been possible to compare model
results with experiment and the hysteresis—Hopf normal
form. In this paper we describe the occurrence of quasiperio-
dicity in an Oregonator model® of the Belousov—Zhabotins-
kii reaction and show how the torus associated with these
quasiperiodic oscillations evolves as parameters in the model
are varied. We compare our results with experiment. We
show that despite a strong similarity between the evolution
of the torus in the model and the evolution of a torus in the
hysteresis—Hopf normal form, the model behavior is more
complex than can be accounted for with the normal form.

We show that tori, apart from being of importance in the
normal form approach to the dynamics of the BZ reaction,
can be associated with other complex dynamics seen in the
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reaction. In particular, the torus we have observed is asso-
ciated with (1) a transition from a state of nearly harmonic
oscillations, to a state consisting of a mixture of nearly har-
monic and relaxation oscillations,’ and (2) a periodic—chao-
tic sequence: a sequence of states in which the character of
oscillations alternates between periodic and chaotic as a con-
trol parameter is varied.’

li. THE MODEL

The model which we have used in our study is a modi-
fied Oregonator proposed by Showalter, Noyes, and Bar-Eli
(SNB).?* It consists of the following six reaction steps:

K
A+Y=X+P,

k_y

Ky
X4+ Y=2P,

-2

ks
A+ X=22W,

-3

ks
C+W=X+7Z,

k_a

ks
2X=A 4+ P,
k_s
k

Z-gY +G,

where A=BrO;, Y=Br~, X=HBrO,, P=HOB;,
W=Br0,:, Z=Ce**, C=Ce**. (Note that we shall use
these same capital letters to denote the concentrations of the
corresponding chemical species; the meaning will be clear
from the context.) This kinetic scheme gives rise in the usual
way to a system of coupled ordinary differential equations
for the concentrations of the chemical species in a flow reac-
tor.

We note that standard methods>®” allow the identifica-
tion of two stoichiometric constraints for this kinetic
scheme. In particular the following two quantities are con-
served:

C+2Z,
(1+68)4+ (1+28)P+ (1+5)W
+(1+49)X + Y +gZ,
where here capital letters denote concentrations. The first
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constraint is evident from the kinetic scheme and represents
the conservation of cerium; the second expresses a more ob-
scure conservation for the model. As a result of these con-
straints we can express the concentrations of two of the
chemical species as a function of the other five. We choose
P, W, X,Y, and Z as the five dynamical variables.

The values of the rate constants appearing in this model
have been the subject of considerable controversy.?*='
While consensus is developing for rate constants in the vicin-
ity of the Tyson “Lo” set, the use of these constants in the
SNB model may not result in the best agreement with experi-
ment>? (see also Ref. 29). It is known, however, that with
the rate constants given originally by Field, Koros, and
Noyes* and Field,** this and similar models give dynamics
qualitatively similar to that found experimentally, 233536
Because our focus is on the qualitative dynamics of the reac-
tion, we use the values originally given for the rate constants
kysk _ 5.,k _ s of the first five reactions. (These constants are
listed in Ref. 25).

The following values are assigned to the remaining mod-
el parameters: k, = 2.9 s, g = 0.42, k, = flow rate/reac-
tor volume = 7.8 107!, and 4, = feed concentration
of BrO; = 0.14 M. We vary Y, and C,, the feed concentra-
tions of Br~ and Ce**, respectively, as will now be dis-
cussed.

lll. RESULTS
A. Variation of ¥,

We first describe a sequence of transitions which takes
place as Y, is varied (C, fixed at 1.25X 107* M). The states
of the system as a function of Y|, are summarized in the bifur-
cation diagram shown in Fig. 1. Three kinds of states are
shown: fixed points (steady states), limit cycles (periodic
oscillations), and tori (quasiperiodic oscillations). For the
steady states the value of log Y is plotted, with dashed lines
used to indicate unstable states. For the limit cycles the max-
imum value of log Y on the orbit is plotted, and again dashed
lines are used to indicate unstable states. For the torus, the
amplitude of the oscillations varies [see Figs. 2(b) and 2(c)
discussed below], so we plot the maximum and minimum
values of the upper envelope of the oscillations. The steady
state and limit cycle branches were computed using continu-
ation methods®’° and the torus branch was obtained by
direct numerical integration (Gear method).*

We describe the bifurcation diagram from left to right.
For low values of Y, there exists only a single stable steady
state and at the point labeled H this steady state becomes
unstable to oscillations via a Hopf bifurcation. Figure 2(a)
shows the periodic oscillations obtained just above this bifur-
cation. At the point labeled SH there is a secondary Hopf or
Naimark—Sacker torus bifurcation (see below) and this lim-
it cycle becomes unstable to a quasiperiodic (two frequency)
state in much the same way as the steady state became unsta-
ble to oscillations at the Hopf bifurcation. Figure 2(b) shows
the quasiperiodic oscillations obtained just above the sec-
ondary Hopf bifurcation.

To verify the transition to quasiperiodicity we have
computed the characteristic, or Floquet, multipliers of the
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FIG. 1. Bifurcation diagram. Three kinds of states are shown: steady states,
limit cycles, and tori. Solid lines denote stable states; short dashed lines,
states with one unstable direction; long dashed lines, states with two unsta-
ble directions. (For steady states the number of unstable directions is the
number of eigenvalues with positive real part; for limit cycles the number of
unstable directions is the number of Floquet multipliers outside the unit
circle.) H denotes Hopf bifurcation (¥, = 2.419x 107 M), SH denotes
secondary Hopf bifurcation ( Y, = 4.007 X 10~¢ M), SN, and SN, denote
saddle-node bifurcations ( Yy = 4.300 < 10 M and Y, = 2.574 X 107°M,
respectively), PD denotes period-doubling bifurcation (¥, = 1.494%x10™°
M), SL denotes saddle-loop bifurcation ( ¥,~2.38 X 107> M),
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FIG. 2. Time series for three values of ¥, showing the evolution of oscilla-
tory behavior. (a)¥,=30x10"° M, (b)Y,=4.05X 107° M,
()Y, =44x10"°M.
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FIG. 3. The evolution with ¥, of the magnitude of the two largest Floquet
multipliers of the periodic orbit. The inset shows the real and imaginary
parts of these multipliers, with arrows indicating the direction of increasing
Y, (because of the choice of scales, the unit “circle” is elliptical ). The multi-
pliers cross the unit circle transversally at ¥, = 4.007 X 107 °* M.

periodic orbit. These multipliers give stability information
about the limit cycle in the same way that eigenvalues give
stability information about fixed points; multipliers outside
the unit circle (in the complex plane) are associated with
unstable directions for the limit cycle. The behavior of the
two multipliers of largest magnitude, from the orbit’s birth
through the quasiperiodic transition, is shown in Fig. 3. As
Y, is increased through the transtion value
(Y, = 4.007 X 10~ ® M), a complex conjugate pair of multi-
pliers is seen to pass transversally through unit magnitude
(at 0.992 + 0.126i). This verifies that the limit cycle loses
stability to quasiperiodicity via a secondary Hopf or Nai-
mark-Sacker torus bifurcation (see Ref. 15).

Beyond the secondary Hopf bifurcation, the amplitude
of the second mode increases rapidly with increasing Y,,. Fig-
ure 2(c) shows a time series when the second mode has be-
come quite large and Fig. 4 shows two projections of the
phase portrait of these quasiperiodic oscillations. The toroi-
dal geometry is clearly seen in Fig. 4.

At the point labeled SN, there is a saddle-node bifurca-
tion giving rise to a pair of fixed points, one stable and one
unstable. The unstable steady state coalesces with the origi-
nal steady state in a saddle-node bifurcation at SN, thereby
giving the S-shaped steady state curve. The stable steady
state exists for arbitrarily large values of Y,

From Fig. 1 it is evident that the region of quasiperiodic
behavior extends past the saddle-node bifurcation at SN ;
thus there is a region of bistability between the torus and the
stable steady state created at SN,. For some value of ¥,
between 4.74 % 10~ ¢ and 4.78 X 10~° M, the torus becomes
unstable or ceases to exist, and for all larger values of Y, the
only attractor is the stable steady state. Investigations of the
basins of attraction for the torus and upper steady state indi-
cate that the torus is destroyed by colliding with an unstable
torus (saddle-node-of-tori bifurcation). Our inability to
compute unstable tori prevents the direct confirmation of
this, however.
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FIG. 4. Two projections of the phase portrait corresponding to the time
series of Fig. 2(c) (Y, = 4.4X107° M),

The remaining feature of Fig. 1 which we wish to discuss
is the termination of the limit cycle as Y is increased, for this
will be of importance in a comparison with normal forms.
The limit cycle terminates in a saddle-loop bifurcation (ho-
moclinic orbit) of the fixed point on the middle branch of the
steady state curve; however, there is a complication. Before
the limit cycle terminates, it undergoes a period-doubling
bifurcation at the point labeled PD. The period-doubled or-
bit undergoes a period-doubling bifurcation (not shown) to
a period-four state at ¥, = 1.521x 107°. We have not inves-
tigated the period-four state, but it is quite possible that a full
period-doubling cascade follows.

As the saddle-loop bifurcation is approached, the peri-
od-doubled limit cycle approaches the primary limit cycle
and the periods of both tend to infinity. Due to the additional
involvement of the period-doubled orbits, the situation is
quite complex at the termination of the original limit cycle.

B. Variation of C,

In this section we describe the transitions observed as C,
is varied (Y, fixed at 4.2 X 10~ ° M). Again the states of the
system as a function of C, are conveniently summarized in a
bifurcation diagram: Fig. 5. In addition to the states appear-
ing on the previous bifurcation diagram, we have here a state

J. Chem. Phys., Vol. 87, No. 7, 1 October 1987

Downloaded 13 Sep 2004 to 128.32.198.138. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Barkley, Ringland, and Turner: Observations of a torus in the BZ reaction 3815

©
] —1 . —
—
o Mixed—Mode
©4
1
Torus
>
<
oK Lmit Cycle — / ___1
oLl L R UL
b e
Steady State
©
[7-F I A SR SNSRI e
! H
Q
© v T r —
ta2 0.122 0.124 0.126 0.128 0.13
-3
CO 10

FIG. 5. Bifurcation diagram. Four kinds of states are shown: steady states,
limit cycles, tori, and mixed-mode oscillations. Solid lines denote stable
states; dashed lines, states with two unstable directions. H denotes Hopf
bifurcation (C, = 1.215x 10~* M), SH denotes secondary Hopf bifurca-
tion (C, = 1.246 X 107 * M).

which we call mixed-mode oscillations. Such oscillations ex-
hibit both relaxational and nearly harmonic phases [see
Figs. 6(c) and 7 discussed below ]. For these states the maxi-
mum value of log Y of the oscillations is plotted. Though
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FIG. 6. Time series for three values of C, showing the evolution of oscilla-
tory behavior. (a) C,=1.23x107* M, (b) C, = 1.2625%x10™* M, (¢)
C,=127x10"* M.

there must exist stable oscillatory states between the quasi-
periodic and mixed-mode oscillations, these are not indicat-
ed in Fig. 5 because numerical integration gives unreliable
results for these oscillations (see below). Only a portion of
the behavior found by varying C, is shown—that containing
the transition from steady state to mixed-mode oscillations.

We first describe the gross features of the C, bifurcation
diagram, then discuss the detailed structure we have ob-
served. There exists only a single steady state over the range
of C, values shown, although there does exist bistability at
lower values of C,,. For low values of C, the steady state is
stable and, as before, it loses stability to oscillations via a
Hopf bifurcation. A periodic state obtained just above the
Hopf bifurcation is shown in Fig. 6(a). Again, the periodic
oscillations become unstable to quasiperiodic oscillations via
asecondary Hopf bifurcation. Figure 6(b) shows such oscil-
lations after the second mode has become quite large. There
is then a transition, which we have yet to characterize,
between the quasiperiodic oscillations and the mixed-mode
oscillations shown in Fig. 6(c). [ The time scale of Fig. 6(c)
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FIG. 7. Phase portraits showing the geometrical relationship between the
torus associated with quasiperiodic oscillations and the spiral attractor as-
sociated with mixed-mode oscillations. (a) Part of the spiral attractor and
the saddle-focus fixed point at C, = 1.27X 10~ * M. Only one large excur-
sion is shown. (b) Enlargement of the boxed region in (a) together with the
torus of Fig. 6(b). Note that the spiral and fixed point are for
C, = 1.27x107* M; the torus is for C, = 1.2625 X 107 * M.
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is such that the individual nearly harmonic oscillations are
not visible. These oscillations are visible, however, in the
phase portrait of Fig. 7(b).] Thus we observe that between
the small amplitude oscillations arising from the Hopf bifur-
cation and the mixed-mode oscillations, there is a secondary
Hopf bifurcation and quasiperiodicity.

Our inability to characterize the transition between the
quasiperiodic and mixed-mode oscillations is largely due to
the failure of numerical methods in the transition region. For
values of C, between 1.2625 10~ * M and approximately
1.27X 10~ * M, the solutions obtained by numerical integra-
tion fail to converge; the qualitative character of the solu-
tions changes as the precision of the numerical integration is
increased. Even when the single-step error is reduced to less
than 1 partin 10'* we obtain no convergence of results. Thus
in the transition region we cannot reliably determine even
the qualitative behavior of the model.

Nevertheless, there is a geometrical relationship
between the torus and the mixed-mode oscillations. This is
evident in the phase portraits of Fig. 7. Figure 7(a) shows
the first 1200 s of the data of Fig. 6(c) together with the fixed
point at the same value of C,. The spiral attractor corre-
sponding to the mixed-mode oscillations is referred to as a
Silnikov spiral*!; the fixed point is called a saddle focus (it
has a complex conjugate pair of eigenvalues with positive
real part and three eigenvalues which are real and negative).

Figure 7(b) shows an enlargement of the boxed region of
Fig. 7(a) together with the torus of Fig. 6(b), thereby re-
vealing the relationship between the mixed-mode oscilla-
tions and the torus. The enlargement of the spiral in Fig.
7(b) also makes clear the way trajectories on this attractor
closely approach the saddle-focus fixed point before spiral-
ling away (in nearly harmonic oscillations) to make large
excursion (relaxation oscillation) seen in Fig. 7(a).

While trajectories almost always make the full excur-
sion shown in Fig. 7(a), they are observed occasionally to
make a smaller excursion before returning to the vicinity of
the fixed point. We are as yet unable to determine whether
these small excursions are real or an artifact of numerical
noise.

Having described the coarse features of the bifurcation
diagram, we now discuss some transitions we have observed
by looking carefully between the secondary Hopf bifurcation
and the transition to the mixed-mode oscillations. The ob-
served states are summarized in the six Poincaré sections of
Fig. 8. Figure 8(a) shows a section of the smooth torus as it
exists just past the secondary Hopf bifurcation. Figure 8(b)
shows that at a slightly larger value of C,, trajectories are
phase-locked on the torus; the oscillations are periodic with
49 oscillations per period (rotation number = 1/49). In-
creasing values of C, give at least two period doublings (not
shown) from this periodic state, and while it is possible that a
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FIG. 8. Projections of six Poincaré sections (section surface: Z = 2.288 X 1075 M). (a) C, = 1.255X 10~* M, smooth torus, (b) C, = 1.26 X 10~* M, phase
locking on torus (rotation number 1/49), (¢) C,=1.26121x10"* M, bands on wrinkled torus, (d) C,= 1.2615x 10~* M, wrinkled torus, (e)
C, = 1.2618 X 10~* M, phase locking on torus (rotation number 1/48), (f) C, = 1.2625x 10~* M, wrinkled torus.
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full period-doubling cascade follows, no attempt has been
made to locate states of very high period.

Beyond the region of period doubling we have observed,
with increasing C,, bands on a wrinkled torus [Fig. 8(c) ],
then a more uniformly filled out wrinkled torus [Fig. 8(d) 1,
followed again by phase locking, now with rotation number
1/48 [Fig. 8(e) ]. Following this phase-locked state we have
again found period-doubled states (not shown), bands on a
wrinkled torus (not shown either), and finally the very wrin-
kled torus shown in Fig. 8(f). The torus of Fig. 8(f) is the
same state as shown in Figs. 6(b) and 7(b), and is the last
state observed before the region in which numerical methods
fail.

IV. DISCUSSION

We now examine how the results of our model studies
are related to other studies of the BZ reaction. We shall em-
phasize the significance of our results to experimental obser-
vations of quasiperiodicity and to the interpretation of these
observations in terms of the hysteresis—-Hopf bifurcation. We
therefore begin with a brief discussion of the hysteresis—
Hopf bifurcation and a summary of pertinent results ob-
tained from the corresponding normal form.

A. The hysteresis-Hopf normal form

The dynamics that exists near (in parameter space) a
hysteresis—Hopf bifurcation is governed by the hysteresis—-
Hopf normal form (HHNF). The normal form equations, as
given by Langford,'*'* are

x=x(z—f) —wy

y=awx+ylz—f), (H

t=A+az—22/3 — (x* +°)b,
where a, 3, and A are parameters, and @ and b are nonzero
constants, This normal form is a simple system of equations,
having a hysteresis~Hopf bifurcation (at a = B=A=0),
which serves as an archetype for systems exhibiting this bi-
furcation.*? (For a general discussion of normal forms, see
Ref. 43.)

We begin by giving the conditions under which the
above normal form possesses Hopf and hysteresis bifurca-
tions and describe the way these come together in a hystere-
sis—Hopf bifurcation. The steady states of Eqgs. (1) are easily
found to be x, =y, = 0 and z,, a solution of

0=A +az, —22./3
and the Jacobian of Egs. (1) evaluated at steady state is
found to be
z, —fB —w 0
w Zy — :8 0 . (2)
0 0
We first discuss the hysteresis bifurcation. For a <0
there is a single value of z,, for each value of 4. Correspond-
ingly, the Jacobian has no zero eigenvalues when a < 0. For
a>0 there are two saddle-node bifurcations (at
A= +3a%?) and three steady states for each value of A

between these bifurcations. The saddle nodes correspond to
points where the Jacobian has a zero eigenvalue

2
a —Zg

a=0 z
A
Hysteresis
(o)
a)o z

z = ﬁ\ A
/ Hopf
(b)
=0 z
A
z Hysteresis—Hopf

(c)

FIG. 9. Plots of z, as a function of 4 for different parameter values in the
hysteresis—-Hopf normal form. (a) @ = 0: a hysteresis bifurcation at 4 = 0.
(b) @ >0 and £ < 0: the intersection of the line z = S with steady state curve
showing the occurrence of a Hopf bifurcation. (c) a = f§ = 0: the coales-
cence of hysteresis and Hopf bifurcations in a hysteresis—Hopf bifurcation
atd =0.

(z. = +a'’?). At @ = 0, the saddle nodes come together
(at A = 0) and we have a hysteresis point or hysteresis bifur-
cation. This is shown in Fig. 9(a). At the hysteresis point,
the Jacobian still has a zero eigenvalue; however, it is no
longer a simple zero, for 9 ?2/3z° = Oata = 4 = 0. This vio-
lates one of the conditions needed to guarantee a saddle-node
bifurcation®® and, as a result, we have the more degenerate
hysteresis bifurcation.

A Hopf bifurcation occurs when a complex conjugate
pair of eigenvalues (of the Jacobian evaluated at steady
state) crosses the imaginary axis. We see from the above

J. Chem. Phys., Vol. 87, No. 7, 1 October 1987

Downloaded 13 Sep 2004 to 128.32.198.138. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3818
" " s
o
-4 SNy ¢
“H
b Torus C
14 h
[e] L
]
z Limit Cycle P ‘H
1 ,‘ SN2 3
Steady State L7 ’
[ T S ST Ll HC r
H
]
| T T T T T
-0.6 -0.4 -0.2 [¢] 0.2 0.4 06

FIG. 10. Bifurcation diagram for the hysteresis—Hopf normal form. Three
kinds of states are shown: steady states, limit cycles, and tori. Solid lines
denote stable states; long dashed, states with two unstable directions; short
dashed, states with one unstable direction; very short dashed (between H
and SN,), states with three unstable directions. H denotes Hopfbifurcation,
SH denotes secondary Hopf bifurcation, SN, and SN, denote saddle-node
bifurcations, HC denotes heteroclinic connection.

Jacobian that this occurs in the normal form when S =2z, .
Figure 9(b) shows a Hopf bifurcation on the steady state
curve for the case & >0 and £ <0.

When a = =4 =0, the Hopf and hysteresis bifurca-
tions coalesce at x,, =y, =z, = 0 and we have a steady
state with a zero and a pure imaginary pair of eigenvalues.
These eigenvalues, together with the hysteresis degeneracy,
define the hysteresis—Hopf bifurcation [see Fig 9(c)].

We now turn to the dynamics generated by the hystere-
sis—Hopf normal form, for this is the dynamics that we can
expect to find near a hysteresis—Hopf bifurcation. Because
Hopf and hysteresis bifurcations exist separately near the
hysteresis—Hopf bifurcation, we know that there exist both
oscillations and multiple steady states arbitrarily close to
this point; moreover, due to nonlinear interaction, other
more complicated dynamics can also exist near a hysteresis—
Hopf bifurcation. In particular it has been shown that tori
exist near such a bifurcation. '

Figure 10 shows a bifurcation diagram generated from
the normal form. As on previous bifurcation diagrams,
steady states, limit cycles, and tori are shown. The parameter
path shown in Fig. 101s different than that chosen for discus-
sion elsewhere.'?>?* In particular, Fig. 10 corresponds to a
“curved” path in the parameter space (a,3,4) given para-
metrically by @ = 1, 8= 1/u, A = 1.73 — y, with u the bi-
furcation parameter. In is necessary to take such a curved
path to achieve a bifurcation diagram with a bounded region
of oscillatory behavior. (Bifurcation diagrams shown else-
where have A as the bifurcation parameter and have an un-
bounded region of oscillatory behavior). The norm used to
represent each of the states in Fig. 10 is like that used on the
previous bifurcation diagrams.

The bifurcation diagram shown in Fig. 10 can be de-
scribed briefly as follows. At low values of u there is a stable
steady state which gives rise to oscillations via Hopf bifurca-
tion. These oscillations in turn give rise to quasiperiodicity

Barkley, Ringland, and Turner: Observations of a torus in the BZ reaction

via secondary Hopf bifurcation. There is then a saddle-node
bifurcation (labeled SN,) from which a pair of steady states
emerges, one stable and one unstable. This leads to bistabi-
lity between the torus and the stable steady state created at
SN,. At the points labeled HC, the torus forms a heteroclinic
connection with the middle and lower fixed points and at this
point the torus is destroyed (see Ref. 15). At this hetero-
clinic connection the diameter of the hole of the torus has
shrunk to zero. Beyond this bifurcation the unstable limit
cycle terminates in a Hopf bifurcation on the middle branch
of the steady state curve. The middle and lower fixed points
then come together in a saddle-node bifurcation at the point
labeled SN,, thereby completing the S-shaped steady state
curve.

We note that the heteroclinic connection destroying the
torus can occur in two other ways, resulting in two other
bifurcation diagrams slightly different from that shown in
Fig. 10. In the first of these, the heteroclinic connection des-
troying the torus occurs simultaneously with the upper sad-
dle-node bifurcation. Then there is no bistability between the
torus and the upper steady state. (This is as in the bifurca-
tion diagrams shown in Refs. 15, 22, and 23.) In the other
case, the heteroclinic connection produces an unstable torus
rather than destroying the stable one. The unstable torus and
the stable torus then collide in a saddle-node-of-tori bifurca-
tion and both are destroyed. The effective difference between
the bifurcation diagram associated with this last case and
that of Fig. 10 is that the stable torus loses stability without
the diameter of the hole of the torus shrinking to zero.

B. Comparison of model with experiment and the
hysteresis-Hopf normal form

We now compare the model results first described (Y,
varied) with experimental results obtained by Argoul and
Roux'? and with the bifurcation diagram for the HHNF dis-
cussed in the preceding subsection. For convenience we
make the following definition: an observable scenario in a
dynamical system is a sequence of attracting dynamical
states obtained through the variation of an external param-
eter. (We include the possibility of more than one attracting
state at points along the parameter path.) Thus an observ-
able scenario is a scenario that can be seen either through
experiment or through direct numerical integration of a sys-
tem of differential equations. With this definition we note
that the observable scenario found in each of the three cases,
model, experiment, and HHNF, is essentially the same. This
means, in particular, that the observable scenario reported
by Argoul and Roux can be found in the vicinity of a hystere-
sis—Hopf bifurcation. This, together with the ubiquity of
hysteresis and Hopf bifurcations in the BZ reaction, has led
to the interpretation of these results in terms of the hystere-
sis—Hopf bifurcation.'>**?* This is certainly a plausible ex-
planation for their experimental results; however, we have
found essentially the same observable scenario in our model
studies and yet we can show that when all the dynamics
along the parameter path is considered, the hysteresis~Hopf
normal form cannot account for the model behavior. We
now elaborate.
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In the experiments, flow rate was used as the bifurcation
parameter. A transition from periodic to quasiperiodic oscil-
lations via a secondary Hopf bifurcation was observed as the
flow rate, was increased. The amplitude of the second mode
was found to grow very rapidly with further increases in flow
rate, and the hole of the torus shrank to a thin tube. The torus
did not exist for larger values of flow rate and instead a mar-
ginally stable steady state was observed.

While the experimental observations are very similar to
those we have reported in our model simulations, there are
slight difference in the two cases. (1) While in the model
simulations the hole of the torus was found to shrink very
rapidly with increasing Y, it did not shrink completely as in
the experimental case. (2) We found bistability between the
torus and the upper steady state in the model simulations.
No such bistability was reported in the experimental results,
though it might have existed over a range too small to be
observable.

The differences between the model and experiment can
be attributed to differences in the heteroclinic connection
which results in the destruction of the torus. The variants of
this bifurcation were discussed in the context of the HHNF
at the end of the preceding subsection. In the experiment, the
heteroclinic connection and the saddle-node bifurcation oc-
cur simultaneously—thus the absence of bistability. In the
model, the heteroclinic connection produces an unstable
torus which then collides with the stable torus. This causes

the stable torus to lose stability with a finite-diameter hole.
We consider these differences between model and experi-
ment minor and probably removable with changes in other
parameters.

We remark that we have not made an attempt to match
the parameter values in our study with those of experiment.
In particular, we have used Y, as a bifurcation parameter
rather than flow rate. While it is possible to vary flow rate in
the model and produce a torus through a secondary Hopf
bifurcation, we did not find such a parameter path which
would allow for clear comparison with HHNF. Because it is
the interpretation of the quasiperiodic dynamics in terms of
the hysteresis—Hopf bifurcation which interests us here, we
report the Y, bifurcation diagram.

Having noted the resemblance of the model and experi-
mental results, we now compare the model behavior with the
normal form HHNF. From our previous discussions of the
model results and the HHNF it is clear that identical observ-
able scenarios can be found in the model and normal form.
Despite this, there is a conflict between the HHNF and the
model which centers around the termination of the limit cy-
cle after the secondary Hopf bifurcation.

In the HHNF, the unstable limit cycle terminates in a
Hopf bifurcation on the middle branch of the steady state
curve (see Fig. 10), whereas in the model studies this limit
cycle terminates (after undergoing a period-doubling bifur-
cation) in a saddle-loop bifurcation of the middle fixed
point. Because the saddle-loop bifurcation does not involve
any change in the stability of the middle fixed point (i.e., in
the number of positive eigenvalues), the fixed point has one
positive eigenvalue along the entire middle branch. This is in
contrast with the HHNF, wherein the number of eigenval-

ues with positive real part on the middle branch changes
from one to three at the Hopf bifurcation. The saddie-node
SN, (Fig. 1) in the model is thus a point of coalescence of a
steady state with one positive eigenvalue and a steady state
with two positive eigenvalues, and so has a single positive
eigenvalue (along with the requisite zero eigenvalue and the
three negative ones). Note, however, that at a saddle-node
bifurcation in the HHNF, the two nonzero eigenvalues of
the Jacobian matrix (2) are of the form (z, — f8) + iw,
where w=£0. Thus, saddle nodes in the HHNF can have ei-
ther two eigenvalues with positive real part (z, >f3), or
none (z,, <), but not a single positive real eigenvalue as in
the model.

From this we conclude that the HHNF is incapable of
giving the model behavior, and that, if a single normal form
is to account for the dynamics of the SNB model, then it
must exhibit a saddle node with a single positive real eigen-
value. The only normal forms showing this feature are those
having a linearization with at least two zero eigenvalues.

We make a final note concerning the relationship
between the model and the HHNF. In an effort to find in the
model the same behavior as is in the normal form, we have
made systematic attempts to locate a Hopf bifurcation of the
middle branch of the steady state surface.’” All such at-
tempts have failed.

C. Relevance of model results to other features of the
BZ reaction

We now reexamine the results obtained from the model
by varying the parameter C, with regard to the relationship
of the torus to other features of the BZ reaction. We begin
with the transition from small amplitude to mixed mode os-
cillations. This transition was observed in some of the earli-
est experiments on the BZ reaction in flow reactors, " but
has yet to be fully understood. While there may be more than
one way to achieve this transition, our simulations show that
it can be mediated by a secondary Hopf bifurcation and
hence by quasiperiodicity.

The gauge whether this intermediacy of quasiperiodi-
city is unusual or common in the model, we looked elsewhere
in the model at the transition from small to mixed-mode
oscillation and again a torus was found.** The parameter
range over which these tori were seen to exist is quite small.
However, this may not be the case everywhere and more
importantly, since we expect only qualitatively reliable re-
sults from the model simulations,** the corresponding pa-
rameter range in laboratory experiments may be larger or
smaller. We suggest that well-controlled experiments and
numerical studies of other models of this reaction might also
reveal tori between small amplitude and mixed-mode oscil-
lations. A more detailed treatment of this transition in terms
of bifurcation theory will be presented elsewhere.

We now turn to the feature of the BZ reaction which has
received the most attention in recent years—sequences of
alternating periodic and chaotic states in which the number
of oscillations per period of consecutive periodic states
differs by one, ?*>1322.23.3645 Although we have not com-
puted Lyapunov exponents for the wrinkled tori of Figs.
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8(c), 8(d), and 8(f), the stretching and folding associated
with chaotic dynamics is apparent in these attractors.
(States such as these are commonly seen to arise from
smooth tori.'®?3) Note that because there is one more oscil-
lation per period in the state shown in Fig. 8(b) than in the
state shown in Fig. 8(e), Fig. 8 shows a limited periodic—
chaotic sequence evolving from a smooth torus. This pro-
vides a clear connection between this particular periodic—
chaotic sequence and phase locking and unlocking on a
wrinkled torus. It is possible that this interpretation is valid
for other periodic—chaotic sequences seen in the BZ system
but that the underlying torus is not as apparent as in this
case.

V. CONCLUSION

We have presented the first observation of quasiperiodi-
city in a model of the BZ reaction and have described the
evolution of the associated torus along two paths in the pa-
rameter space of the model. We have noted the resemblance
of the model simulations to experimental observations and
to the dynamics found in the vicinity of a hysteresis—Hopf
bifurcation. We have shown that while the interaction of
Hopf and hysteresis bifurcations can give rise to dynamics
similar to that seen in the model, it is not possible to interpret
the model behavior simply in terms of the hysteresis—Hopf
normal form.

These results suggest that the dynamics underlying the
quasiperiodicity seen experimentally might also be more
complex than previously thought. If the Oregonator model
which we have studied provides a true qualitative descrip-
tion of the dynamics of the BZ reaction, then a normal form
other than that of the hysteresis—Hopf bifurcation will be
necessary for a proper interpretation of the dynamics of the
reaction.

We have found that the transition from small amplitude
to mixed-mode oscillations can be mediated by a secondary
Hopf bifurcation and quasiperiodicity and that this media-
tion may be common in the model. This suggests that tori
might be found experimentally in the transition region. Fin-
ally, we have shown that the model possesses a sequence of
periodic and chaotic states and that this sequence arises from
the phase locking and unlocking on a wrinkled torus.
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