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1 Materials and Methods

Numerical Simulations

The numerical results presented here have been obtained with two distinct methods. The

first (DNS1) is the spectral-element–Fourier codeSemtex (1), which solves the Navier–Stokes

equations in Cartesian coordinates(x,y,z). 36 spectral elements are used to represent the circular

(y,z) cross-sections of a pipe. Elements are placed to mimic the radial distribution of Chebyshev

collocation points, with fields approximated using a 12th order polynomial expansion basis within

each element. Fourier modes are used in the periodic axial direction at a density of 768 complex

modes (1536 collocation points) per 100D in pipe length.

The second (DNS2) is the hybrid spectral finite-difference method of (2), which solves the

equations in cylindrical coordinates(x,r,θ). The numerical discretization consists of a non-

equispaced 9-point finite-difference stencil inr and of Fourier modes inθ andz. Here 56 radial

points,±32 azimuthal Fourier modes and±1024 axial Fourier modes (64 and 2048 collocation

points, respectively) have been used perL = 32πD ≃ 100D in pipe length.

Both methods use periodic boundary conditions in the streamwise direction, fix the diameter

at D = 1, and impose constant volume flux (so thatU = 1), ensuring no variation inRe (which is

given by 1/ν), during any run.

Initial conditions for ensemble runs where obtained from snapshots of simulation of puffs at

lowerRe, similarly to the approach in puff lifetime studies (3). In the case of the spectral-element–

Fourier (DNS1) runs, all such initial conditions were generated from simulations atRe = 2100

with snapshots taken every 20(D/U). In the case of the hybrid spectral finite-difference (DNS2)

runs, all such initial conditions were generated from simulations atRe = 2200 with snapshots

taken every 10(D/U).

Experiments: Pressure measurements

Pressure measurements are performed at two positions alongthe pipe. The first measurement is

made 50D downstream of the perturbation in order to verify the generation of a single puff by

the perturbation. The second one is located at various distancesL > 50D from the perturbation

in order to determine the subsequent turbulent fraction. Sensors measure the pressure difference

over 3D along the pipe. Pressure sensors are connected via tubes to pressure taps in the pipe

wall as illustrated in Fig. S1. We used the low pressure sensor DP45 from Validyne with the

diaphragm no. 14 (0.021 - 0.049 PSI). Special care was taken to remove all airbubbles from the

tubes and sensor prior to measurements. Such air pockets could alter the signal and even reinduce

disturbances into the pipe under unsteady flow conditions.
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Figure S 1: Pressure difference measurement at a machined perspex connector.(A) The connector
features three holes of 0.2D diameter and separated by 3D, of which here two neighboring ones
are used for the pressure measurement. Air bubbles are removed from the sensor and the tubing
prior to usage. The precision glass tube to the left and rightare covered by insulating materials to
minimize temperature effects and light exposure (to avoid algae growth).(B) The pressure signals
are then analyzed to detect the number of peaks (here one, marked by the blue diamond) and the
length of the turbulent region at 20% of the maximal pressurepeak, indicated by the red line.

Puff speed

To convert between distances and times and to plot puffs in co-moving frames of reference,

We use the following approximation for the Reynolds number dependent puff speed:

Up = 1.482−2.416×10−4Re (1)

This is shown graphically in Fig. S2.

Obtaining confidence intervals for DNS

As seen in table S3, each observed lifetimet1, . . . , tn obtained through DNS is censored by

imposing an upper bound on the simulation time so thatti ≤ tmax. In (4) this is defined as type I

censoring, for which exact confidence intervals do not existand must therefore be approximated

numerically. Given the small number of samples, the centrallimit theorem provides inaccurate

intervals, and so here we opt to use the technique ofbootstrapping as seen in appendix D.2 of (4).

The procedure for generating confidence intervals is as follows:

1. Generate a pseudorandom samplet∗1, t
∗
2, . . . , t

∗
n by sampling from the set of lifetimes with

replacement.
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2. Calculate the maximum likelihood estimatorτ̂∗1 of this data as

τ̂∗1 =
1
r∗1

n

∑
k=1

t∗k ,

wherer∗1 is the number of uncensored lifetimes andt0+ t∗k = tmax.

3. Repeat the previous two stepsB times to obtain bootstrap samples{τ̂∗1, τ̂
∗
2, . . . , τ̂

∗
B}.

4. Sort this data so thatτ̂∗b ≤ τ̂∗b+1.

AssumingB = 10k wherek ≥ 2, confidence intervals at level 1−α may then be read off as

[τ̂∗Bα/2, τ̂
∗
B(1−α/2)].

Analysis of the experimental data

The analysis of each set of experimental measurements leadsto a splitting probabilityP(Re,L)=

r/n. HereL is the downstream distance from the perturbation andr is the number of runs that split-

ted out of a total ofn (see Table 1). In the first stepL is converted into timet by using the puff

speed approximation of equation (1). The mean timeτ of the splitting process with formation

time t0 = 100 is then caclulated as:

τ =
t0− t

log(1−P(Re, t))
(2)

The 95% confidential intervalsP (shown in Figure 4 of the paper) are estimated by the Wilson

method (5):

Perror = P±
1.96n1/2

(n+1.962)
(P(1−P)+(1.962/(4n)))1/2 (3)

By insertingPerror into (2) confidence intervals forτ are obtained. Note that the final error bars

for τ shown in Figure 5 of the paper include the uncertainty int0 ∈ [50,150].
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2 Supporting Figures
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Figure S 2: Numerically computed puff speed (squares) using the hybridspectral finite-difference
code. The puff speed is very well approximated by Eq. S1 over the range 2000≤ Re ≤ 2400
plotted as red dashed line. Circles are from experiments in (6) and triangles from (7).

5



Figure S 3: Space-time diagram for a puff at the critical Reynolds number Re= 2040. Streamwise
vorticity is plotted on a linear scale in a co-moving reference frame (speedUp = 0.9873U from
Eq. S1). There are fluctuations in the width and intensity, but on the whole the size and speed of
a puff at thisRe is constant, i.e. it is an ’equilibrium puff’ (8). Based on the evidence presented
in the paper, the puff will eventually, with nearly equal probability, decay or split. However, the
characteristic time for this to occur is more than 107D/U , considerably longer than the 4×103

D/U shown here.
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Figure S 4: Enlargement of Fig. 5 in the vicinity of the critical point.
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Figure S 5: Increase of the turbulent fraction from experimental measurements defined asI =
(S3380− Spu f f )/Spu f f . At eachRe the size of the turbulent region is measured at a distance of
L = 3380 from the perturbation by setting a threshold on the pressure signal (see also Fig. S1
(B)). The measurement is subsequently repeated to determine the average turbulent size (S3380).
Finally, the value is normalized with respect to the mean size of a single puff (Spu f f ) measured
at thisRe using the same threshold. The dotted line connects measurements to guide the eyes.
Below the critical pointRec ≃ 2040 the turbulent fraction decreases, as indicated by negative
values ofI, whereas for supercriticalRe it increases. The error bars in the vertical direction are
95% confidence intervals of the increase of the turbulent fraction. Note, that they are hidden by
the symbol in most of the cases. The size of a single puff is here aboutSpu f f ≈ 25D±10D.
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3 Supporting Table

Table S 1: Tabular data for Fig. 5. (Experiment)Characteristic splitting timeτ from experiment
(jet perturbation) as a function of Reynolds numberRe andt0 = 100. Each row corresponds to a
set of measurements. The fourth and fifth columns indicate the number of splitting eventsr and
total number of runsn.

L Re τ r n

350 2252 2735 21 221
2273 1801 99 699
2295 1062 415 1806
2333 663 144 417

790 2095 826518 17 19844
2173 33776 22 1037
2252 3817 39 221
2273 2080 451 1497
2295 1240 1302 2868
2333 673 282 417
2379 404 3600 4229

1664 2199 17702 76 854
2237 6633 54 243
2277 2238 182 344
2308 1274 123 167
2327 861 583 676
2351 642 922 990

2100 2045 9434617 4 18636
2107 852816 20 8298
2119 574935 25 6975
2170 48717 156 3711
2237 6721 66 243
2253 4777 61 169
2277 2357 206 344
2308 1216 139 167
2324 778 635 676
2351 548 972 990
2385 485 960 970

L Re τ r n

3380 2032 27338718 7 57823
2060 3715436 18 20073
2095 1042648 26 8074
2142 187364 31 1722
2185 49835 66 989
2201 25358 178 1397
2212 19142 160 966
2239 7525 366 986
2253 5896 2666 5950
2269 3728 1562 2557
2283 2830 4226 5928
2305 1654 1029 1165
2325 975 1825 1873

Obstacle

1700 2214 9719 8 50
2285 1691 32 50
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Table S 2: Tabular data for Fig. 5. (Lifetime)Characteristic decay timeτ from experiment (jet
perturbation) as a function of Reynolds numberRe andt0 = 0. Each row corresponds to a set of
measurements. The fourth and fifth columns indicate the number of decaying eventsr and total
number of runsn.

L Re τ r n

3380 2015 1014588 67 20052
2032 9262569 22 59773

Table S 3: Tabular data for Fig. 5. (DNS)Characteristic splitting timeτ from direct numerical
simulations as a function of Reynolds numberRe. The second and third columns indicate the
number of splitting eventsr and total number of runsn. The runs were terminated after registering
a splitting or after a truncation time oftmax. The earliest splitting time for a set of runs is indicated
ast1. Upper and lower confidence intervals±∆τ are given in columns 7 and 8, respectively are
are generated usingB = 105 bootstrap samples.

Re τ r n t1 tmax +∆τ −∆τ

DNS1 2275 1795 15 30 281 1500 1349 664
2300 1042 22 30 177 1500 550 344
2325 563 27 30 233 1500 247 184
2350 445 48 50 170 1500 133 109
2375 454 29 30 147 1500 153 116

DNS2 2250 5696 12 50 410 2000 6465 2269
2300 1923 29 60 194 1500 965 572
2350 484 42 45 130 1500 165 130
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