
Spiral MeanderingDwight BarkleyMathematics Institute, University of Warwick, Coventry CV4 7AL, EnglandMarch 20, 1998Abstract.The complex, so called meandering, dynamics of spiral waves in excitable media is examinedfrom the point of view of bifurcation theory. A computational bifurcation analysis is made ofspiral dynamics. It is shown that spiral meandering is organized in parameter space around acodimension-two point where a Hopf bifurcation from rotating waves interacts with symmetrieson the plane. A simple model of such a symmetric bifurcation then leads to a very simple picturefor the wealth of spiral behavior.Key words: Reaction-Di�usion, spiral waves, meandering1 IntroductionSoon after the �rst observation of rotating spiral waves in what is now known asthe Belousov-Zhabotinskii reaction [1, 2], Arthur Winfree noted in a footnote toa paper published in Science [3] that these spiral waves do not necessarily rotaterigidly about �xed centers. Winfree's careful examination revealed that the tips ofspiral waves could trace out complex patterns as they rotate. He coined the term\meandering" for such non-periodic spiral dynamics. During the decade after thisobservation, neither experiments nor numerical simulations gave a clear answer tothe question: \Do spiral waves in homogeneous, isotropic excitable media rotateperiodically?". (The interested reader can �nd a brief history of the early work inthis area on pages 181-183 of Ref. [4].) The issue is now resolved, both by highprecision experiments [5, 6, 7, 8, 9, 10] and by fully resolved numerical studies[7, 11, 12, 13, 14, 15, 17]. The answer is simply that, depending on parameters ofthe system, spiral waves in excitable media can execute either periodic rotationsor a fascinating variety of other deterministic dynamics. This chapter is a reviewof the current understanding of complexity of spiral dynamics from a bifurcation-theoretic view point.Before delving into the details of bifurcation theory, I wish to elaborate morefully on the phenomena to be addressed. Figure 1 illustrates some of the varietyof spiral states typically found in excitable media. These have been obtained fromnumerical simulations of a reaction-di�usion model discussed in the next section.Each state is represented by a segment of the path traced out by the spiral tip asit evolves in time. Figures 1(a) and (b) show periodic states; the spiral tips traceout circles as the waves rotate. (The de�nition of the spiral tip is given later in thechapter; it is not particularly important here.) Figures 1(c)-1(h) show a variety ofmeandering states; for these cases the tip paths are \
ower" patterns of the type�rst observed by Winfree.
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Fig. 1. Paths traced out by the tips of rotating spiral waves in a model excitable medium. Forsome values of the system control parameters, one �nds periodic states as seen in (a) and (b).For these, spiral waves of constant shape rotate uniformly and the paths traced out by the spiraltips are circles. For other values of the control parameters, the spiral waves meander and thetip paths are \
ower" patterns. Cases (c)-(h) show such tip paths after several (order 10) waverotations. For these cases the spiral shape varies with time and the spirals are not shown. The�gure is meant to illustrate qualitatively the variety of spiral states possible; the length scale isnot the same for all paths shown. The model and parameter values are given in Secs. 2 and 3.3,respectivelyIf one looks at how spiral states in the model system are organized as a func-tion of control parameters, one �nds a dynamics landscape, or \
ower garden"as shown in Fig. 2. In the nonlinear-dynamics literature, such a dynamics land-scape is referred to either as a phase diagram or as a bifurcation set [18]. For thepresent discussion, the meaning of the two control parameters is not important.The relevant point is that the parameter plane is composed of three main regionsseparated by well de�ne curves (bifurcation loci). There is a region in which spiralwaves do not exist, a region in which spiral waves rotate periodically, and a regionin which spiral waves meander. The meandering region can be further subdividedinto a region in which 
owers have inward-pointing petals and a region in which
owers have outward-pointing petals. Separating these two regions is a locus ofmeandering states whose petals lie along straight lines.Figures 1 and 2 capture the essence of spiral dynamics in almost all homoge-neous, isotropic two-dimensional excitable media. All the dynamics seen in these�gures are intrinsic dynamics of isolated spiral waves. Even though the resultsshown have been obtained from a particular model system, all the states shownare observed in a variety of laboratory experiments [6, 7, 8, 9, 10] and numericalsimulations [7, 11, 12, 13, 14, 15, 17]. Moreover, in every case in which a two-parameter survey has been conducted [10, 11, 15, 17], it has been found that spiralstates are organized in parameter space qualitatively as shown in Fig. 2.The aim of this chapter is to present the current understanding of the dynamicsseen in Figs. 1 and 2 within the context of symmetric bifurcation theory. It will
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Fig. 2. Phase diagram or \
ower garden" of spiral dynamics and a function of two controlparameters in a reaction-di�usion model presented in Sec. 2. Diagrams such as this are nowknown to be common for spiral waves in excitable media. There are three main parameterregions containing: no spiral waves, periodically rotating spirals, and meandering spiral waves.Spiral tip paths illustrate states at 6 points. Small portions of spiral waves are shown for the twoperiodic cases. The paths for the meandering states are not closed curves. The meander region isitself separated into regions whose 
owers have inward petals (left of dashed curve) and outwardpetals (right of dashed curve). On the dashed curve separating the two 
ower types, there are\in�nite" 
owers whose petals lie along straight lines. Two such states are shown. The diagramhas been obtained with two of the four model parameters �xed: � = 0:02 and Dv = 0.be shown, through a computational bifurcation analysis of reaction-di�usion equa-tions, that the the dynamics landscape in Fig. 2 is organized around a parameterpoint at which a Hopf bifurcation interacts with symmetries of the plane. Fromthis will follow a very simple description of the wealth of spiral behavior.2 Reaction-di�usion model of excitable mediaThe model which my colleagues and I have used over the past several years inour studies of spiral waves is simple, two-variable reaction-di�usion model of theFitzhugh-Nagumo type [13, 19]. It is a mathematical caricature of what is thoughtto take place in many real excitable systems. The model has the virtue of providingparticularly fast time-dependent numerical simulations of spiral waves in continu-ous media. I will discuss this model with a view to providing the reader with a gen-



4 Dwight Barkleyeral understanding of how excitability can arise in reaction-di�usion systems. Thereader can �nd lengthy discussions of excitable media in Refs. [4, 20, 21, 22, 23].Consider the general two-variable system of reaction-di�usion equations:@u@t = f(u; v) +r2u; (1)@v@t = g(u; v) +Dvr2v:where the variables u and v can be thought of as chemical concentrations in ahypothetical chemical reactions, or as membrane potential and current in a hypo-thetical physiological medium. The functions f(u; v) and g(u; v) model the localdynamics, e.g. chemical reaction kinetics, and the Laplacian terms account fordi�usion in space. The length scale is chosen such that the di�usion coe�cient forthe u-variable is unity. Dv is thus the ratio of di�usion coe�cients. The boundaryconditions are taken to be no-
ux, i.e. zero normal derivative, on the boundary ofsome domain of interest.Two-variable models of the general form (1) are very common in the study ofexcitable systems [15, 20, 21, 22, 23], the Fitzhugh-Nagumo model being the mostfamous example. Various models di�er principally in the choice of the reactionterms, i.e. the functions f and g. In addition, in many models the di�usioncoe�cient Dv is considered to be �xed, either with Dv = 0 (which is appropriatefor modeling physiological media) or Dv = 1 (which is appropriate for modelingmany chemical systems).The reaction terms considered here are given by:f(u; v) = 1� u(1� u) [u� uth(v)] ; (2)g(u; v) = u� v;with, uth(v) = (v + b)a ;where a; b; and � are parameters, with � � 1. Due to the smallness of �, thedynamics of the u-variable (referred to as the excitation variable) is typically muchfaster than the dynamics of the v-variable (referred to as the recovery variable).To understand how excitability arises in this model, it is useful to consider thebehavior of the system in the absence of di�usion, i.e. to consider the dynamicsof the system: _u = f(u; v); _v = g(u; v): (3)
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Fig. 3. Phase plane for the local dynamics of the model. The axes are the variables u andv. Shown are the system nullclines: the v-nullcline, g(u; v) = 0, is the line v = u, and theu-nullcline, f(u; v) = 0, has a backward \N" shape consisting of three lines: u = 0; u = 1, andu = uth(v) = (v + b)=a. An excitable �xed point sits at the origin where the u and v nullclinesintersect. uth is the excitability threshold for the �xed point. Schematic trajectories for twoinitial conditions are shown. The initial condition to the left of the threshold decays directly tothe �xed point. The initial condition to the right of the threshold undergoes a large excursionbefore returning to the �xed point.Figure 3 illustrates the phase-plane dynamics for Eqs. 3. Shown for referenceare the nullclines de�ned by the curves f(u; v) = 0 and g(u; v) = 0. On thesecurves _u = 0 and _v = 0, respectively. The v-nullcline is a straight line and theu-nullcline has a backward \N" shape. The middle branch u = uth has slope aand intercept �b. The system has a �xed point at the origin where the nullclinesintersect (since there both _u = 0 and _v = 0). For a > 0 and b > 0 this �xed pointis linearly stable, and hence all initial conditions su�ciently close to the �xed pointdecay directly to it.The origin is nevertheless excitable. By this, one means that there exists athreshold such that initial conditions farther than the threshold from the �xedpoint do not evolve directly to it, but instead undergo a large excursion prior toreaching the �xed point. The threshold here is given by the middle branch of theu-nullcline: u = uth(v). Initial conditions to the right of this threshold evolvequickly [due to the smallness of � in Eqs. (2)] to the right branch of the u-nullcline,and hence initially move away from the �xed point. Eventually the trajectorybrings the system back to the origin as shown. Thus all initial conditions evolve tothe stable �xed point, but there is a dichotomy of behavior depending on whetherthe initial condition is to the right or left of the threshold.



6 Dwight BarkleyThe following terminology is used to describe the various possible states of thesystem. If the system is close to the �xed point, then it is said to be quiescent; ifit is near the right branch of the u-nullcline, then it is said to be excited. If thesystem is near the left branch of the u-nullcline (i.e. u � 0) but v is not near zero,then the system is said to be recovering. Phase-space points in the recovering stateare much further from the threshold than the points in the quiescent state.The u-nullcline shown in Fig. 3 is not entirely correct because the three branchesof f(u; v) = 0 actually extend past the corners of the backwards \N" where theu = uth branch meets the branches u = 0 and u = 1. The corners in the u-nullclines are not found in other models of excitability and they are are somewhatproblematic from the point of view of the local dynamics in this model. For spiralwaves in a spatially extended medium, however, phase-space points never get closeto the corners. The reason for having a u-nullcline with this particular shape isthat it permits the equations to be simulated by a fast numerical scheme discussedmomentarily.Consider now the full reaction-di�usion system (1) describing a spatially ex-tended medium. The combination of the local excitable dynamics illustrated inFig. 3, and the di�usive coupling of nearby points in space is su�cient, in mostcases, to permit waves of excitation to propagate in the extended system. Thereason is as follows: if some spatial points in the medium are excited (i.e. near theright branch of the u-nullcline) while nearby points are quiescent, di�usion acts to\pull" the quiescent points the small distance in phase space needed to cross thethreshold for excitation. Once across the threshold, the local kinetics take overand these points quickly become excited as well. In this way regions of excitationcan spread through the extended medium. However, the local kinetics are suchthat excited points eventually return to the quiescent state. Thus no portion ofthe medium stays excited inde�nitely and this allows the possibility of recurrentexcitations, as occurs for example, with rotating spiral waves.Most of what has been said until now applies equally to all two-variable modelsof the form given by Eqs. (1). The advantage of the model with the particu-lar choice of reaction terms in Eqs. (2), is that this choice allows the model tobe simulated e�ciently over a large range of spatio-temporal scales. High-speed,coarse-grained simulations can be used to gain insight and explore parameter spaceat small computational expense, while high-resolution simulations can be used toassess the validity of low-resolution results. This is explained in detail in Ref.where a complete algorithm for time-stepping the equations is given.The algorithm is based on the fact that the branches of the u-nullcline have avery simple form and it is possible to write a numerical scheme which time-stepsthe local u-dynamics implicitly. In the limit of timesteps large in comparison with



SPIRAL MEANDERING 71=�, the algorithm for the local u-dynamics reduces to the following:un+1 = 8<: 0 if un < uthuth if un = uth1 if un > uthwhere un and un+1 are the values of u at timesteps n and n+1, respectively. Thusin the limit of large timesteps (or equivalently the limit of small � for �xed timestep), u takes on just two values: 0 and 1. Hence the model gives rise naturally tocellular-automaton-type scheme for the fast dynamics. However, unlike cellular-automaton models of excitable media [24, 25, 26, 27], the model given by Eqs. (1)and (2) is a partial-di�erential equation and hence continuous in space and time.Moreover, it can be investigated by means other than time stepping, as I nowdiscuss. 3 Bifurcation approachWithout a bifurcation analysis, it is nearly impossible to obtain a comprehensiveunderstanding of any complicated nonlinear system and excitable media are noexception. While time-dependent simulations can tell us much about the behaviorof a reaction-di�usion model, to understand fully the spiral dynamics illustrated inFigs. 1 and 2, one must attack the problem with additional, more e�cient, meth-ods. In this section I outline the bifurcation methods used to investigate spiralwaves. Without going fully into the numerical details, I shall explain how onecomputes periodic spirals as steady states and how one computes the stability ofthese spirals by �nding the leading eigenvalues and eigenvectors of the associatedstability problem. Time-dependent simulations are necessary for studying the me-andering states which bifurcate from periodic solutions and I shall provide furtherdetails concerning these simulations. The reader can �nd a general discussion ofnumerical bifurcation methods in Refs. [28, 29] and details of the solutions of largesparse systems in Refs. [30, 31, 32, 33, 34].3.1 Steady statesConsider a periodically rotating spiral wave. Such a wave rotates as a rigid bodyand is seen as a steady state when viewed in a reference frame rotating at the angu-lar frequency of the spiral. Figure 4 shows such a state. One can obtain a steadystate equation for such periodic spiral waves by making a change of coordinates inEqs. (1) to a system rotating at the spiral frequency !1, and demanding that thetime derivatives in the rotating frame be zero:0 = @u@t0 = f(u; v) + !1 @u@�0 +r02u;0 = @v@t0 = g(u; v) + !1 @v@�0 +Dvr02v:
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Fig. 4. Periodically rotating spiral wave computed via Newton's method. In the \laboratory"frame the wave rotates clockwise at constant speed and in a frame rotating with the angularfrequency of the spiral it is a steady state. Due to rotational symmetry, the angular orientation ofthe spiral is arbitrary. Contours of the fast variable, u (equally spaced from u = 0:1 to u = 0:9),show the sharp transitions between the two branches, u = 0 and u = 1 of the u-nullcline. Contoursof v are not shown. The model parameters are: a = 0:643, b = 0:001, � = 0:02, and Dv = 0; thedomain has radius R = 18.where primes indicate the rotating coordinate system. These equations can bewritten compactly as: 0 = F(u; !1); (4)where F(u; !1) � Dr02u+ !1@�0u+ f(u); (5)with u = (u; v)T , D = diag(1;Dv), and f(u) = (f(u; v); g(u; v))T . The boundaryconditions on the operators are taken to be @ru = 0 on a circle of radius R.Technically, Eq. (4) is a nonlinear eigenvalue problem, because in addition todetermining the �elds u and v, it determines the rotational frequency (nonlineareigenvalue) !1. This is consistent with the fact that, due to rotational symmetry,solutions of (4) are determined only up to an arbitrary orientation in angle. Onecan eliminate the phase freedom in Eq. (4) by augmenting this equation with anadditional constraint which pins the phase of the spiral. For example, demandingthat u = 1=2 at some point will generally su�ce. This extra constraint allows !1to be treated as an additional unknown, thereby permitting the pair (u; !1) to becomputed in concert [28].Equation (4) is solved numerically by representing all �elds on a polar grid andsolving the resulting discretized system by Newton's method. The only di�cultywith this approach is that Newton's method requires solving large (albeit sparse)systems of linear equations. There are, however, good numerical methods forsolving such systems; the method used goes by the acronym GMRES [30, 34].



SPIRAL MEANDERING 9The resolution which has been used in the computations reported here is Nr =121 radial and N� = 256 azimuthal grid points. The u-�eld is fully resolved. Alloperators are evaluated spectrally in the �-direction and using fourth-order �nitedi�erences in the r-direction (except at r = R where second-order is used). Newtoniterations are stopped when jjF(u; !1)jj < 10�2; which is more than 100 timessmaller than can reasonably be obtained by time-stepping Eqs. (1). The normrefers to the L2 norm of the 2 �Nr �N� discrete �eld values. Newton iterationsare started from a solution obtained by direct simulation of Eqs. (1). Continuationcan then be used to obtain rotating-wave solutions at other parameter values,including parameters at which these solutions are unstable.3.2 StabilityAfter obtaining rotating wave solutions, the next step of a bifurcation analysis con-sists of determining the stability of the solutions by �nding the leading eigenvalues(those with largest real part) and eigenvectors of the associated linear stabilityproblem: A(u; !1) � ~u = � ~u (6)where � and ~u are the eigenvalues and eigenmodes of the operatorA(u; !1) de�nedby: A(u; !1) �Dr02 + !1@�0 + df(u): (7)The operator A(u; !1) is the linearization, i.e. Jacobian, of F(u; !1) in Eq. (4)about the steady-state (rotating-wave) solution u.The leading eigenvalues of A(u; !1) determine the stability of a periodic spiralwave: if none of the eigenvalues, �, of A(u; !1) have positive real part, then thewave is stable. If at least one eigenvalue of A(u; !1) has positive real part, thenthe wave is unstable. Of particular interest will be bifurcations, signaled by thecrossing of eigenvalues from the left to the right half of the complex plane. Alsoof importance are eigenvalue and eigenmodes associated with symmetries. Theseare discussed in Sec. 4.3.The leading eigenvalues and corresponding eigenmodes in Eq. (6) are obtainedby direct application of the methods in Ref. [31]. This is essentially the powermethod. The same polar grid used for the steady state computations is used forsolving the eigenvalue problem. For the results reported, the �ve leading eigenval-ues have been obtained to within the accuracy: jjA(u; !1) � ~u� � ~ujj < 10�4.3.3 SimulationsMeandering states cannot presently be computed by solving a �xed-point prob-lem; for these it is necessary to resort to direct time-dependent simulations ofthe reaction-di�usion equations (1). A uniform square grid is used with no-
uxboundary conditions imposed on the sides of a square domain. For all simulationsreported, the domains are su�ciently large that the 4-fold symmetry of the do-main boundary is entirely irrelevant, and the spiral dynamics are indistinguishable



10 Dwight Barkleyfrom those in a rotationally symmetric system. The size of the domain used insimulations varies depending on the size of the 
ower pattern generated by the me-andering spiral wave. For the in�nite 
owers shown in Fig. 2 (those whose petalslie along straight lines), no computational domain is large enough to contain thespiral tip inde�nitely. For these cases, simulations are done in a box large enoughto allow the spiral waves to travel signi�cant distances before reaching the edge ofthe domain.All the simulations reported in this chapter are fully resolved. A �rst-orderEuler method is used for time-stepping the equations. The Laplacian terms inthe reaction-di�usion equations are approximated with a 9-point �nite-di�erenceformula, which to leading order, eliminates the underlying 4-fold symmetry ofsquare grid [13]. (For spiral waves in excitable media, anisotropies in the grid havea far greater e�ect on solutions than do anisotropies in the boundaries.)For reference, the grid spacing for most results is h = 0:1 with a time step of4t = h2=5. The parameter values for the states shown in Fig. 1 are: (a) a = 0:80,� = 0:02, (b) a = 0:52, � = 0:02, (c) a = 0:57, � = 0:02, (d) a = 0:58, � = 0:02,(e) a = 0:39, � = 0:01, (f) a = 0:42, � = 0:01, (g) a = 0:692, � = 0:02, and (h)a = 0:72, � = 0:02, with b = 0:05 and Dv = 0 throughout.4 SpiralogyI return now to the spiral 
ower garden presented at the outset. After providingsome needed kinematical preliminaries, I will report the results of a bifurcationanalysis of these spiral dynamics.4.1 Kinematical preliminariesFigure 5 shows a sequence of spiral states obtained as a function of the parametera in the reaction-di�usion equations (1) and (2) with the parameters b, �, and Dv�xed: b = 0:05, � = 0:02 and Dv = 0. This sequence of states corresponds to ahorizontal cut through the phase diagram in Fig. 2 at b = 0:05. Figure 6 shows, inmore detail, states along this parameter cut near the transition between periodicand meandering spirals at \large" a.Each state in Fig. 5 is represented, as before, by a plot of the path traced bythe spiral tip over several (order 10) wave rotations. The spiral tip is here de�nedto be the point in space where f(u = 1=2; v) = 0, i.e. the point where f = 0 on theu = 1=2 contour of the spiral solution. This tip de�nition has been chosen becauseit can be computed easily and accurately from solutions �elds. For the purposeshere the tip location is simply a convenient projection of the instantaneous stateof the system onto the two-dimensional plane.4.1.1 Rotating wavesThe periodically rotating spiral waves are examples of a more general class of dy-namical states known as rotating waves (RW). These are, by de�nition, uniformly-
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Fig. 5. Spiral states in the reaction-di�usion model as a function of the control parameter awith the other parameters �xed: b = 0:05, � = 0:02, and Dv = 0. This diagram corresponds toa one-parameter cut through the phase diagram in Fig. 2. As before, states are represented bytip-path plots. The length scale is the same for all plots. Several of the states shown also appearin Figs. 1 and 2.

Fig. 6. Tip-path plots for rotating wave (RW) and modulated rotating wave (MRW) statesin both the laboratory frame and in the rotating frame. The MRW states are quasiperiodic inthe laboratory frame and periodic in the rotating frame. The rotating wave is periodic in thelaboratory frame and steady in the rotating frame. The parameter values are the same as inFig. 5 with (from left to right): a = 0:72, a = 0:755, a = 0:746, and a = 0:80.rotating periodic states occurring in rotationally symmetric systems [13, 35, 36, 38].Figure 6 shows the tip path of a RW state both in what I shall call the \laboratory"reference frame [the frame of reference of reaction-di�usion equations (1)], and therotating reference frame (the frame of reference rotating at the spiral frequency!1). In the laboratory frame, the tip path is a circle whose radius will be denotedr1. When view in the rotating frame, RW solutions are steady states and the tippath is therefore a �xed point. The RW solutions are actually computed in the



12 Dwight Barkleyrotating frame, as described in Sec. 3.1.4.1.2 Modulated rotating wavesThe meandering states shown in Figs. 5 and 6 (except for the \in�nite" 
ower ata = 0:624 in Fig. 5), are examples of a general class of dynamical states known asmodulated rotating waves (MRW). These occur in rotationally symmetric systemsand are two-frequency quasiperiodic states which are periodic when viewed in anappropriately rotating reference frame [13, 36, 38]. Fig. 6 shows three MRW statesin the laboratory and rotating reference frames. In the laboratory frame the MRWstates are quasiperiodic; the tip paths are not generically close orbits and aftermany wave rotations the tip paths �ll out an annular region. In the rotatingframe, the tip paths are closed periodic orbits. These closed orbits are close to,but not exactly, circular [13].A convenient measure of the amplitude of the MRW states is the amplitude ofthe secondary motion of the spiral tip. Speci�cally, let r2 be de�ned as the \radius"of tip orbit in the rotating frame, with the convention that r2 be positive for statesoutward petals and negative for states with inward petals. Because tip orbits inthe rotating frame are not truly circular, \radius" here means 1/2 the maximumdistance between any pair of points on the tip orbit in the rotating frame.The primary rotational frequency, !1, for a MRW state is de�ned to be therotational frequency of the reference frame that renders the state periodic. Thisde�nition is the natural extension of the de�nition used for RW solutions. Withthis de�nition, !1 varies continuously in going from the RW to the MRW states.The secondary frequency is de�ned as: !2 � 2�=� , where � is the period of theorbit in the rotating frame. That is, !2 is the frequency seen in the rotating frameof reference. The MRW states with outward petals are such that !2 > !1, whereasthe states with inward petals are such that !2 < !1. This will prove signi�cant inwhat follows.4.1.3 Modulated traveling wavesThe \in�nite" 
ower in Fig. 5 that separates the MRW states with inward andoutward petals is an example from a class of states known as modulated travelingwaves (MTW). These are states which are periodic in a uniformly translatingreference frame. Strictly speaking, they occur only in spatially in�nite or spatiallyperiodic systems [38]. However, these states behave indistinguishably from thosewhich would be found in in�nite medium, so long a the spiral center is far fromany boundary. The MTW solutions can travel in any direction; the direction beingdetermined by initial conditions.4.2 Analysis in one parameterWith these de�nitions at hand, I turn to the quantitative analysis of spiral dy-namics in the reaction-di�usion model, starting with the dynamics as a functionof the parameter a, the other parameters being �xed as in the one-parameter cut



SPIRAL MEANDERING 13shown in Figs. 5 and 6: b = 0:05, � = 0:02 and Dv = 0.Consider �rst the RW solutions as a function of a. In Fig. 5 stable RW statesare seen both at \low" and \high" values of a. These states are, in fact, on a singlebranch of solutions which is unstable at intermediate values of a, (where the stablemodulated waves are observed). This branch of RW solutions, together with itsstability, has been computed as described in Secs. 3.1 and 3.2. The results areshown in Fig. 7.Figure 7(a) shows three states on the RW branch. The states at the two endsare the same two stable solutions shown in Figs. 1, 2, and 5. The middle solutionlies on the unstable portion of the RW branch.Figures 7(b) and 7(c) show the behavior of eigenvalues along the RW branch.There is a complex conjugate pair of eigenvalues which, as the parameter a isincreased, �rst cross the imaginary axis transversely into the right half plane andthen cross transversely back into the left half plane. Hence, the stability limits ofthe RW branch are marked by a pair of Hopf bifurcations. Such Hopf bifurcationsfrom rotating-wave solutions are sometimes called secondary Hopf bifurcations, butI shall not use this terminology. Note that not only are the RW states at \low"and \high" on a single branch of solutions, but also there is a single complex pairof eigenvalues responsible for the Hopf bifurcations at both end of the branch.These Hopf bifurcations from the RW solutions introduce a second frequencyinto the spiral dynamics and give rise to the quasiperiodic MRW solutions. Figure8 shows the bifurcation diagram for MRW states. The (dimensionless) radius ratior2=r1 is plotted as a function of the bifurcation parameter a. Also indicated witha horizontal line are the RW states (for which r2 = 0). The line is dashed betweenthe Hopf points to indicate unstable RW states.The MRW states are stable, and in the vicinity of the Hopf bifurcation points,the radius ratio grows as the square root of the distance from the bifurcations.Hence, the Hopf bifurcations are supercritical. Figure 6 shows several states nearthe upper-a Hopf bifurcation, both in the laboratory and rotating reference frames.Away from the Hopf bifurcations, the radius ratio ceases to obeys the square-root scaling and the secondary radius diverges as the value of a approaches thatwhere the MTW (modulated traveling wave) state is found. It is too expensivecomputationally to simulate states with very large radius ratio, and so there is agap in the bifurcation diagram over the range of a where jr2=r1j > 10.The following characterizes the frequency behavior (not shown) for the MRWstates. Both !1 and !2 vary continuously with the parameter a. There is noentrainment (frequency locking) between the two frequencies of MRW states, thatis, there are no parameter intervals (steps) over which the frequency ratio is aconstant rational number. This is a general feature of MRW solutions �rst provedby Rand [36].Finally, at the Hopf bifurcation points, the secondary frequency, !2, equals theimaginary part of the bifurcating eigenvalue, and the primary frequency, !1, equalsthe rotational frequency (also called !1) of the bifurcating RW state. The MRW
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Fig. 7. Stability results for the branch of rotating wave solutions along the one-parameter cutshown in Fig. 5. (a) three states on the RW branch; the end two are the stable states seen inFig. 5, and the middle is an unstable state. The values of a are (from left to right): a = 0:52,a = 0:62, and a = 0:80. In addition to the tip paths, the u = 1=2 contours of the u-�eld areshown near the spiral tip. (b) Real part of the bifurcating eigenvalues along the RW branch.Positive values correspond to unstable spiral states. (c) Bifurcating eigenvalues in the complexplane; arrows indicate the direction of increasing a. A complex pair of eigenvalues crosses theimaginary axis into the right half plane and then back into the left half plane. Both crossings aretransverse and correspond to Hopf bifurcations.

Fig. 8. Bifurcation diagram for the one-parameter cut shown in Fig. 5. The radius ratio, r2=r1,for MRW states is plotted as a function of the parameter a. Also shown, as a horizontal line, isthe branch of RW states (for which r2 = 0); solid indicates stable RW states and dashed indicatesunstable RW states. The hollow squares denote Hopf bifurcation points. Both Hopf bifurcationsare supercritical and near the bifurcations the radius ratio scales as the square-root of the distancefrom the bifurcation points. The radius ratio diverges as a approaches the value where exists amodulated traveling wave state.



SPIRAL MEANDERING 15states which bifurcate at "low" a have inward petals and satisfy !2=!1 < 1, whereasthe states with outward petals which bifurcate at "high" a satisfy: !2=!1 > 1. Thefrequency ratio goes to 1, as a approaches the point where the MTW state is found.4.3 The organizing centerConsider once again the two-parameter phase diagram in Fig. 2. In the precedingsection the dynamics along a particular one-parameter cut through this diagramwas considered in some detail. There are many other one-parameter paths whichwould yield, qualitatively, the same dynamics. In particular, all cuts at constantb, that pass through the region of meandering spirals, are essentially equivalent.Near the apex of the meander region, however, where the locus of modulatedtraveling waves ("in�nite 
owers") meets the meander boundary, all the 
owerstates observed along one-parameter cuts coalesce. This point is the organizingcenter for the phase diagram in Fig. 2: arbitrarily close to this codimension-twopoint there are stable rotating waves, modulated rotating waves with 
owers ofboth types, and modulated traveling waves. This point is thus the key to under-standing the variety of spiral behavior. In this section a bifurcation analysis ofRW solutions is used to investigate the nature of the organizing center.It is clear from the preceding section that the boundary of the meander regionis simply a locus of Hopf bifurcations from RW states. In fact, the meanderboundary plotted in Fig. 2 has been obtained by computing the locus of suchHopf bifurcations. Hence, all along the meander boundary the RW states have acomplex-conjugate pair of eigenvalues on the imaginary axis. These eigenvalues,associated with Hopf bifurcations, are shown as squares in Fig. 9. The eigenvaluesare denoted �i!2, because the imaginary part of the bifurcating eigenvalues areequal to the secondary frequencies at the bifurcations (Sec. 4.2). These eigenvaluesare on the imaginary axis only at the Hopf bifurcations; generically they cross theaxis transversely as a function of the parameters a and b.As can be seen in Fig. 9, there are eigenvalues (indicated with crosses) onthe imaginary axis other than just those associated with the Hopf bifurcations.These eigenvalues result from symmetries of the system and are always on theimaginary axis. To understand the codimension-two point, one must understandthese eigenvalues.Consider �rst the eigenvalues at zero in Fig. 9. These eigenvalues are associatedwith rotational symmetry: because any rotation of a RW state is also a RW state,these states must always have a zero eigenvalue. The corresponding eigenmode isgiven by: ~uR = @�u, where ~uR is the eigenmode, u is the RW state, and � is thepolar angle. It can be veri�ed by direct substitution into Eq. (6) that this is aneigenmode with zero eigenvalue.The complex symmetry eigenvalues seen in Fig. 9 are associated with trans-lational symmetry. While the computational domain used to compute the RWsolutions is not translationally invariant, the computations �nd eigenvalues andeigenmodes which are virtually indistinguishable from those resulting from trans-
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Fig. 9. Eigenvalues along the Hopf locus forming the boundary of the meander region. Schematiceigenvalue spectra are shown at three points on the Hopf locus. Squares denote Hopf eigenvaluesand crosses denote symmetry eigenvalues. The spectra on the right and left branches of theHopf locus di�er, qualitatively, only in the ordering of eigenvalues on the imaginary axis. Atthe codimension-two point !1 = !2, and the stability operator has eigenvalues �i!1 each withmultiplicity two, plus a zero eigenvalue. This point is the organizing center for spiral dynamics.Note that the locus of modulated traveling waves emanates from this point.lational symmetry. It can be veri�ed [16] by direct substitution into the eigen-value equation (6), that in an in�nite, homogeneous system, a spiral rotating atfrequency !1 has translational eigenmodes of the form ~uT = @xu � i@yu, witheigenvalues �T = �i!1. The eigenvalues obtained numerically are indistinguish-able from �i!1. In particular, extrapolation from domains with small radii showsthat at radius R = 18 (as in Fig. 4), jRe(�T )j < 10�45. Hence, these eigenvaluescan be considered to lie on the imaginary axis.Everywhere on the Hopf locus in Fig. 9, except at the codimension-two point,the �ve eigenvalues on the imaginary axis are distinct. Apart from the ordering ofeigenvalues, there are no qualitative di�erences between the spectra on the rightbranch, !1 < !2, and left branch, !1 > !2, of the Hopf locus.At the codimension-two point !1 = !2, and there is a resonance between theprimary and secondary frequencies of the spiral wave. This is consistent with thefact that the locus of modulated traveling waves (for which !1 = !2), emanatesfrom this point on the Hopf locus. At the codimension-two point, the Hopf andtranslational eigenmodes of the RW states coincide and the stability operator haseigenvalues �i!1 each with multiplicity two, plus a zero eigenvalue. This speci�escompletely the codimension-two bifurcation to linear order.To gain a deeper understanding of the organizing center, one needs to under-



SPIRAL MEANDERING 17stand the codimension-two bifurcation to higher order. For this one turns to aweakly non-linear analysis, which is the subject of the next section.5 Towards a normal form for spiral dynamicsGiven the evidence in the preceding section that the meandering dynamics ofspiral waves are organized around a particular codimension-two bifurcation, onewould hope that bifurcation theory could be applied to the problem and providea \normal form" for spiral dynamics. In other words, one would hope that bymaking an appropriate expansion about the organizing center, one could reducethe in�nite-dimensional reaction-di�usion problem to a low-dimensional systemdescribed by a few ordinary di�erential equations, that is, amplitude or normal-form equations [18, 38]. The resulting equations could then be analyzed to ob-tain a complete description of spiral meandering dynamics in the vicinity of thecodimension-two point.There is a problem, however, which makes this approach both di�cult and in-teresting. The particular codimension-two bifurcation found for the spiral wavesresults from the interaction of Hopf and translational eigenmodes of a rotatingwave, and existing bifurcation theory cannot be applied to such a case. The rea-son is that a theory has not been developed for noncompact symmetries such astranslations. While translational symmetries are treated in many systems, this isdone by requiring solutions to be spatially periodic and spiral waves are not (glob-ally) periodic in space. Hence, it turns out that the codimension-two bifurcationat the heart of spiral meandering is of a fundamentally new type from the pointof view of nonlinear dynamical systems.While a rigorous derivation of a normal form will have to await advances insymmetric bifurcation theory, I will nevertheless proceed by proposing a low-dimensional model which contains the same codimension-two bifurcation as wasobserved in the reaction-di�usion equations, and I will show that this model con-tains the essence of spiral meandering.5.1 Model equationsThe model considered is the simplest system of ODEs which (i) has the symmetriesimportant for the spiral dynamics (rotations, re
ections, and translations), andwhich (ii) has a supercritical Hopf bifurcation from a rotating wave solution. Themodel equations are: _p = v;_v = v � hf(jvj2; w2) + iw � h(jvj2; w2)i ; (8)_w = w � g(jvj2; w2);where p and v are complex, and w is real. The real-valued functions f , g, andh are speci�ed below. [Throughout this section, f and g will denote the above



18 Dwight Barkleyfunctions in the ODE model equations and not the kinetics functions in Eqs. (2).There should be no confusion.] The model is of real dimension �ve because thecodimension-two point being modeled has a �ve-dimensional center eigenspace. Asthe notation suggests, p is thought of as the position of the spiral tip and v itslinear velocity. The instantaneous rotational frequency of solutions is proportionalto w.For any choice of f , g, and h, Eqs. (8) are invariant under the following trans-formations: R
 �0@ pvw 1A = 0@ ei
pei
vw 1A ; � �0@ pvw 1A = 0@ p�v��w 1A ;T�� �0@ pvw 1A = 0@ p+ �+ i�vw 1A ;where � denotes complex conjugation. R
 is rotation by angle 
, � is re
ection,and T�� is translation by �+ i�.By letting the \position" be written p = x + iy and the \velocity" be writtenv = sei�, with \speed" s � 0, Eqs. (8) can be written in the alternative form:_x = s cos�; _y = s sin�; _� = w � h(s2; w2); (9)_s = s � f(s2; w2); _w = w � g(s2; w2):The simplest low-order expansions for f , g, and h su�cient to give the desiredcodimension-two bifurcation, and which yield bounded trajectories for the model,are: f(s2; w2) = �1=4 + �1s2 + �2w2 � s4;g(s2; w2) = s2 � w2 � 1; (10)h(s2; w2) = 
0:Equations (8) and (10), or equivalently Eqs. (9) and (10), are then the proposedODE model for spiral dynamics.5.2 ODE model dynamicsFigure 10 shows a phase diagram for the ODE model as a function of the twoparameters �1 and �2 with �xed 
0. The diagram is plotted so as to emphasize itssimilarity to the spiral 
ower garden in Fig. 2. In the ODE model there exists acodimension-two point whose vicinity contains rotating waves, modulated rotatingwaves of both types (inward and outward petals), and modulated traveling waves.There is also a region in parameter space in which there are no such rotatingsolutions.
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Fig. 10. Phase diagram for the ODE model with 
0 = 5:6. There are three main regions: a regionin which there are no rotating or modulated rotating solutions (hatched but not labeled), a regionof stable periodic rotating-wave solutions, and a region of modulated-rotating-wave solutions.Shown are \tip-path" plots (x; y) at several parameter values. The periodic states are centeredon the corresponding parameter points. The modulated rotating waves are of two types: thosewith inward petals and those with outward petals. Separating the two is a locus (dashed curve)of modulated traveling waves.Figure 11 shows \tip-path" plots, (x; y), from the ODE model for several choicesof �1, �2, and 
0. Figs. 11(a)- 11(d) are examples which bear a striking resemblanceto spiral tip paths in excitable media (cf. Fig. 1) and Refs. By choosing the threeparameters appropriately, it is possible to reproduce essentially all types of spiraltip paths reported in the literature on homogeneous excitable media [7, 8, 9, 10, 11,13, 15, 19]). It is also possible, however, to generate plots that do not correspondto any known spiral paths. Figures 11(e) and 11(f) show two such cases. These arecases for which the primary rotation frequency is large compared to the secondaryrotation frequency. The choice of 
0 is very important in determining the (x; y)
ower patterns as well as the location of the MTW locus (dashed curve) in thephase diagram in Fig. 10. The remainder of this section is devoted to details ofthe ODE system.5.3 Analysis of the modelThe analysis of the ODE model begins by noting that the (s; w) subsystem inEqs. (9) decouples from the other three equations and that �(t), x(t), and y(t) canbe found by quadrature once the last two equations are solved. Thus for much ofthe analysis to follow, one need only consider the dynamics of the (s; w) subsystem.For this it is useful to de�ne variables � and � by: � = s2 and � = w2. This yieldsthe two-variable system: _� = 2�f(�; �) _� = 2�g(�; �): (11)
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Fig. 11. Flowers obtain from the ODE model. Shown are plots of (x; y) for several choice ofmodel parameter values. (a)-(d) are plots which resemble tip-path plots for spiral waves. (e) and(f) are plots which do not resemble known tip-path plots. The parameter values for the statesshown are: (a) �1 = 3:33, �2 = �6:75, 
0 = 5:3, (b) �1 = 3:33, �2 = �6:75, 
0 = 4:1, (c)�1 = 6:95, �2 = �5:8, 
0 = 3:6, (d) �1 = 6:95, �2 = �5:8, 
0 = 3:1, (e) �1 = 6:95, �2 = �5:8,
0 = 5:6, (f) �1 = 5:0, �2 = �5:5, 
0 = 8:0,with, f(�; �) = �14 + �1� + �2� � �2 g(�; �) = � � � � 1: (12)I shall refer to these equations as the reduced system, and to Eqs. (8), or equiva-lently Eqs. (9), as the full system. Note that because s � 0, s = p�, but there isno sign restriction on w so w = �p�. The positive and negative values of w arerelated by re
ectional symmetry �.5.3.1 Trivial steady stateThe state � = � = 0 is a steady state of Eqs. (11) for all parameter values, andby the choice of the constant terms in expansions for f and g, it is linearly stablefor all values of �1 and �2. For the full system (8) this state corresponds to:v = w = 0, p = p0 = constant. The trivial steady state coexists with the rotatingwave and modulated wave solutions discussed next. Hence the it plays much the



SPIRAL MEANDERING 21same role in the ODE model as the homogeneous steady state plays in excitablemedia. That is, in the reaction-di�usion model, the homogeneous state (u = v = 0everywhere in space), exists and is linearly stable for all parameter values in thephase diagram (Fig. 2). The trivial steady state in the ODE model has the samecharacter.5.3.2 Rotating wavesRotating waves in the full system (9) correspond to steady states in the reducedsystem with positive � and �. Letting �1 and �1 be positive roots of the steadystate equations, f(�1; �1) = 0 and g(�1; �1) = 0, we have:�21 � (�1 + �2)�1 + �2 + 14 = 0: (13)�1 = �1 � 1:Only the larger root of Eq. (13) gives a state with positive �1 and �1.To see that steady states of the reduced system correspond to rotating waves inthe full system, �rst note that by the de�nition of �, w = �p�1. The equation for_� in Eqs. (9) then becomes: _� = �
0p�1 � !1, where !1 is the constant rotationfrequency. This can be integrated to give �(t) = !1t+ �0, where �0 is a constantof integration. With this, the equations for _x and _y in Eqs. (9) can be integratedto obtain: x(t) = x0 +R sin(!1t+ �0) y(t) = y0 �R cos(!1t+ �0) (14)where x0 and y0 are constants of integration and R � �
�10 p�1=�1. Solutions(14) are rotating waves with frequency !1 and radius jRj. These rotating wavesolutions come in counter-rotating pairs: !1 = �
0p�1. Those with !1 > 0 rotatein the opposite sense from those with !1 < 0, and the re
ection operator, �, takeseach of these waves into the other.The rotating waves exist for �1 > 5=4. It can be shown easily from Eqs. (13)that as �1 approaches 5=4 from above, �1 ! 0. Hence the rotational frequency, !1,goes to zero, and the radius, jRj, diverges to in�nity as �1 approaches 5=4. Thisis the behavior observed for spiral waves near the boundary between the regionof periodic spirals and the region without spirals. Note the increase in tip-pathradius with decreasing a in Fig. 7. This boundary in the spiral-wave system isnot well understood from the point of view of bifurcation theory, and so detailedcomparisons with the ODE model cannot be made at this time.5.3.3 Modulated wavesModulated waves in the full system correspond to limit-cycle behavior for � and� in the reduced system and the bifurcation to modulated waves corresponds to aHopf bifurcation from a steady state (�1; �1) to a limit cycle. An expression for the



22 Dwight Barkleylocus of Hopf bifurcations is obtained as follows. The stability matrix for Eqs. (11)is: 2 � �f�(�; �) �f�(�; �)�g�(�; �) �g�(�; �) � (15)where subscripts denote di�erentiation and for now we drop the subscripts on �and �.A necessary condition for a Hopf bifurcation is that the trace of the stabilitymatrix be zero: �f�(�; �) + �g�(�; �) = 0:This gives 2�2 � �1� + � = 0: (16)This condition, together with the expressions for the rotating waves, Eq. (13),de�nes the Hopf locus in parameter space. (The determinant of (15) is always ofthe correct sign.) After a little algebra one obtains the following expression for theHopf locus: �H = 14f(�1 � 1) +q�21 � 2�1 + 9g�2 = 3� 2(�1 + 1)�H4(�H � 1) :The �rst equation gives �H , the value of � at the Hopf bifurcation, in terms of �1.The second then gives �2 for the Hopf bifurcation in terms of �H and �1. ThisHopf locus is plotted in Fig. 10 and is the boundary of the region of modulatedwaves.The MTW locus emerges from the Hopf locus at the codimension-two pointwhere the Hopf frequency equals the rotation frequency. This point is easily found.We de�ne !2 to be the Hopf frequency, that is !2 = pDet, where Det is thedeterminant of the stability matrix (15) at the bifurcation. Then:!22 = 4�� (f1g2 � f2g1)= 4�� (2� � �1 � �2)this can be simpli�ed using Eq. (16) to give:!22 = 4� (1� (�2 + 1)�H)Thus the frequency ratio at any point along the Hopf locus is:����!2!1 ���� = 2
0q1� (�2 + 1)�HThe codimension-two point is where j!2=!1j = 1 on the Hopf locus.



SPIRAL MEANDERING 23The frequency ratio j!2=!1j depends on the parameter 
0, in addition to thedependence on parameters �1 and �2, Hence the codimension-two point, and alsothe locus of MTW states which emerges from this point, depend on 
0. The Hopfbifurcation locus in Fig. 10 is, however, independent of 
0. Thus, by varying 
0,it is possible to locate the codimension-two point anywhere on the Hopf curve,or to eliminate this point from the phase diagram entirely. The value chosenfor 
0 in Fig. 10 is such that the codimension-two point is at the apex of theHopf curve, so that the phase diagram for the ODE model closely resembles thespiral phase diagram in Fig. 2. It is not understood at the present time why,for spiral waves in excitable media, the ratio between the primary and secondaryfrequencies is generally near one and why the codimension-two points often appearin the vicinity of a sharp turn in the Hopf locus.Closed-form solutions are not known for the modulated waves which bifurcatefrom the rotating waves. Numerical integration of Eqs. (8) has been used to obtainthe modulated waves shown in Figs. 10 and 11. The locus of MTW states (dashedcurve in Fig. 10) has also been obtained numerically by searching for parametervalues which give MTW states. From these simulations, it has been veri�ed thatthe locus of Hopf bifurcations in Fig. 10 is everywhere supercritical, i.e. the various
ower patterns grow continuously from circles.6 Discussion and the futureThroughout this chapter I have taken the point of view that the meandering ofspiral waves in excitable media can and should be examined from the perspec-tive of bifurcation theory. With this approach, it has been possible to show thatthe organizing center for spiral dynamics is a particular codimension-two bifurca-tion resulting from the interaction of a Hopf bifurcation from rotating waves withsymmetries of the plane. From this observation has followed a simple ordinary-di�erential-equation model for spiral meandering.This work provides the �rst steps towards explaining why the spiral-tip 
owerpatterns shown in Figs. 1 and 2 are so pervasive in experiments on, and simula-tions of, excitable media. From the bifurcation-theoretic view point such 
owersfollow inevitably when, in the presence of symmetries of the plane, a rotating wavebecomes unstable at a frequency near its rotational frequency. This is true inde-pendently of system details. All the 
owers seen in Figs. 10 and 11 are obtainedfrom di�erential equations which do not depend on the properties of any particularexcitable medium, and in a sense, apply universally to all excitable media.There remains, then, a crucial open question \Why do periodically rotatingspiral waves in excitable media become unstable in the �rst place ?" The analysisof the preceding section explains which dynamics can be expected should a spiralbecome unstable, but the analysis does not tell us why spirals become unstableor why the bifurcating frequency is generally close to the rotation frequency ofthe spiral wave. The answer to these questions depends, at least to some extent,
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