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Abstract
Regular patterns of turbulent and laminar fluid motion arise in plane Couette

flow near the lowest Reynolds number for which turbulence can be sustained.
We study these patterns using an extension of the minimal flow unit approach
to simulations of channel flows pioneered by Jim«enez and Moin. In our case
computational domains are of minimal size in only two directions. The third
direction is taken to be large. Furthermore, the long direction can be tilted at any
prescribed angle to the streamwise direction. We report on different patterned
states observed as a function of Reynolds number, imposed tilt, and length of
the long direction. We compare our findings to observations in large aspect-ratio
experiments.

1. Introduction

In this chapter we consider plane Couette flow – the flow between two in-
finite parallel plates moving in opposite directions. This flow is character-
ized by a single non-dimensional parameter, the Reynolds number, defined as�������	��

� , where � � is the gap between the plates, � is the speed of the
plates and

�
is the kinematic viscosity of the fluid. See figure 1. For all val-

ues of ��� , laminar Couette flow ���������� is a solution of the incompressible
Navier-Stokes equations satisfying no-slip boundary conditions at the moving
plates. This solution is linearly stable at all values of ��� . Nevertheless it is
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Figure 1. Plane Couette geometry. Plates separated by a gap ��� move at speeds ��� . The
coordinate system we use is as shown, with ���
	 corresponding to midgap.

not unique. In particular, for ��� greater than approximately � �
� [Dauchot and
Daviaud, 1995], turbulent states are found in experiments and numerical sim-
ulations. Our interest is in the flow states found as one decreases ��� from
developed turbulent flows to the lowest limit for which turbulence exists.

Our work is motivated by the experimental studies of Prigent et al. [Prigent,
2001, Prigent et al., 2002, Prigent et al., 2003] on flow in a very large aspect-
ratio plane Couette apparatus. Near the minimum

���
for which turbulence is

sustained, they find remarkable, essentially steady, spatially-periodic patterns
of turbulent and laminar flow. These patterns emerge spontaneously from fea-
tureless turbulence as the Reynolds number is decreased. Figure 2 shows such
a pattern from numerical computations presented in this chapter. Two very
striking features of these patterns are their large wavelength, compared with
the gap between the plates, and the fact that the patterns form at an angle to the
streamwise direction.

Fluid flows exhibiting coexisting turbulent and laminar regions have a sig-
nificant history in fluid dynamics. In the mid 1960’s Coles and van Atta [Coles,
1965, van Atta, 1966, Coles and van Atta, 1966] first discovered a state known
as spiral turbulence in counter-rotating Taylor-Couette flow. The state consists
of a turbulent and a laminar region, each with a spiral shape. The experiments
of Prigent et al. [Prigent, 2001, Prigent et al., 2002, Prigent et al., 2003] in a
very large aspect-ratio Taylor-Couette system showed that in fact the turbulent
and laminar regions form a periodic pattern, of which the original observations
of Coles and van Atta comprised only one wavelength. Cros and Le Gal [Cros
and Le Gal , 2002] discovered large-scale turbulent spirals as well, in the shear
flow between a stationary and a rotating disk. When converted to comparable
quantities, the Reynolds-number thresholds, wavelengths, and angles are very
similar for all of these turbulent patterned flows.



Turbulent-laminar patterns 3

Figure 2. Turbulent-laminar pattern at Reynolds number 350. Isosurfaces of streamwise
vorticity (� � � 	�� � ) are shown at one instant in time. For clarity the bottom plate is shown
in black while the top plate is transparent. The streamwise and spanwise extent of the region
shown are 60 times the plate separation � � .

2. Methods

Our computational technique [Barkley and Tuckerman, 2005] extends the
minimal flow unit methodology pioneered by Jim«enez and Moin [Jim«enez and
Moin, 1991] and by Hamilton et al. [Hamilton et al., 1995] and so we begin
by recalling this approach. Turbulence near transition in plane Couette and
other channel flows is characterized by the cyclical generation and breakdown
of streaks by streamwise-oriented vortices. The natural streak spacing in the
spanwise direction is about � - � � . In the minimal flow unit approach, the
smallest laterally periodic domain is sought that can sustain this basic turbulent
cycle. For plane Couette flow at ��� � ����� , Hamilton et al. [Hamilton et al.,
1995] determined this to be approximately �
	���
�	���
�	���� � ��� � 
 � � 
�� � � . This
domain is called the minimal flow unit (MFU). The fundamental role of the
streaks and streamwise vortices is manifested by the fact that the spanwise
length of the MFU is near the natural spanwise streak spacing. Figure 3(a)
shows the MFU in streamwise-spanwise coordinates.

We extend the MFU computations in two ways. First we tilt the simulation
domain in the lateral plane at angle � to the streamwise direction [Fig. 3(b)].
We use ��� and ��� for the tilted coordinates. We impose periodic lateral bound-
ary conditions on the tilted domain. To respect the spanwise streak spac-
ing while imposing periodic boundary conditions in ��� , the domain satisfies
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Figure 3. Simulation domains. The wall-normal direction � is not seen; ����� ��� . The bars
represent streamwise vortex pairs with a spanwise spacing of � � . (The vortices are schematic;
these are dynamic features of the actual flow.) (a) MFU domain of size � ����� � . (b) Central
portion of a domain [on the same scale as (a)] tilted to the streamwise direction. � , �
	 and � ,
� 	 are pairs of points identified under periodic boundary conditions in � 	 . (c) Full tilted domain
with ��
�� ��� 	 � , ����� ��� � 	 � , � � ����� . On this scale the MFU domain, shown for comparison,
is small.

	 � 	��
��� � � � � for �"! � . (For � � � , we require 	 � 	

# � � .) Secondly,
we greatly extend one of the dimensions, 	 � 	 , past the MFU requirement
[Fig. 3(c)], in practice between � � � and � � � � , usually $ � � � .

This approach presents two important advantages, one numerical and the
other physical. First, it greatly reduces the computational expense of simulat-
ing large length-scale turbulent-laminar flows. Our tilted domains need only be
long perpendicular to the turbulent bands. In the direction in which the pattern
is homogeneous, the domains are of minimal size, just large enough to capture
the streamwise vortices typical of shear turbulence. Second, the approach al-
lows us to impose or restrict the pattern orientation and wavelength. We can
thereby investigate these features and establish minimal conditions necessary
to produce these large-scale patterns.

We now present some further details of our simulations. We consider the
incompressible Navier–Stokes equations written in the primed coordinate sys-
tems. After nondimensionalizing by the plate speed � and the half gap � , these
equations become

% � �%'&)( � � �+*�, � � � � � - , � . � ( $��� , �0/ � � in 1 
 (1a)

, �2* � � � � in 1 
 (1b)

where � � � � � 
 & � is the velocity field and . � � � �

 & � is the static pressure in the
primed coordinate system, and , � is used to indicate that derivatives are taken
with respect to primed coordinates. 1 is the computational domain. In these
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coordinates, the no-slip and periodic boundary conditions are

� � ��� � 
 � ��� $ 
�� � � � � ����� � ��
�� 
 �
��� � � (2a)

� � ��� � ( 	 � 	 
 � 
�� � �
� � � ��� � 
 ��
�� � � (2b)

� � ��� � 
 � 
�� � ( 	 � 	 �
� � � ��� � 
 ��
�� � � (2c)

The equations are simulated using the spectral-element ( ��� - � ) – Fourier ( � � )
code ���
	���
 [Henderson and Karniadakis, 1995]. We use a spatial resolution
consistent with previous studies [Hamilton et al., 1995, Waleffe, 2003]. Specif-
ically, for a domain with dimensions 	 � 	 and 	 � � � , we use a computational
grid with close to 	 � 	 elements in the � � direction and 5 elements in the � di-
rection. Within each element, we usually use � th order polynomial expansions
for the primitive variables. Figure 4 shows a spectral element mesh used for
the case of 	 � 	

� $ � . In the � � direction, a Fourier representation is used
and the code is parallelized over the Fourier modes. Our typical domain has
	 � 	

� $ � � , which we discretize with 1024 Fourier modes or gridpoints. Thus
the total spatial resolution we use for the 	 � 	�� 	�� � 	 � 	

� $ � � � � $ � �
domain can be expressed as � � 	 � � � � � � 	

� �+$ � �+$ � $ � � � .
We shall always use ��� 
 � 
�� � for the original streamwise, cross-channel,

spanwise coordinates (figure 1). We obtain usual streamwise, and spanwise
components of velocity and vorticity using � � � � ��� � � (�� � �

� � � and � �
� � �
� � � - � ����� � � , and similarly for vorticity. The kinetic energy reported is

the difference between the velocity � and simple Couette flow � � , i.e. � �
�
/ � ���

- ��� � / (�� / (�� /�� .
We have verified the accuracy of our simulations in small domains by com-

paring to prior simulations [Hamilton et al., 1995]. In large domains we have
examined mean velocities, Reynolds stresses, and correlations in a turbulent-
laminar flow at

��� �
�
� � and find that these reproduce experimental results

from Taylor-Couette [Coles and van Atta, 1966] and plane Couette [Hegseth,
1996] flow. While neither experimental study corresponds exactly to our case,
the agreement supports our claim that our simulations correctly capture turbulent-
laminar states.

The procedure we use to initiate turbulence is inspired by previous inves-
tigations of plane Couette flow in a perturbed geometry. We recall that lami-
nar plane Couette flow is linearly stable at all Reynolds numbers. It has been
found, experimentally [Bottin et al., 1998] and numerically [Barkley and Tuck-
erman, 1999, Tuckerman and Barkley, 2002], that the presence of a wire [Bot-
tin et al., 1998] or a ribbon [Barkley and Tuckerman, 1999, Tuckerman and
Barkley, 2002] oriented along the spanwise direction causes the flow in the re-
sulting geometry to become linearly unstable to either a steady or a turbulent
state containing streamwise vortices. We simulate such a flow with a ribbon
which is infinitesimal in the � � direction, occupies 30 % of the cross-channel
direction � and spans the entire � � direction. At ��� � � ��� , the effect of such a
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Figure 4. Simulation domain. The � � 	�� ��� grid is the actual spectral-element mesh used for
the case ��
�� � � 	 . Only part of the � 	 direction is shown. In practice we use 32 history points
in the � 	 direction.

ribbon is to produce a turbulent flow quickly without the need to try different
initial conditions. Once the turbulent flow produced by the ribbon is simulated
for a few hundred time units, the ribbon can be removed and the turbulence
remains. This is the procedure we use to initialize turbulent states for the sim-
ulations to be described below.

3. Appearance of Turbulent-Laminar Bands

Basic Phenomenon

We begin with one of our first simulations, in a domain tilted at angle
� � � ��� . This angle has been chosen to be close to that observed experi-
mentally near pattern onset. The simulation shows the spontaneous formation
of a turbulent-laminar pattern as the Reynolds number is decreased. We initi-
ated a turbulent flow at

��� �
� ��� by perturbing laminar Couette flow with a

ribbon as described in section 2. Time zero in figure 5 corresponds to the re-
moval of the ribbon. The flow is simulated for 500 time units at

��� �
� ��� and

the kinetic energy � is measured at 32 points equally spaced in ��� along the
line ��� � � � � in the mid-channel shown in Figure 4. The corresponding 32
time series are plotted at the corresponding values of � � . At ��� � � ��� , there is
no persistent large-scale variation in the flow, a state which we describe as uni-
form turbulence. (This is not the homogeneous or fully developed turbulence
that exists at higher Reynolds numbers or in domains without boundaries.) At
the end of 500 time units, ��� is abruptly changed to ��� � � � � and the sim-
ulation continued for another 500 time units. Then ��� is abruptly lowered to��� � � �
� and the simulation is continued for 1000 time units, etc. as labeled
on the right in figure 5.

At ��� � �
� � we clearly see the spontaneous formation of a pattern. Out
of uniform turbulence emerge three regions of relatively laminar flow between
three regions of turbulent flow. (We discuss later the degree to which the flow
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���

�����	�


 �

Figure 5. Space-time diagram. Kinetic energy � � � 	 � 	 � � � 	 � � 	 � at 32 equally spaced
points in � 	 in a domain with � 
�� � ��� � � � � � � 	 � � � � ��	 with tilt ��� ��� � . The Reynolds
number is decremented in discrete steps (right). Three long-lasting and well-separated laminar
regions emerge spontaneously from uniform turbulence as ��
 is decreased.

is laminar). While the individual time traces are irregular, the pattern is itself
steady and has a clear wavelength of 40 in the � � direction. This Reynolds
number and wavelength are very close to what is seen in the experiments.

Visualizations

Figure 6 shows visualizations of the flow at the final time in figure 5. Shown
are the kinetic energy, streamwise velocity, and streamwise vorticity in the
midplane between the plates. The computational domain is repeated period-
ically to tile an extended region of the midplane. The angle of the pattern is
dictated by the imposed tilt of the computational domain. The wavelength of
the pattern is not imposed by the computations other than that it must be com-
mensurate with 	 � 	

� $ � � . The vorticity isosurfaces of this flow field were
shown in figure 2. Spanwise and cross-channel velocity components show
similar banded patterns.

Clearly visible in the center figure are streamwise streaks typical of shear
flows. These streaks have a spanwise spacing on the scale of the plate separa-
tion but have quite long streamwise extent. We stress how these long streaks
are realized in our computations. A streak seen in figure 6 typically passes
through several repetitions of the computational domain, as a consequence of
the imposed periodic boundary conditions. In the single tilted rectangular com-
putational domain, a single long streak is actually computed as several adjacent
streaks connected via periodic boundary conditions.
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Figure 6. Turbulent-laminar pattern at � 
 � � � 	 .
The kinetic energy, streamwise velocity, and stream-
wise vorticity are visualized in the � � 	 plane, mid-
way between and parallel to the moving plates. The
computational domain (outlined in white, tilted at angle
� � ����� ) is repeated periodically to tile an extended
region in � - � coordinates. Streamwise streaks, with
spanwise separation approximately � � , are visible at the
edges of the turbulent regions.

Figure 7. Turbulent-laminar
pattern at ��
 � � � 	 viewed be-
tween the moving plates ( � 	 �
	 plane). Left plot shows
streamwise vorticity. The other
three plots show contours of
streamwise velocity at three
times separated by 100 time
units (time increasing left to
right). The vorticity plot and
the first velocity plot corre-
spond to the field seen in fig-
ure 6.
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Figure 8. Mean and rms velocity fields for the turbulent-laminar pattern. From left to right:
mean streamwise velocity, mean spanwise velocity, rms streamwise velocity and rms spanwise
velocity. The rms velocities are maximal in the yellow (light) regions. Only the central half
( � 	�� � 	 ��� 	 ) of the computational domain is shown.

Figure 9. Space-time plot showing dynamics of the turbulent-laminar pattern. Streamwise
velocity is sampled along a spanwise cut through the flow field (the line � � � � 	 in the
reconstructed flows in figure 6). Time zero corresponds to the time of figure 6. The streaks
propagate away from the center of the turbulent regions toward the laminar regions.
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Figure 7 shows the streamwise vorticity and velocity fields between the
plates. The two leftmost images correspond to the same field as in figure 6.
The streamwise vorticity is well localized in the turbulent regions. Mushrooms
of high- and low-speed fluid, corresponding to streamwise streaks, can be seen
in the turbulent regions of flow. Dark (red and blue) velocity contours, corre-
sponding to fluid velocity approximately equal to that of the (lower and upper)
moving plates, are seen to reach into the center of the channel in the turbulent
regions. In the center of the laminar regions, where the flow is relatively qui-
escent (figure 5), there is very little streamwise vorticity and the streamwise
velocity profile is not far from that of laminar Couette flow. In particular, no
high- or low-speed fluid reaches into the center of the channel in these laminar
regions.

In figure 8 we show the mean and rms of the streamwise and spanwise ve-
locity components obtained from averages over � � � ����� time units. These
results show that the mean flow is maximal at the boundaries separating the
turbulent and laminar regions while the fluctuations are maximal in the middle
of the turbulent bands. This confirms the experimental observations [Prigent,
2001, Prigent et al., 2002, Prigent et al., 2003]. Note further that the regions of
high fluctuation have approximately the same rhombic shape as the turbulent
regions shown by Coles and van Atta [Coles and van Atta, 1966] in experi-
ments on Taylor-Couette flow.

Finally, Figure 9 shows a space-time plot of streamwise velocity along the
spanwise line � � � � � . Specifically, data is taken from reconstructed flows
as in figure 6. Time zero in figure 9 corresponds to the field in figure 6.
Time is taken downward in this figure to allow for comparison with a simi-
lar figure from the experimental study by Hegseth ([Hegseth, 1996], figure 6)
showing the propagation of streaks away from the center of turbulent regions.
Our results agree quantitatively with those of Hegseth. We find propagation of
streaks away from the center of the turbulent regions with an average spanwise
propagation speed of approximately 0.054 in units of the plate speed � . Trans-
lating from the diffusive time units used by Hegseth, we estimate the average
spanwise propagation speed of streaks in his data to be approximately 0.060 at
Reynolds number � � � . This space-time plot again shows the extent to which
there is some small activity in the regions we refer to as laminar.

Average spectral coefficients

We have determined a good quantitative diagnostic of the spatial periodicity
of a turbulent-laminar pattern. We use the same data as that presented in figure
5, i.e. velocities at 32 points along the line ��� � � � � in the midplane along
the long direction, at each interval of $ ��� time steps: $ ����� & � $ . We take a
Fourier transform in � � of the spanwise velocity � , yielding ���� . We take the



Turbulent-laminar patterns 11

Figure 10. Evolution of �������� � � , which is an average over time 	 of the modulus of the
Fourier transform in the ��	 direction of 32 spanwise velocity samples taken along the line � � 	 �
	 � �
� 	 � . The components with wavenumber 
 � � (solid curve), 
 � � (long-dashed
curve), 
 � � (short-dashed curve) and 
 � 	 (dotted curve) can be used as a quantitative
diagnostic of a turbulent-laminar pattern. For example, the dominance of the 
 � � component
indicates a pattern containing three turbulent bands. From left to right, the average is taken over
	 ��� 	 , 	 � � 	 , 	
��� 	�	 , 	
� � 	�	 , and 	 ��� 	�	 	 .

modulus � �� � � to eliminate the spatial phase. Finally, we average over a time
� to obtain �
� �� � ��� . Figure 10 shows the evolution of �
� ���� ��� for wavenumbers� �

� , � � � , � � $ , and � � � during one of our simulations (shown
below in Figure 11, which is a continuation of that shown in Figure 5). As
before, the vertical axis corresponds to time, and also to Reynolds number,
which was decreased in steps of � ��� � $ � . We average successively over
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� � $ � , � � � � , � � $ ��� , � � � ��� , and � � $ ����� and observe the short-
term fluctuations gradually disappear, leaving the long-term features which
will be discussed in the next section. We have chosen � �

� ��� as the best
compromise between smoothing and preserving the detailed evolution.

4. Dependence on Reynolds number

We have investigated in detail the Reynolds-number dependence of the � �
� ��� case. To this end, we have carried out two simulations, shown in figure
11. In each the Reynolds number is lowered at discrete intervals in time, but
following a different sequence in the two cases. For each case, we present
a space-time diagram of � ��� � � � 
 � � � 
���� 
 & � at 32 values of � � . The
Reynolds-number sequence is shown on the right of each diagram and the time
(up to � �

��� 
������ ) on the left. Each space-time diagram is accompanied
by a plot showing the evolution of its average spectral coefficients, as defined
above.

Careful observation of figure 5 already shows a laminar patch beginning
to emerge at ��� � ��� � , consistent with experimental observations: [Prigent,
2001, Prigent et al., 2002, Prigent et al., 2003] observed a turbulent-laminar
banded pattern with wavelength � � and angle �
� � when they decreased

���
below ��� �

��� � . The space-time diagram on the left of figure 11 shows a
continuation of this simulation. (Here, the Reynolds numbers intermediate be-
tween 500 and 350 are not shown here to reduce crowding.) We see a sequence
of different states: uniform turbulence and the three-banded turbulent-laminar
pattern already seen are succeeded by a two-banded pattern (at

��� �
�+$ � ),

then a state containing a single localized turbulent band (at ����� � ��� ), and
finally laminar Couette flow. These features are reflected in the average spec-
tral coefficients. The flow evolves from uniform turbulence (all components of
about the same amplitude) to intermittent turbulence, to a pattern containing
three turbulent bands (dominant � �

� component) and then two turbulent
bands (dominant � � � component), then a single band (dominant � � $ and� � � components), and finally becomes laminar (all components disappear).

In the simulation on the right, the Reynolds number is decreased more
slowly. A state with three bands appears at ��� � ��� � . (Although a lami-
nar patch already appears at ��� � ����� , it is regained by turbulence when ���
is maintained longer at 400; this is not shown in the figure.) Based on the pre-
vious simulation shown on the left, we had expected the three turbulent bands
to persist through ��� � � � � . However here, instead, we see a rapid loss of two
bands, leaving only a single turbulent band. This band moves to the left with
a well-defined velocity, emitting turbulent spurs toward the right periodically
in time. Finally, after a time of � �

��� ����� , one of these spurs succeeds in
becoming a second turbulent band and the two bands persist without much net
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Figure 11. Two time series at � � � � � . The Reynolds number is lowered in steps, but at
different instants to generate the two evolutions shown. For each case, we show � at 32 points
along the � 	 direction on the right and the spectral components ��� �� � � � on the left. Left: uniform
turbulence is succeeded by the formation of three bands, then two, then a single band (a localized
state) and finally by laminar Couette flow. Right: two bands disappear almost simultaneously
at ��
 � � ��	 . The remaining band moves toward the left, periodically emitting turbulent spurs,
of which one finally becomes a second turbulent band.

motion. It would seem that the loss of the second band was premature, and
that at

��� �
� � � one band is insufficient. We then resumed the simulation on

the left, maintaining ����� � � � for a longer time, and found that two bands
resulted in this case as well. Both simulations show two bands at ��� � �+$ � ,
one band at ��� � � ��� , and laminar Couette flow at ��� � ��� � .

Three states

The turbulent-laminar patterned states shown in figure 11 are of three qual-
itatively different types [Barkley and Tuckerman, 2005]. We demonstrate this
by carrying out three long simulations, at three different Reynolds numbers,
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Figure 12. Simulations at ��
 � � � 	 , ��
 � � 	 	 , and ��
 � � � 	 illustrating three qualita-
tively different regimes. For the simulations at ��
 � � � 	 and � 
 � � 	�	 , ��� � is increased from
50 to 140. The state at ��
�� � � 	 is periodic: the turbulent band divides as � ��� is increased to
retain a wavelength near 40. The final kinetic energy profile �� ��� 	 � is bounded away from zero.
The state at ��
 � � 	�	 is localized: a single turbulent band persists, regardless of domain size
and �� ��� 	 � decays exponentially to zero away from the band. The simulation at � 
 � � � 	 is
carried out at � � � � � 	 . The state is intermittent: laminar regions appear and disappear and the
average spectral coefficients oscillate erratically.
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and shown in Figure 12. In this figure, the energy along the line � � � � � �
for the 32 points in � � has been averaged over windows of length � � � ��� to
yield a value shown by the color of each space-time rectangle.

The simulations at ��� � �
� � and ��� � � ��� are carried out by increasing
the long direction of our domain, 	 � 	 , in regular discrete increments of 5 from
from 	 � 	

�
� � to 	 � 	

� $ ��� . At
��� �

�
� � , a single turbulent band is seen
when 	 � 	

�
� � . This band divides into two when 	 � 	

� �
� and a third band
appears when 	 � 	

� $ � � : the periodic pattern adjusts to keep the wavelength
in the range �
� - �
� . This is close to the wavelength range observed exper-
imentally [Prigent, 2001, Prigent et al., 2003], which is � � - � � . When the
same protocol is followed at

��� �
� ��� , no additional turbulent bands appear

as 	 � 	 is increased. We call the state at ��� � � ��� localized and note that tur-
bulent spots are reported near these values of

���
in the experiments [Prigent,

2001, Prigent et al., 2002, Prigent et al., 2003]. The small 	 � 	 of our computa-
tional domain does not permit localization in the ��� direction; instead localized
states must necessarily take the form of bands when visualized in the � - �
plane.

The instantaneous integrated kinetic energy profile
�
� � ��� � � � ��� ��� � 
 � 
�� � �

is plotted at the final time for both cases. For ��� � �
� � ,
�
� does not reach zero

and the flow does not revert to the simple Couette solution between the tur-
bulent bands, as could be seen in the earlier visualizations (figures 7, 9). In
contrast, for ��� � � ��� ,

�
� decays to zero exponentially, showing that the flow

approaches the simple Couette solution away from the turbulent band. In this
case, there is truly coexistence between laminar and turbulent flow regions.

The simulation at ��� � �'$ � illustrates another type of behavior. In a do-
main of length 	 � 	

� ��� , laminar or, rather, weakly-fluctuating regions appear
and disappear. The spectral coefficients corresponding to wavelengths 40 and
20 oscillate erratically. Similar states at similar Reynolds numbers are reported
experimentally in [Prigent, 2001, Prigent et al., 2002, Prigent et al., 2003],
where they are interpreted as resulting from noise-driven competition between
banded patterns at equal and opposite angles, a feature necessarily absent from
our simulations.

5. Dependence on angle

Angle Survey

We have explored the angles with respect to the streamwise direction at
which a turbulent-laminar pattern may exist. The results are plotted in figure
13. We keep 	�� �

� $ � � and 	 � 	
� � 
 �

� � � . The transition from uniform
turbulence to laminar Couette flow occurs via intermediate states which occupy
a decreasing range of ��� as � is increased. The sequence of states seen for
increasing � at

��� �
�
� � is qualitatively the same as that for decreasing

���
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Figure 13. Patterns as a function of Reynolds number ��
 and � , the angle between the � 
��
direction of our rectangular computational domain and the streamwise direction. The domain
is of size ��
�� � � � ������� � � ��������� � � � � � � ��	 . For each angle, upper and lower limits in
� 
 are shown for each regime. T: uniform turbulence (lower limit in ��
 ). I: intermittent tur-
bulence. 3: pattern containing three turbulent-laminar bands, each of approximate wavelength
40. 2: pattern containing two bands of approximate wavelength 60. L: pattern containing one
turbulent region, possibly localized. C: laminar Couette flow (no patterns observed below this
� 
 ). Open symbols show experimental observations of Prigent and Dauchot. Triangle: pattern
with wavelength between 46 and 50. Square: pattern with wavelength between 50 and 60.

Figure 14. Evolution for � � ��	 � . This domain supports only a transient pattern as an
intermediate state between uniform turbulence to laminar Couette flow. Two simulations at
� 
 � � 	�	 are superposed, one in a domain with � � � � � 
 � ����	 and, occupying the leftmost
part of the same domain, another with � 
�� ��� � � � . The turbulence disappears when � � � �
� 
 � � ��	 but persists when ��
�� � � � � � .
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at � � � � � : uniform turbulence at � � � � , a turbulent-laminar pattern with
three bands at � � $ � � to � � � ��� , two bands for � � � ��� and � � � � � , a
localized state for � � ��� � , and laminar Couette flow for � ����� � . Thus far
we have obtained patterns for angles between $ � � and ��� � and the number of
bands decreases with angle.

Experimental data from [Prigent, 2001, Prigent et al., 2003] is also shown
in figure 13. The wavelengths, angles, and Reynolds numbers reported ranged
from 46.3 and �
��� � � at ��� � ��� � to 60.5 and � � � at ��� � � ��� . In these
ranges of angle and Reynolds number, we observe a similar trend, since our
wavelength (constrained here to be a divisor of 	 � 	

� $ � � ) increases from 40
to 60 as the number of bands decreases from 3 to 2. Between ��� � � �
� and��� � ��� � , [Prigent, 2001] observed spots, which may correspond to some
of the states we have labeled as localized in figure 13. At present, we do
not systematically distinguished localized states from others containing one
turbulent region but which may not behave like figure 12. The threshold for
intermittency is also difficult to define and to determine.

The most striking difference between our computations and the experimen-
tal data is that the range of angles over which we find periodic turbulent-
laminar patterns (from � � $ � � to at least � � � � � ) is far greater than that
seen in the experiment. Patterns with angles outside of the experimental range
are likely to be unstable in a large domain in which the angle is unconstrained.

Our computational technique requires that the size of the domain be in-
creased as � decreases according to 	 � 	

� � 
 �
� � � in order to respect the

spanwise vortex or streak spacing; see figure 3. Hence the computational cost
increases with decreasing � and for this reason we have not as yet investi-
gated � between $ ��� and � � . For � exactly ��� , this trigonometric constraint is
lifted, since the streamwise vortices and streaks would not extend diagonally
across the rectangular domain, but parallel to its boundaries. As � increases,
the domain size 	 � 	

� � 
 �
� � � decreases, as does the computation cost. For

� between � � � and � � � , for which 	 � 	 is between 5.7 and 4, we reduce the
number of spectral elements in the � � direction from 10 to 4 (see figure 4).

Long streamwise direction

For � � � � � , the domain has a long streamwise direction 	 � 	
� 	�� and a

short spanwise direction 	 � 	
� 	 � . Figure 13 shows that, for � � � � � and

	 � � $ � � , we obtain direct decay from uniform turbulence to laminar Couette
flow at ��� � ���
� . We have varied 	 � and show the results in figure 14. When
	�� � � � � , the turbulence is extinguished at ��� � ����� ; a transient pattern of
wavelength 110 can be seen. But when 	 � � � , we find that the turbulence
persists down to a value of ���	� � � � . We recall that the minimal flow unit
was proposed by [Hamilton et al., 1995] as the smallest which can support the
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streak and streamwise-vortex cycle and maintain turbulence; the flow becomes
laminar when either of the dimensions are reduced below their MFU values.
However, figure 14 shows that turbulence can also be extinguished by increas-
ing 	 � . Simulations in domains with a long streamwise and a short spanwise
dimension have also been carried out by Jimenez et al. [Jim«enez et al., 2005]
with the goal of understanding the role of the streamwise dimension, e.g. streak
length.

Long spanwise direction

In the case � � ��� , the domain has a long spanwise direction and a short
streamwise direction. We take 	 � � 	 � 	

� $ � � and 	 � � 	 � 	
� $ � . Experi-

ments and numerical simulations in large domains ( 	�� � 	�� � 	��
� $ ��� � � �

� � ) [Lundbladh and Johansson, 1991] and numerical simulations in periodic
minimal flow units ( 	 � � 	 � � 	��

� � � � � � ) [Hamilton et al., 1995, Waleffe,
2003] have produced long-lived turbulence only for ��� ! � ��� . In decreasing
the Reynolds number by � ��� � � after each interval of � � $ ����� , we ob-
serve turbulent regions far below ��� � � ��� , terminating only at ��� � �+$ � , as
shown in 15. At several times, the turbulence seems ready to disappear, only
to spread out again. In order to confirm this surprising result, we have carried
out longer simulations at each of these low values of ��� . Turbulence persisted
during � � � � ��� (in the usual advective time units) at

��� � � � � , during
� � � ����� at ��� � � �
� , and even during � � $ � ����� for ��� � �
� � .

If we compare our results to the previous simulations, which rule out turbu-
lence in large ( 	 � � 	 � � $ ��� � � � ) [Lundbladh and Johansson, 1991] and
in small ( 	�� � 	�� � � � � ) domains [Hamilton et al., 1995, Waleffe, 2003]
at such low Reynolds numbers, then the conclusion would be that turbulence
is favored by a short streamwise direction 	�� � $ � and a long spanwise direc-
tion 	 � � $ � � . When either of these two conditions are lifted, the turbulence
disappears.

We note that Toh et al. [Toh and Itano, 2005, Toh, 2005] have recently re-
ported results from simulations of Couette flow in domains with long spanwise
extent compared with the MFU geometry. These simulations are for higher
values of ��� than those considered here.

Other studies [Dauchot and Daviaud, 1995, Schmiegel and Eckhardt, 1997,
Hof et al., 2003, Faisst and Eckhardt, 2004] have examined turbulent lifetimes
as a function of initial perturbation amplitude and Reynolds number and found
the decay to obey statistical Reynolds-number-dependent laws. (In [Schmiegel
and Eckhardt, 1997, Faisst and Eckhardt, 2004], turbulence with a lifetime
greater than � � � ����� was counted as sustained; the lifetimes we have ob-
served above ��� � � � � largely exceed this criterion.) In contrast, our sim-
ulations use only a small number of initial conditions and indicate only the
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Figure 15. Evolution for � � 	 � with � 
�� �)� 
 �"� 	 and � ��� � � � � � ��	 . The flow
continues to have turbulent regions far below ��
 � � 	 	 . Left: evolution over the entire domain,
showing the formation and disappearance of turbulent domains. Right: evolution of � ��� � in the
middle of the domain, showing irregular periodic cycles.

possibility, but not the probability, of long-lived turbulence at Reynolds num-
bers which are far lower than those at which turbulence has been previously
observed.

We observe an approximately periodic oscillation in time, shown on the
right of figure 15. The oscillation period of about 200 time units has the same
order of magnitude as the minimum turbulent cycle [Hamilton et al., 1995,
Waleffe, 2003], but further analysis of our results is required before we can
identify the streak and streamwise-vortex cycle in our flow.

6. Summary

We have used an extension of the minimal-flow-unit methodology to study
large-scale turbulent-laminar patterns formed in plane Couette flow. Turbulent-
laminar patterns are obtained as solutions to the Navier-Stokes equations in do-
mains with a single long direction. The other dimensions are just large enough
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to resolve the inter-plate distance and to contain an integer number of longitu-
dinal vortex pairs or streaks. We have presented various visualizations of the
computed turbulent-laminar patterns as well as space-time plots illustrating the
formation and dynamics of these patterns. The time-averaged modulus of the
spatial Fourier spectrum is shown to provide a quantitative diagnosis of the
patterns. Periodic, localized, and intermittent states occur in our simulations
where similar states are observed experimentally.

We have explored the patterns’ dependence on Reynolds number, domain
length and tilt angle. The patterned states do not appear to depend sensitively
on how the turbulence is initialized nor on the route taken to a particular point
in parameter space. It is, however, possible that some parameter combinations
may support different numbers of turbulent bands (although we have not yet
observed this). All states are bistable with respect to laminar Couette flow and
if parameters are changed too abruptly, then reversion to laminar Couette flow
occurs.

It appears that large-scale patterns are inevitable intermediate states on the
route from turbulent to laminar flow in large aspect-ratio Couette flow. A key
open question is what mechanism causes laminar-turbulent patterns. These
patterns are not only interesting in and of themselves, but may provide clues to
the transition to turbulence in plane Couette flow.
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