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1 Materials and Methods

Numerical Simulations

The numerical results presented here have been obtainadwot distinct methods. The
first (DNS1) is the spectral-element—Fourier cdgetex (1), which solves the Navier—Stokes
equations in Cartesian coordinatesy, z). 36 spectral elements are used to represent the circular
(y,z) cross-sections of a pipe. Elements are placed to mimic thielrdistribution of Chebyshev
collocation points, with fields approximated using a 12tthespolynomial expansion basis within
each element. Fourier modes are used in the periodic axedtdin at a density of 768 complex
modes (1536 collocation points) per ID( pipe length.

The second (DNS2) is the hybrid spectral finite-differenathad of @), which solves the
equations in cylindrical coordinategs,r,0). The numerical discretization consists of a non-
equispaced 9-point finite-difference stencilriand of Fourier modes i@ andz. Here 56 radial
points,£32 azimuthal Fourier modes anell024 axial Fourier modes (64 and 2048 collocation
points, respectively) have been usedlper 32D ~ 100D in pipe length.

Both methods use periodic boundary conditions in the stwaaendirection, fix the diameter
atD = 1, and impose constant volume flux (so thlat= 1), ensuring no variation iRe (which is
given by /v), during any run.

Initial conditions for ensemble runs where obtained frorapshots of simulation of puffs at
lower Re, similarly to the approach in puff lifetime studie®)( In the case of the spectral-element—
Fourier (DNS1) runs, all such initial conditions were geted from simulations a@Re = 2100
with snapshots taken every 2D/U). In the case of the hybrid spectral finite-difference (DNS2)
runs, all such initial conditions were generated from setiohs atRe = 2200 with snapshots
taken every 1QD/U).

Experiments: Pressure measurements

Pressure measurements are performed at two positions thermgpe. The first measurement is
made 5@ downstream of the perturbation in order to verify the getenaof a single puff by
the perturbation. The second one is located at variousndisth > 50D from the perturbation

in order to determine the subsequent turbulent fractioms&es measure the pressure difference
over P along the pipe. Pressure sensors are connected via tubessgupe taps in the pipe
wall as illustrated in Fig. S1. We used the low pressure geD8s3l5 from Validyne with the
diaphragm no. 14 (0.021 - 0.049 PSI). Special care was takegntove all airbubbles from the
tubes and sensor prior to measurements. Such air pockétsattar the signal and even reinduce
disturbances into the pipe under unsteady flow conditions.
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Figure S 1: Pressure difference measurement at a machined perspesoton(A) The connector
features three holes ofZD diameter and separated bl 3of which here two neighboring ones
are used for the pressure measurement. Air bubbles are eghfimm the sensor and the tubing
prior to usage. The precision glass tube to the left and aghtovered by insulating materials to
minimize temperature effects and light exposure (to avigdexgrowth).(B) The pressure signals
are then analyzed to detect the number of peaks (here onkednlay the blue diamond) and the
length of the turbulent region at 20% of the maximal prespe@k, indicated by the red line.

Puff speed
To convert between distances and times and to plot puffsimaang frames of reference,
We use the following approximation for the Reynolds numbegehdent puff speed:

Up = 1.482—2.416x 10 “Re (1)

This is shown graphically in Fig. S2.

Obtaining confidence intervals for DNS

As seen in table S3, each observed lifetime. .,t, obtained through DNS is censored by
imposing an upper bound on the simulation time so thdttmax. In (4) this is defined as type |
censoring, for which exact confidence intervals do not eatist must therefore be approximated
numerically. Given the small number of samples, the cetitrat theorem provides inaccurate
intervals, and so here we opt to use the techniqumatstrapping as seen in appendix D.2 of)(
The procedure for generating confidence intervals is asvist

1. Generate a pseudorandom santple, . .. ,t; by sampling from the set of lifetimes with
replacement.



2. Calculate the maximum likelihood estimafgrof this data as
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whererj is the number of uncensored lifetimes apd-t; = tmax.
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3. Repeat the previous two stepsimes to obtain bootstrap samples’, 75, ..., T3}

4. Sort this data so thdf, < 7 ;.

AssumingB = 10¢ wherek > 2, confidence intervals at level-la may then be read off as
[féa/z fé(l—a/Z)]'

Analysis of the experimental data

The analysis of each set of experimental measurementstteadplitting probabilityP(Re, L) =
r/n. HereL is the downstream distance from the perturbationraadhe number of runs that split-
ted out of a total oh (see Table 1). In the first stdpis converted into time by using the puff
speed approximation of equation (1). The mean tinma the splitting process with formation
timety = 100 is then caclulated as:

to—t

"~ log(1— P(Re 1)) @

The 95% confidential intervalB (shown in Figure 4 of the paper) are estimated by the Wilson

method b): 2
1.96n

(n+1.96%)
By insertingPqor into (2) confidence intervals far are obtained. Note that the final error bars
for T shown in Figure 5 of the paper include the uncertaintl ia [50,150.

Paror = P+ (P(1—P)+(1.96/(4m))*? 3)



2 Supporting Figures
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Figure S 2: Numerically computed puff speed (squares) using the hymdtral finite-difference

code. The puff speed is very well approximated by Eq. S1 dverange 200X Re < 2400
plotted as red dashed line. Circles are from experimen®)iar(d triangles from7).
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Figure S 3: Space-time diagram for a puff at the critical Reynolds nunitee= 2040. Streamwise
vorticity is plotted on a linear scale in a co-moving refaerframe (speed, = 0.9873J from
Eg. S1). There are fluctuations in the width and intensitydouthe whole the size and speed of
a puff at thisRe is constant, i.e. it is an 'equilibrium puff8). Based on the evidence presented
in the paper, the puff will eventually, with nearly equal pability, decay or split. However, the
characteristic time for this to occur is more tha’@@U, considerably longer than thex410°
D/U shown here.
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Figure S 4: Enlargement of Fig. 5 in the vicinity of the critical point.
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Figure S 5: Increase of the turbulent fraction from experimental measents defined as=
(S3380— Sputf)/Spuff- At eachRe the size of the turbulent region is measured at a distance of
L = 3380 from the perturbation by setting a threshold on thespressignal (see also Fig. S1
(B)). The measurement is subsequently repeated to detetimenaverage turbulent siz8s§sg).
Finally, the value is normalized with respect to the meae siza single puff §¢) measured

at thisRe using the same threshold. The dotted line connects measuotsio guide the eyes.
Below the critical pointRe; ~ 2040 the turbulent fraction decreases, as indicated bytinega
values ofl, whereas for supercritic®e it increases. The error bars in the vertical direction are
95% confidence intervals of the increase of the turbulemtifsa. Note, that they are hidden by
the symbol in most of the cases. The size of a single puff is BboutSy,f ~ 25D 4 10D.



3 Supporting Table

Table S 1: Tabular data for Fig. 5. (ExperimerDharacteristic splitting time& from experiment

(jet perturbation) as a function of Reynolds numBerandty = 100. Each row corresponds to a
set of measurements. The fourth and fifth columns indicaenttmber of splitting eventsand
total number of runs.

L Re T L Re T
350 2252 2735 21 221 3380 2032 27338718 7 57823
2273 1801 99 699 2060 3715436 18 20073
2205 1062 415 1806 2095 1042648 26 8074
2333 663 144 417 2142 187364 31 1722
790 2095 826518 17 19844 2185 49835 66 989
i7a 33776 2o 1037 2201 25358 178 1397
o5y 3817 38 991 2212 19142 160 966
2273 2080 451 1497 2239 7525 366 986
2205 1240 1302 2868 2253 5896 2666 5950
2333 673 282 417 2283 2830 4226 So6
2379 404 3000 4229 2305 1654 1029 1165
1664 2199 17702 76 854 2325 975 1825 1873
2237 6633 54 243
2277 2238 182 344 Obstacle
2308 1274 123 167 1700 2214 9719 8 50
2327 861 583 676 2285 1691 32 50
2351 642 922 990
2100 2045 9434617 4 18636
2107 852816 20 8298
2119 574935 25 6975
2170 48717 156 3711
2237 6721 66 243
2253 4777 61 169
2277 2357 206 344
2308 1216 139 167
2324 778 635 676
2351 548 972 990
2385 485 960 970




Table S 2: Tabular data for Fig. 5. (Lifetimeharacteristic decay time from experiment (jet
perturbation) as a function of Reynolds numBerandt, = 0. Each row corresponds to a set of
measurements. The fourth and fifth columns indicate the mumbdecaying eventsand total
number of runs.

L Re T F n

3380 2015 1014588 67 20052
2032 9262569 22 59773

Table S 3: Tabular data for Fig. 5. (DNSTharacteristic splitting time from direct numerical
simulations as a function of Reynolds numli@: The second and third columns indicate the
number of splitting eventsand total number of runs The runs were terminated after registering
a splitting or after a truncation time gfax. The earliest splitting time for a set of runs is indicated
ast;. Upper and lower confidence intervald\t are given in columns 7 and 8, respectively are
are generated usirgj= 10° bootstrap samples.

Re T ron t tmax +AT AT

DNS1 2275 1795 15 30 281 1500 1349 664
2300 1042 22 30 177 1500 550 344
2325 563 27 30 233 1500 247 184
2350 445 48 50 170 1500 133 109
2375 454 29 30 147 1500 153 116

DNS2 2250 5696 12 50 410 2000 6465 2269
2300 1923 29 60 194 1500 965 572
2350 484 42 45 130 1500 165 130
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