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Abstract.

The complex, so called meandering, dynamics of spiral waves in excitable media is examined
from the point of view of bifurcation theory. A computational bifurcation analysis is made of
spiral dynamics. It is shown that spiral meandering is organized in parameter space around a
codimension-two point where a Hopf bifurcation from rotating waves interacts with symmetries
on the plane. A simple model of such a symmetric bifurcation then leads to a very simple picture
for the wealth of spiral behavior.
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1 Introduction

Soon after the first observation of rotating spiral waves in what is now known as
the Belousov-Zhabotinskii reaction [1, 2], Arthur Winfree noted in a footnote to
a paper published in Science [3] that these spiral waves do not necessarily rotate
rigidly about fixed centers. Winfree’s careful examination revealed that the tips of
spiral waves could trace out complex patterns as they rotate. He coined the term
“meandering” for such non-periodic spiral dynamics. During the decade after this
observation, neither experiments nor numerical simulations gave a clear answer to
the question: “Do spiral waves in homogeneous, isotropic excitable media rotate
periodically?”. (The interested reader can find a brief history of the early work in
this area on pages 181-183 of Ref. [4].) The issue is now resolved, both by high
precision experiments [5, 6, 7, 8, 9, 10] and by fully resolved numerical studies
[7, 11, 12, 13, 14, 15, 17]. The answer is simply that, depending on parameters of
the system, spiral waves in excitable media can execute either periodic rotations
or a fascinating variety of other deterministic dynamics. This chapter is a review
of the current understanding of complexity of spiral dynamics from a bifurcation-
theoretic view point.

Before delving into the details of bifurcation theory, I wish to elaborate more
fully on the phenomena to be addressed. Figure 1 illustrates some of the variety
of spiral states typically found in excitable media. These have been obtained from
numerical simulations of a reaction-diffusion model discussed in the next section.
Each state is represented by a segment of the path traced out by the spiral tip as
it evolves in time. Figures 1(a) and (b) show periodic states; the spiral tips trace
out circles as the waves rotate. (The definition of the spiral tip is given later in the
chapter; it is not particularly important here.) Figures 1(c)-1(h) show a variety of
meandering states; for these cases the tip paths are “flower” patterns of the type
first observed by Winfree.
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Fig. 1. Paths traced out by the tips of rotating spiral waves in a model excitable medium. For
some values of the system control parameters, one finds periodic states as seen in (a) and (b).
For these, spiral waves of constant shape rotate uniformly and the paths traced out by the spiral
tips are circles. For other values of the control parameters, the spiral waves meander and the
tip paths are “fower” patterns. Cases (c)-(h) show such tip paths after several (order 10) wave
rotations. For these cases the spiral shape varies with time and the spirals are not shown. The
figure is meant to illustrate qualitatively the variety of spiral states possible; the length scale is
not the same for all paths shown. The model and parameter values are given in Secs. 2 and 3.3,
respectively

If one looks at how spiral states in the model system are organized as a func-
tion of control parameters, one finds a dynamics landscape, or “flower garden”
as shown in Fig. 2. In the nonlinear-dynamics literature, such a dynamics land-
scape is referred to either as a phase diagram or as a bifurcation set [18]. For the
present discussion, the meaning of the two control parameters is not important.
The relevant point is that the parameter plane is composed of three main regions
separated by well define curves (bifurcation loci). There is a region in which spiral
waves do not exist, a region in which spiral waves rotate periodically, and a region
in which spiral waves meander. The meandering region can be further subdivided
into a region in which flowers have inward-pointing petals and a region in which
flowers have outward-pointing petals. Separating these two regions is a locus of
meandering states whose petals lie along straight lines.

Figures 1 and 2 capture the essence of spiral dynamics in almost all homoge-
neous, isotropic two-dimensional excitable media. All the dynamics seen in these
figures are intrinsic dynamics of isolated spiral waves. Even though the results
shown have been obtained from a particular model system, all the states shown
are observed in a variety of laboratory experiments [6, 7, 8, 9, 10] and numerical
simulations [7, 11, 12, 13, 14, 15, 17]. Moreover, in every case in which a two-
parameter survey has been conducted [10, 11, 15, 17], it has been found that spiral
states are organized in parameter space qualitatively as shown in Fig. 2.

The aim of this chapter is to present the current understanding of the dynamics
seen in Figs. 1 and 2 within the context of symmetric bifurcation theory. It will
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Fig. 2.  Phase diagram or “flower garden” of spiral dynamics and a function of two control

parameters in a reaction-diffusion model presented in Sec. 2. Diagrams such as this are now
known to be common for spiral waves in excitable media. There are three main parameter
regions containing: no spiral waves, periodically rotating spirals, and meandering spiral waves.
Spiral tip paths illustrate states at 6 points. Small portions of spiral waves are shown for the two
periodic cases. The paths for the meandering states are not closed curves. The meander region is
itself separated into regions whose flowers have inward petals (left of dashed curve) and outward
petals (right of dashed curve). On the dashed curve separating the two flower types, there are
“infinite” flowers whose petals lie along straight lines. Two such states are shown. The diagram
has been obtained with two of the four model parameters fixed: ¢ = 0.02 and D, = 0.

be shown, through a computational bifurcation analysis of reaction-diffusion equa-
tions, that the the dynamics landscape in Fig. 2 is organized around a parameter
point at which a Hopf bifurcation interacts with symmetries of the plane. From
this will follow a very simple description of the wealth of spiral behavior.

2 Reaction-diffusion model of excitable media

The model which my colleagues and I have used over the past several years in
our studies of spiral waves is simple, two-variable reaction-diffusion model of the
Fitzhugh-Nagumo type [13, 19]. It is a mathematical caricature of what is thought
to take place in many real excitable systems. The model has the virtue of providing
particularly fast time-dependent numerical simulations of spiral waves in continu-
ous media. I will discuss this model with a view to providing the reader with a gen-
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eral understanding of how excitability can arise in reaction-diffusion systems. The
reader can find lengthy discussions of excitable media in Refs. [4, 20, 21, 22, 23].
Consider the general two-variable system of reaction-diffusion equations:

ou

= 2
8t f(u7v) +V u’
(1)
ov 9
5= g(u,v) + D, V*v.

where the variables u and v can be thought of as chemical concentrations in a
hypothetical chemical reactions, or as membrane potential and current in a hypo-
thetical physiological medium. The functions f(u,v) and g(u,v) model the local
dynamics, e.g. chemical reaction kinetics, and the Laplacian terms account for
diffusion in space. The length scale is chosen such that the diffusion coefficient for
the u-variable is unity. D, is thus the ratio of diffusion coefficients. The boundary
conditions are taken to be no-flux, i.e. zero normal derivative, on the boundary of
some domain of interest.

Two-variable models of the general form (1) are very common in the study of
excitable systems [15, 20, 21, 22, 23], the Fitzhugh-Nagumo model being the most
famous example. Various models differ principally in the choice of the reaction
terms, i.e. the functions f and ¢g. In addition, in many models the diffusion
coefficient D, is considered to be fixed, either with D, = 0 (which is appropriate
for modeling physiological media) or D, = 1 (which is appropriate for modeling
many chemical systems).

The reaction terms considered here are given by:

Flu,v) = %u(l )[4 — un(v)],

glu,v) = u—v,
with,

(v+1b)

Uth(U) = a )

where a,b, and € are parameters, with ¢ < 1. Due to the smallness of ¢, the
dynamics of the u-variable (referred to as the excitation variable) is typically much
faster than the dynamics of the v-variable (referred to as the recovery variable).

To understand how excitability arises in this model, it is useful to consider the
behavior of the system in the absence of diffusion, i.e. to consider the dynamics
of the system:

= f(u,v), v=g(u,v). (3)
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Fig. 3. Phase plane for the local dynamics of the model. The axes are the variables v and
v. Shown are the system nullclines: the v-nullcline, g(u,v) = 0, is the line v = u, and the
u-nullcline, f(u,v) = 0, has a backward “N” shape consisting of three lines: u = 0,u = 1, and
u = ugn(v) = (v +b)/a. An excitable fixed point sits at the origin where the u and v nullclines
intersect. wn is the excitability threshold for the fixed point. Schematic trajectories for two
initial conditions are shown. The initial condition to the left of the threshold decays directly to
the fixed point. The initial condition to the right of the threshold undergoes a large excursion
before returning to the fixed point.

Figure 3 illustrates the phase-plane dynamics for Egs. 3. Shown for reference
are the nullclines defined by the curves f(u,v) = 0 and g(u,v) = 0. On these
curves @ = 0 and v = 0, respectively. The v-nullcline is a straight line and the
u-nullcline has a backward “N” shape. The middle branch u = wuy, has slope a
and intercept —b. The system has a fixed point at the origin where the nullclines
intersect (since there both & =0 and © = 0). For a > 0 and b > 0 this fixed point
is linearly stable, and hence all initial conditions sufficiently close to the fixed point
decay directly to it.

The origin is nevertheless excitable. By this, one means that there exists a
threshold such that initial conditions farther than the threshold from the fixed
point do not evolve directly to it, but instead undergo a large excursion prior to
reaching the fixed point. The threshold here is given by the middle branch of the
u-nullcline: u = wugp(v). Initial conditions to the right of this threshold evolve
quickly [due to the smallness of € in Egs. (2)] to the right branch of the u-nullcline,
and hence initially move away from the fixed point. Eventually the trajectory
brings the system back to the origin as shown. Thus all initial conditions evolve to
the stable fixed point, but there is a dichotomy of behavior depending on whether
the initial condition is to the right or left of the threshold.
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The following terminology is used to describe the various possible states of the
system. If the system is close to the fixed point, then it is said to be gquiescent; if
it is near the right branch of the u-nullcline, then it is said to be excited. If the
system is near the left branch of the u-nullcline (i.e. u ~ 0) but v is not near zero,
then the system is said to be recovering. Phase-space points in the recovering state
are much further from the threshold than the points in the quiescent state.

The u-nullcline shown in Fig. 3 is not entirely correct because the three branches
of f(u,v) = 0 actually extend past the corners of the backwards “N” where the
# = ug, branch meets the branches u = 0 and u = 1. The corners in the u-
nullclines are not found in other models of excitability and they are are somewhat
problematic from the point of view of the local dynamics in this model. For spiral
waves in a spatially extended medium, however, phase-space points never get close
to the corners. The reason for having a w-nullcline with this particular shape is
that it permits the equations to be simulated by a fast numerical scheme discussed
momentarily.

Consider now the full reaction-diffusion system (1) describing a spatially ex-
tended medium. The combination of the local excitable dynamics illustrated in
Fig. 3, and the diffusive coupling of nearby points in space is sufficient, in most
cases, to permit waves of excitation to propagate in the extended system. The
reason is as follows: if some spatial points in the medium are excited (i.e. near the
right branch of the u-nullcline) while nearby points are quiescent, diffusion acts to
“pull” the quiescent points the small distance in phase space needed to cross the
threshold for excitation. Once across the threshold, the local kinetics take over
and these points quickly become excited as well. In this way regions of excitation
can spread through the extended medium. However, the local kinetics are such
that excited points eventually return to the quiescent state. Thus no portion of
the medium stays excited indefinitely and this allows the possibility of recurrent
excitations, as occurs for example, with rotating spiral waves.

Most of what has been said until now applies equally to all two-variable models
of the form given by Egs. (1). The advantage of the model with the particu-
lar choice of reaction terms in Egs. (2), is that this choice allows the model to
be simulated efficiently over a large range of spatio-temporal scales. High-speed,
coarse-grained simulations can be used to gain insight and explore parameter space
at small computational expense, while high-resolution simulations can be used to
assess the validity of low-resolution results. This is explained in detail in Ref.
where a complete algorithm for time-stepping the equations is given.

The algorithm is based on the fact that the branches of the u-nullcline have a
very simple form and it is possible to write a numerical scheme which time-steps
the local u-dynamics implicitly. In the limit of timesteps large in comparison with
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1/e, the algorithm for the local u-dynamics reduces to the following:

0 ifu™ <uy

u" = oy if u = gy

1 ifu™ > wy

where v and u™t! are the values of u at timesteps n and n+ 1, respectively. Thus

in the limit of large timesteps (or equivalently the limit of small e for fixed time

step), u takes on just two values: 0 and 1. Hence the model gives rise naturally to

cellular-automaton-type scheme for the fast dynamics. However, unlike cellular-

automaton models of excitable media [24, 25, 26, 27], the model given by Egs. (1)

and (2) is a partial-differential equation and hence continuous in space and time.

Moreover, it can be investigated by means other than time stepping, as I now
discuss.

3 Bifurcation approach

Without a bifurcation analysis, it is nearly impossible to obtain a comprehensive
understanding of any complicated nonlinear system and excitable media are no
exception. While time-dependent simulations can tell us much about the behavior
of a reaction-diffusion model, to understand fully the spiral dynamics illustrated in
Figs. 1 and 2, one must attack the problem with additional, more efficient, meth-
ods. In this section I outline the bifurcation methods used to investigate spiral
waves. Without going fully into the numerical details, I shall explain how one
computes periodic spirals as steady states and how one computes the stability of
these spirals by finding the leading eigenvalues and eigenvectors of the associated
stability problem. Time-dependent simulations are necessary for studying the me-
andering states which bifurcate from periodic solutions and I shall provide further
details concerning these simulations. The reader can find a general discussion of
numerical bifurcation methods in Refs. [28, 29] and details of the solutions of large
sparse systems in Refs. [30, 31, 32, 33, 34].

3.1 STEADY STATES

Consider a periodically rotating spiral wave. Such a wave rotates as a rigid body
and is seen as a steady state when viewed in a reference frame rotating at the angu-
lar frequency of the spiral. Figure 4 shows such a state. One can obtain a steady
state equation for such periodic spiral waves by making a change of coordinates in
Egs. (1) to a system rotating at the spiral frequency w;, and demanding that the
time derivatives in the rotating frame be zero:

_Ou ou 9
0 % f(u,?))+u)1891+v y
ov ov
0= i g(u,v) + Wipg + D, V"?v.
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Fig. 4. Periodically rotating spiral wave computed via Newton’s method. In the “laboratory”
frame the wave rotates clockwise at constant speed and in a frame rotating with the angular
frequency of the spiral it is a steady state. Due to rotational symmetry, the angular orientation of
the spiral is arbitrary. Contours of the fast variable, u (equally spaced from u = 0.1 to u = 0.9),
show the sharp transitions between the two branches, © = 0 and u = 1 of the u-nullcline. Contours
of v are not shown. The model parameters are: a = 0.643, b = 0.001, ¢ = 0.02, and D, = 0; the
domain has radius R = 18.

where primes indicate the rotating coordinate system. These equations can be
written compactly as:
0 =F(u,w), (4)

where
F(u,w;) = DV"?u +widpu + f(u), (5)

with u = (u,v)T, D = diag(1, D,), and f(u) = (f(u,v),g(u,v))T. The boundary
conditions on the operators are taken to be d,u = 0 on a circle of radius R.

Technically, Eq. (4) is a nonlinear eigenvalue problem, because in addition to
determining the fields u and v, it determines the rotational frequency (nonlinear
eigenvalue) wy. This is consistent with the fact that, due to rotational symmetry,
solutions of (4) are determined only up to an arbitrary orientation in angle. One
can eliminate the phase freedom in Eq. (4) by augmenting this equation with an
additional constraint which pins the phase of the spiral. For example, demanding
that u = 1/2 at some point will generally suffice. This extra constraint allows wy
to be treated as an additional unknown, thereby permitting the pair (u,w;) to be
computed in concert [28].

Equation (4) is solved numerically by representing all fields on a polar grid and
solving the resulting discretized system by Newton’s method. The only difficulty
with this approach is that Newton’s method requires solving large (albeit sparse)
systems of linear equations. There are, however, good numerical methods for
solving such systems; the method used goes by the acronym GMRES [30, 34].
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The resolution which has been used in the computations reported here is NV, =
121 radial and Ny = 256 azimuthal grid points. The u-field is fully resolved. All
operators are evaluated spectrally in the 8-direction and using fourth-order finite
differences in the r-direction (except at r = R where second-order is used). Newton
iterations are stopped when ||F(u,w;)|| < 1072; which is more than 100 times
smaller than can reasonably be obtained by time-stepping Eqgs. (1). The norm
refers to the Ly norm of the 2 x N, x Ny discrete field values. Newton iterations
are started from a solution obtained by direct simulation of Egs. (1). Continuation
can then be used to obtain rotating-wave solutions at other parameter values,
including parameters at which these solutions are unstable.

3.2 STABILITY

After obtaining rotating wave solutions, the next step of a bifurcation analysis con-
sists of determining the stability of the solutions by finding the leading eigenvalues
(those with largest real part) and eigenvectors of the associated linear stability
problem:

A(u,wr)-a= )1 (6)

where A and @ are the eigenvalues and eigenmodes of the operator A (u,w;) defined
by:
A(u,w;) =DV"? + w1 9g + df(u). (7)

The operator A(u,w;) is the linearization, i.e. Jacobian, of F(u,w;) in Eq. (4)
about the steady-state (rotating-wave) solution u.

The leading eigenvalues of A(u,w;) determine the stability of a periodic spiral
wave: if none of the eigenvalues, A, of A(u,w;) have positive real part, then the
wave is stable. If at least one eigenvalue of A(u,w;) has positive real part, then
the wave is unstable. Of particular interest will be bifurcations, signaled by the
crossing of eigenvalues from the left to the right half of the complex plane. Also
of importance are eigenvalue and eigenmodes associated with symmetries. These
are discussed in Sec. 4.3.

The leading eigenvalues and corresponding eigenmodes in Eq. (6) are obtained
by direct application of the methods in Ref. [31]. This is essentially the power
method. The same polar grid used for the steady state computations is used for
solving the eigenvalue problem. For the results reported, the five leading eigenval-
ues have been obtained to within the accuracy: ||A(u,w;) - @ — A ii|| < 1074

3.3 SIMULATIONS

Meandering states cannot presently be computed by solving a fixed-point prob-
lem; for these it is necessary to resort to direct time-dependent simulations of
the reaction-diffusion equations (1). A uniform square grid is used with no-flux
boundary conditions imposed on the sides of a square domain. For all simulations
reported, the domains are sufficiently large that the 4-fold symmetry of the do-
main boundary is entirely irrelevant, and the spiral dynamics are indistinguishable
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from those in a rotationally symmetric system. The size of the domain used in
simulations varies depending on the size of the flower pattern generated by the me-
andering spiral wave. For the infinite flowers shown in Fig. 2 (those whose petals
lie along straight lines), no computational domain is large enough to contain the
spiral tip indefinitely. For these cases, simulations are done in a box large enough
to allow the spiral waves to travel significant distances before reaching the edge of
the domain.

All the simulations reported in this chapter are fully resolved. A first-order
Euler method is used for time-stepping the equations. The Laplacian terms in
the reaction-diffusion equations are approximated with a 9-point finite-difference
formula, which to leading order, eliminates the underlying 4-fold symmetry of
square grid [13]. (For spiral waves in excitable media, anisotropies in the grid have
a far greater effect on solutions than do anisotropies in the boundaries.)

For reference, the grid spacing for most results is h = 0.1 with a time step of
At = h?/5. The parameter values for the states shown in Fig. 1 are: (a) a = 0.80,
e = 0.02, (b) a =0.52, ¢ = 0.02, (¢c) a = 0.57, ¢ = 0.02, (d) a = 0.58, ¢ = 0.02,
(e) a =0.39, e = 0.01, (f) a = 0.42, e = 0.01, (g) a = 0.692, ¢ = 0.02, and (h)
a=0.72, e = 0.02, with b = 0.05 and D, = 0 throughout.

4 Spiralogy

I return now to the spiral flower garden presented at the outset. After providing
some needed kinematical preliminaries, I will report the results of a bifurcation
analysis of these spiral dynamics.

4.1 KINEMATICAL PRELIMINARIES

Figure 5 shows a sequence of spiral states obtained as a function of the parameter
a in the reaction-diffusion equations (1) and (2) with the parameters b, €, and D,
fixed: b = 0.05, ¢ = 0.02 and D, = 0. This sequence of states corresponds to a
horizontal cut through the phase diagram in Fig. 2 at b = 0.05. Figure 6 shows, in
more detail, states along this parameter cut near the transition between periodic
and meandering spirals at “large” a.

Each state in Fig. 5 is represented, as before, by a plot of the path traced by
the spiral tip over several (order 10) wave rotations. The spiral tip is here defined
to be the point in space where f(u = 1/2,v) = 0, i.e. the point where f = 0 on the
u = 1/2 contour of the spiral solution. This tip definition has been chosen because
it can be computed easily and accurately from solutions fields. For the purposes
here the tip location is simply a convenient projection of the instantaneous state
of the system onto the two-dimensional plane.

4.1.1 Rotating waves
The periodically rotating spiral waves are examples of a more general class of dy-
namical states known as rotating waves (RW). These are, by definition, uniformly-
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Fig. 5.  Spiral states in the reaction-diffusion model as a function of the control parameter a
with the other parameters fixed: b = 0.05, ¢ = 0.02, and D, = 0. This diagram corresponds to
a one-parameter cut through the phase diagram in Fig. 2. As before, states are represented by
tip-path plots. The length scale is the same for all plots. Several of the states shown also appear
in Figs. 1 and 2.

Laboratory frame

R 8o

Rotating frame

O o -

Fig. 6.  Tip-path plots for rotating wave (RW) and modulated rotating wave (MRW) states
in both the laboratory frame and in the rotating frame. The MRW states are quasiperiodic in
the laboratory frame and periodic in the rotating frame. The rotating wave is periodic in the
laboratory frame and steady in the rotating frame. The parameter values are the same as in
Fig. 5 with (from left to right): a = 0.72, a = 0.755, a = 0.746, and a = 0.80.

rotating periodic states occurring in rotationally symmetric systems [13, 35, 36, 38].
Figure 6 shows the tip path of a RW state both in what I shall call the “laboratory”
reference frame [the frame of reference of reaction-diffusion equations (1)], and the
rotating reference frame (the frame of reference rotating at the spiral frequency
w1). In the laboratory frame, the tip path is a circle whose radius will be denoted
r1. When view in the rotating frame, RW solutions are steady states and the tip
path is therefore a fixed point. The RW solutions are actually computed in the
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rotating frame, as described in Sec. 3.1.

4.1.2  Modulated rotating waves

The meandering states shown in Figs. 5 and 6 (except for the “infinite” flower at
a = 0.624 in Fig. 5), are examples of a general class of dynamical states known as
modulated rotating waves (MRW). These occur in rotationally symmetric systems
and are two-frequency quasiperiodic states which are periodic when viewed in an
appropriately rotating reference frame [13, 36, 38]. Fig. 6 shows three MRW states
in the laboratory and rotating reference frames. In the laboratory frame the MRW
states are quasiperiodic; the tip paths are not generically close orbits and after
many wave rotations the tip paths fill out an annular region. In the rotating
frame, the tip paths are closed periodic orbits. These closed orbits are close to,
but not exactly, circular [13].

A convenient measure of the amplitude of the MRW states is the amplitude of
the secondary motion of the spiral tip. Specifically, let 7o be defined as the “radius”
of tip orbit in the rotating frame, with the convention that o be positive for states
outward petals and negative for states with inward petals. Because tip orbits in
the rotating frame are not truly circular, “radius” here means 1/2 the maximum
distance between any pair of points on the tip orbit in the rotating frame.

The primary rotational frequency, wi, for a MRW state is defined to be the
rotational frequency of the reference frame that renders the state periodic. This
definition is the natural extension of the definition used for RW solutions. With
this definition, wy varies continuously in going from the RW to the MRW states.
The secondary frequency is defined as: wy = 27/7, where 7 is the period of the
orbit in the rotating frame. That is, wo is the frequency seen in the rotating frame
of reference. The MRW states with outward petals are such that ws > wy, whereas
the states with inward petals are such that ws < wy. This will prove significant in
what follows.

4.1.8  Modulated traveling waves

The “infinite” flower in Fig. 5 that separates the MRW states with inward and
outward petals is an example from a class of states known as modulated traveling
waves (MTW). These are states which are periodic in a uniformly translating
reference frame. Strictly speaking, they occur only in spatially infinite or spatially
periodic systems [38]. However, these states behave indistinguishably from those
which would be found in infinite medium, so long a the spiral center is far from
any boundary. The MTW solutions can travel in any direction; the direction being
determined by initial conditions.

4.2 ANALYSIS IN ONE PARAMETER

With these definitions at hand, I turn to the quantitative analysis of spiral dy-
namics in the reaction-diffusion model, starting with the dynamics as a function
of the parameter a, the other parameters being fixed as in the one-parameter cut
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shown in Figs. 5 and 6: b= 0.05, ¢ = 0.02 and D, = 0.

Consider first the RW solutions as a function of a. In Fig. 5 stable RW states
are seen both at “low” and “high” values of a. These states are, in fact, on a single
branch of solutions which is unstable at intermediate values of a, (where the stable
modulated waves are observed). This branch of RW solutions, together with its
stability, has been computed as described in Secs. 3.1 and 3.2. The results are
shown in Fig. 7.

Figure 7(a) shows three states on the RW branch. The states at the two ends
are the same two stable solutions shown in Figs. 1, 2, and 5. The middle solution
lies on the unstable portion of the RW branch.

Figures 7(b) and 7(c) show the behavior of eigenvalues along the RW branch.
There is a complex conjugate pair of eigenvalues which, as the parameter a is
increased, first cross the imaginary axis transversely into the right half plane and
then cross transversely back into the left half plane. Hence, the stability limits of
the RW branch are marked by a pair of Hopf bifurcations. Such Hopf bifurcations
from rotating-wave solutions are sometimes called secondary Hopf bifurcations, but
I shall not use this terminology. Note that not only are the RW states at “low”
and “high” on a single branch of solutions, but also there is a single complex pair
of eigenvalues responsible for the Hopf bifurcations at both end of the branch.

These Hopf bifurcations from the RW solutions introduce a second frequency
into the spiral dynamics and give rise to the quasiperiodic MRW solutions. Figure
8 shows the bifurcation diagram for MRW states. The (dimensionless) radius ratio
ro/r1 is plotted as a function of the bifurcation parameter a. Also indicated with
a horizontal line are the RW states (for which ro = 0). The line is dashed between
the Hopf points to indicate unstable RW states.

The MRW states are stable, and in the vicinity of the Hopf bifurcation points,
the radius ratio grows as the square root of the distance from the bifurcations.
Hence, the Hopf bifurcations are supercritical. Figure 6 shows several states near
the upper-a Hopf bifurcation, both in the laboratory and rotating reference frames.

Away from the Hopf bifurcations, the radius ratio ceases to obeys the square-
root scaling and the secondary radius diverges as the value of a approaches that
where the MTW (modulated traveling wave) state is found. It is too expensive
computationally to simulate states with very large radius ratio, and so there is a
gap in the bifurcation diagram over the range of a where |ry/rq| > 10.

The following characterizes the frequency behavior (not shown) for the MRW
states. Both w; and wy vary continuously with the parameter a. There is no
entrainment (frequency locking) between the two frequencies of MRW states, that
is, there are no parameter intervals (steps) over which the frequency ratio is a
constant rational number. This is a general feature of MRW solutions first proved
by Rand [36].

Finally, at the Hopf bifurcation points, the secondary frequency, ws, equals the
imaginary part of the bifurcating eigenvalue, and the primary frequency, w1, equals
the rotational frequency (also called wy) of the bifurcating RW state. The MRW
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Fig. 7. Stability results for the branch of rotating wave solutions along the one-parameter cut
shown in Fig. 5. (a) three states on the RW branch; the end two are the stable states seen in
Fig. 5, and the middle is an unstable state. The values of a are (from left to right): a = 0.52,
a = 0.62, and a = 0.80. In addition to the tip paths, the v = 1/2 contours of the u-field are
shown near the spiral tip. (b) Real part of the bifurcating eigenvalues along the RW branch.
Positive values correspond to unstable spiral states. (c) Bifurcating eigenvalues in the complex
plane; arrows indicate the direction of increasing a. A complex pair of eigenvalues crosses the
imaginary axis into the right half plane and then back into the left half plane. Both crossings are
transverse and correspond to Hopf bifurcations.
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Fig. 8. Bifurcation diagram for the one-parameter cut shown in Fig. 5. The radius ratio, ra2/r1,
for MRW states is plotted as a function of the parameter a. Also shown, as a horizontal line, is
the branch of RW states (for which ra = 0); solid indicates stable RW states and dashed indicates
unstable RW states. The hollow squares denote Hopf bifurcation points. Both Hopf bifurcations
are supercritical and near the bifurcations the radius ratio scales as the square-root of the distance
from the bifurcation points. The radius ratio diverges as a approaches the value where exists a
modulated traveling wave state.
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states which bifurcate at "low” a have inward petals and satisfy wy/w; < 1, whereas
the states with outward petals which bifurcate at "high” a satisfy: ws/wq > 1. The
frequency ratio goes to 1, as a approaches the point where the MTW state is found.

4.3 THE ORGANIZING CENTER

Consider once again the two-parameter phase diagram in Fig. 2. In the preceding
section the dynamics along a particular one-parameter cut through this diagram
was considered in some detail. There are many other one-parameter paths which
would yield, qualitatively, the same dynamics. In particular, all cuts at constant
b, that pass through the region of meandering spirals, are essentially equivalent.

Near the apex of the meander region, however, where the locus of modulated
traveling waves (”infinite flowers”) meets the meander boundary, all the flower
states observed along one-parameter cuts coalesce. This point is the organizing
center for the phase diagram in Fig. 2: arbitrarily close to this codimension-two
point there are stable rotating waves, modulated rotating waves with flowers of
both types, and modulated traveling waves. This point is thus the key to under-
standing the variety of spiral behavior. In this section a bifurcation analysis of
RW solutions is used to investigate the nature of the organizing center.

It is clear from the preceding section that the boundary of the meander region
is simply a locus of Hopf bifurcations from RW states. In fact, the meander
boundary plotted in Fig. 2 has been obtained by computing the locus of such
Hopf bifurcations. Hence, all along the meander boundary the RW states have a
complex-conjugate pair of eigenvalues on the imaginary axis. These eigenvalues,
associated with Hopf bifurcations, are shown as squares in Fig. 9. The eigenvalues
are denoted +iwy, because the imaginary part of the bifurcating eigenvalues are
equal to the secondary frequencies at the bifurcations (Sec. 4.2). These eigenvalues
are on the imaginary axis only at the Hopf bifurcations; generically they cross the
axis transversely as a function of the parameters a and b.

As can be seen in Fig. 9, there are eigenvalues (indicated with crosses) on
the imaginary axis other than just those associated with the Hopf bifurcations.
These eigenvalues result from symmetries of the system and are always on the
imaginary axis. To understand the codimension-two point, one must understand
these eigenvalues.

Consider first the eigenvalues at zero in Fig. 9. These eigenvalues are associated
with rotational symmetry: because any rotation of a RW state is also a RW state,
these states must always have a zero eigenvalue. The corresponding eigenmode is
given by: tigp = Jgu, where @ig is the eigenmode, u is the RW state, and 6 is the
polar angle. It can be verified by direct substitution into Eq. (6) that this is an
eigenmode with zero eigenvalue.

The complex symmetry eigenvalues seen in Fig. 9 are associated with trans-
lational symmetry. While the computational domain used to compute the RW
solutions is not translationally invariant, the computations find eigenvalues and
eigenmodes which are virtually indistinguishable from those resulting from trans-
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Fig. 9. Eigenvalues along the Hopf locus forming the boundary of the meander region. Schematic
eigenvalue spectra are shown at three points on the Hopf locus. Squares denote Hopf eigenvalues
and crosses denote symmetry eigenvalues. The spectra on the right and left branches of the
Hopf locus differ, qualitatively, only in the ordering of eigenvalues on the imaginary axis. At
the codimension-two point wi = w2, and the stability operator has eigenvalues +iw; each with
multiplicity two, plus a zero eigenvalue. This point is the organizing center for spiral dynamics.
Note that the locus of modulated traveling waves emanates from this point.

lational symmetry. It can be verified [16] by direct substitution into the eigen-
value equation (6), that in an infinite, homogeneous system, a spiral rotating at
frequency w; has translational eigenmodes of the form ur = Oyu % idyu, with
eigenvalues A\ = +iwj. The eigenvalues obtained numerically are indistinguish-
able from +iw;. In particular, extrapolation from domains with small radii shows
that at radius R = 18 (as in Fig. 4), |Re(Ar)| < 107%5. Hence, these eigenvalues
can be considered to lie on the imaginary axis.

Everywhere on the Hopf locus in Fig. 9, except at the codimension-two point,
the five eigenvalues on the imaginary axis are distinct. Apart from the ordering of
eigenvalues, there are no qualitative differences between the spectra on the right
branch, w; < ws, and left branch, w; > ws, of the Hopf locus.

At the codimension-two point w; = wy, and there is a resonance between the
primary and secondary frequencies of the spiral wave. This is consistent with the
fact that the locus of modulated traveling waves (for which w; = ws), emanates
from this point on the Hopf locus. At the codimension-two point, the Hopf and
translational eigenmodes of the RW states coincide and the stability operator has
eigenvalues +iw; each with multiplicity two, plus a zero eigenvalue. This specifies
completely the codimension-two bifurcation to linear order.

To gain a deeper understanding of the organizing center, one needs to under-
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stand the codimension-two bifurcation to higher order. For this one turns to a
weakly non-linear analysis, which is the subject of the next section.

5 Towards a normal form for spiral dynamics

Given the evidence in the preceding section that the meandering dynamics of
spiral waves are organized around a particular codimension-two bifurcation, one
would hope that bifurcation theory could be applied to the problem and provide
a “normal form” for spiral dynamics. In other words, one would hope that by
making an appropriate expansion about the organizing center, one could reduce
the infinite-dimensional reaction-diffusion problem to a low-dimensional system
described by a few ordinary differential equations, that is, amplitude or normal-
form equations [18, 38]. The resulting equations could then be analyzed to ob-
tain a complete description of spiral meandering dynamics in the vicinity of the
codimension-two point.

There is a problem, however, which makes this approach both difficult and in-
teresting. The particular codimension-two bifurcation found for the spiral waves
results from the interaction of Hopf and translational eigenmodes of a rotating
wave, and existing bifurcation theory cannot be applied to such a case. The rea-
son is that a theory has not been developed for noncompact symmetries such as
translations. While translational symmetries are treated in many systems, this is
done by requiring solutions to be spatially periodic and spiral waves are not (glob-
ally) periodic in space. Hence, it turns out that the codimension-two bifurcation
at the heart of spiral meandering is of a fundamentally new type from the point
of view of nonlinear dynamical systems.

While a rigorous derivation of a normal form will have to await advances in
symmetric bifurcation theory, I will nevertheless proceed by proposing a low-
dimensional model which contains the same codimension-two bifurcation as was
observed in the reaction-diffusion equations, and I will show that this model con-
tains the essence of spiral meandering.

5.1 MODEL EQUATIONS

The model considered is the simplest system of ODEs which (¢) has the symmetries
important for the spiral dynamics (rotations, reflections, and translations), and
which (¢7) has a supercritical Hopf bifurcation from a rotating wave solution. The
model equations are:

P =,
o = v [f(lo2,w?) +iw - (|, w?)], (8)
i = w-g(|of?,w?),

where p and v are complex, and w is real. The real-valued functions f, ¢, and
h are specified below. [Throughout this section, f and g will denote the above
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functions in the ODE model equations and not the kinetics functions in Egs. (2).
There should be no confusion.] The model is of real dimension five because the
codimension-two point being modeled has a five-dimensional center eigenspace. As
the notation suggests, p is thought of as the position of the spiral tip and v its
linear velocity. The instantaneous rotational frequency of solutions is proportional
to w.

For any choice of f, g, and h, Egs. (8) are invariant under the following trans-

formations:
p ep p*
R,-{v]|=1|€e%], k- =1 v* |,
w w —w
p p+a+if
Top- | v | = v ,
w w

where * denotes complex conjugation. R, is rotation by angle v, & is reflection,
and T,z is translation by o + if.

By letting the “position” be written p = = + iy and the “velocity” be written
v = se'?, with “speed” s > 0, Egs. (8) can be written in the alternative form:

ISEEST -

4

i =scos¢, y=ssing, ¢=uw-h(s2w?),
(9)
‘é:s'f(SQan)a u'):w-g(s2,w2).
The simplest low-order expansions for f, g, and h sufficient to give the desired

codimension-two bifurcation, and which yield bounded trajectories for the model,
are:

f(s®,w?) = —1/4 4+ ays* + asw? — s?,
g(sz,w2) =5 —w - L, (10)
h(s2,w2) = Y.

Equations (8) and (10), or equivalently Egs. (9) and (10), are then the proposed
ODE model for spiral dynamics.

5.2 ODE MODEL DYNAMICS

Figure 10 shows a phase diagram for the ODE model as a function of the two
parameters a; and as with fixed ~y. The diagram is plotted so as to emphasize its
similarity to the spiral flower garden in Fig. 2. In the ODE model there exists a
codimension-two point whose vicinity contains rotating waves, modulated rotating
waves of both types (inward and outward petals), and modulated traveling waves.
There is also a region in parameter space in which there are no such rotating
solutions.
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(2) (c;/(\/é
(b) (@) (1)

Fig. 10. Phase diagram for the ODE model with yg = 5.6. There are three main regions: a region
in which there are no rotating or modulated rotating solutions (hatched but not labeled), a region
of stable periodic rotating-wave solutions, and a region of modulated-rotating-wave solutions.
Shown are “tip-path” plots (z,y) at several parameter values. The periodic states are centered
on the corresponding parameter points. The modulated rotating waves are of two types: those
with inward petals and those with outward petals. Separating the two is a locus (dashed curve)
of modulated traveling waves.

Figure 11 shows “tip-path” plots, (z,y), from the ODE model for several choices
of a1, ag, and . Figs. 11(a)- 11(d) are examples which bear a striking resemblance
to spiral tip paths in excitable media (cf. Fig. 1) and Refs. By choosing the three
parameters appropriately, it is possible to reproduce essentially all types of spiral
tip paths reported in the literature on homogeneous excitable media [7, 8, 9, 10, 11,
13, 15, 19]). It is also possible, however, to generate plots that do not correspond
to any known spiral paths. Figures 11(e) and 11(f) show two such cases. These are
cases for which the primary rotation frequency is large compared to the secondary
rotation frequency. The choice of 7 is very important in determining the (z,y)
flower patterns as well as the location of the MTW locus (dashed curve) in the
phase diagram in Fig. 10. The remainder of this section is devoted to details of
the ODE system.

5.3 ANALYSIS OF THE MODEL

The analysis of the ODE model begins by noting that the (s, w) subsystem in
Egs. (9) decouples from the other three equations and that ¢(t), z(t), and y(¢) can
be found by quadrature once the last two equations are solved. Thus for much of
the analysis to follow, one need only consider the dynamics of the (s, w) subsystem.
For this it is useful to define variables ¢ and ¢ by: ¢ = s and ¢ = w?. This yields
the two-variable system:

§=2¢f(£,¢) ¢ =2¢g(£,¢). (11)
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Fig. 11.  Flowers obtain from the ODE model. Shown are plots of (z,y) for several choice of
model parameter values. (a)-(d) are plots which resemble tip-path plots for spiral waves. (e) and
(f) are plots which do not resemble known tip-path plots. The parameter values for the states
shown are: (a) a1 = 3.33, a2 = —6.75, v0 = 5.3, (b) a1 = 3.33, a2 = —6.75, y0 = 4.1, (c)
a1l = 6.95, Q2 = —5.8, Yo = 3.6, (d) a1 = 6.95, Q2 = —5.8, Yo = 3.1, (e) a1 = 6.95, Q2 = —5.8,
vo = 5.6, (f) a1 = 5.0, as = —5.5, 70 = 8.0,

with,

e = tmbta—€  ge)=E-¢-1  (12)

I shall refer to these equations as the reduced system, and to Egs. (8), or equiva-
lently Egs. (9), as the full system. Note that because s > 0, s = 1/, but there is
no sign restriction on w so w = £+/¢. The positive and negative values of w are
related by reflectional symmetry «.

5.8.1 Trivial steady state

The state £ = ¢ = 0 is a steady state of Eqgs. (11) for all parameter values, and
by the choice of the constant terms in expansions for f and g, it is linearly stable
for all values of a; and ay. For the full system (8) this state corresponds to:
v=w = 0, p = pg = constant. The trivial steady state coexists with the rotating
wave and modulated wave solutions discussed next. Hence the it plays much the
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same role in the ODE model as the homogeneous steady state plays in excitable
media. That is, in the reaction-diffusion model, the homogeneous state (v = v =0
everywhere in space), exists and is linearly stable for all parameter values in the
phase diagram (Fig. 2). The trivial steady state in the ODE model has the same
character.

5.3.2 Rotating waves

Rotating waves in the full system (9) correspond to steady states in the reduced
system with positive ¢ and (. Letting & and (; be positive roots of the steady
state equations, f(&1,¢1) =0 and g(&1,¢1) = 0, we have:

1
£%—(a1+a2)§1+a2+Z=0.

(13)
G =6& -1

Only the larger root of Eq. (13) gives a state with positive & and (;.

To see that steady states of the reduced system correspond to rotating waves in
the full system, first note that by the definition of ¢, w = £+/¢;. The equation for
¢ in Eqgs. (9) then becomes: ¢ = +701/(1 = w1, where w; is the constant rotation
frequency. This can be integrated to give ¢(t) = wit + ¢, where ¢q is a constant
of integration. With this, the equations for & and y in Egs. (9) can be integrated
to obtain:

z(t) = 2o + Rsin(wit + ¢o) y(t) = yo — Rcos(wit + ¢g) (14)

where xy and y are constants of integration and R = i%—lwgl/gl. Solutions
(14) are rotating waves with frequency w; and radius |R|. These rotating wave
solutions come in counter-rotating pairs: w; = +v9y/¢1. Those with w; > 0 rotate
in the opposite sense from those with w; < 0, and the reflection operator, &, takes
each of these waves into the other.

The rotating waves exist for a; > 5/4. It can be shown easily from Eqgs. (13)
that as oy approaches 5/4 from above, {; — 0. Hence the rotational frequency, wy,
goes to zero, and the radius, |R|, diverges to infinity as oy approaches 5/4. This
is the behavior observed for spiral waves near the boundary between the region
of periodic spirals and the region without spirals. Note the increase in tip-path
radius with decreasing a in Fig. 7. This boundary in the spiral-wave system is
not well understood from the point of view of bifurcation theory, and so detailed
comparisons with the ODE model cannot be made at this time.

5.3.3 Modulated waves

Modulated waves in the full system correspond to limit-cycle behavior for £ and
¢ in the reduced system and the bifurcation to modulated waves corresponds to a
Hopf bifurcation from a steady state (£1,{1) to a limit cycle. An expression for the
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locus of Hopf bifurcations is obtained as follows. The stability matrix for Egs. (11)

is:
ng(f ¢) ng(é ¢)
where subscripts denote differentiation and for now we drop the subscripts on &
and (.
A necessary condition for a Hopf bifurcation is that the trace of the stability
matrix be zero:

This gives
262 — €+ ¢ =0. (16)

This condition, together with the expressions for the rotating waves, Eq. (13),
defines the Hopf locus in parameter space. (The determinant of (15) is always of
the correct sign.) After a little algebra one obtains the following expression for the

Hopf locus:
:—{a1—1 \/a? —2a; + 9}

3—2(a; + 1)y
4(ég — 1)

The first equation gives £y, the value of ¢ at the Hopf bifurcation, in terms of ay.
The second then gives as for the Hopf bifurcation in terms of £y and «ay. This
Hopf locus is plotted in Fig. 10 and is the boundary of the region of modulated
waves.

The MTW locus emerges from the Hopf locus at the codimension-two point
where the Hopf frequency equals the rotation frequency. This point is easily found.
We define wy to be the Hopf frequency, that is ws = v/Det, where Det is the
determinant of the stability matrix (15) at the bifurcation. Then:

w3 = 4E¢ (fig92 — fa91)
=4£C (26 — a1 — o)

this can be simplified using Eq. (16) to give:

Qg —

w = 4¢ (1~ (a2 + 1)ép)
Thus the frequency ratio at any point along the Hopf locus is:

2
’Yo

©2 1— (a2 + 1)ém

w1

The codimension-two point is where |wy/wi| = 1 on the Hopf locus.
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The frequency ratio |ws/wq| depends on the parameter 7, in addition to the
dependence on parameters a; and ao, Hence the codimension-two point, and also
the locus of MTW states which emerges from this point, depend on . The Hopf
bifurcation locus in Fig. 10 is, however, independent of v9. Thus, by varying o,
it is possible to locate the codimension-two point anywhere on the Hopf curve,
or to eliminate this point from the phase diagram entirely. The value chosen
for g in Fig. 10 is such that the codimension-two point is at the apex of the
Hopf curve, so that the phase diagram for the ODE model closely resembles the
spiral phase diagram in Fig. 2. It is not understood at the present time why,
for spiral waves in excitable media, the ratio between the primary and secondary
frequencies is generally near one and why the codimension-two points often appear
in the vicinity of a sharp turn in the Hopf locus.

Closed-form solutions are not known for the modulated waves which bifurcate
from the rotating waves. Numerical integration of Eqs. (8) has been used to obtain
the modulated waves shown in Figs. 10 and 11. The locus of MTW states (dashed
curve in Fig. 10) has also been obtained numerically by searching for parameter
values which give MTW states. From these simulations, it has been verified that
the locus of Hopf bifurcations in Fig. 10 is everywhere supercritical, i.e. the various
flower patterns grow continuously from circles.

6 Discussion and the future

Throughout this chapter I have taken the point of view that the meandering of
spiral waves in excitable media can and should be examined from the perspec-
tive of bifurcation theory. With this approach, it has been possible to show that
the organizing center for spiral dynamics is a particular codimension-two bifurca-
tion resulting from the interaction of a Hopf bifurcation from rotating waves with
symmetries of the plane. From this observation has followed a simple ordinary-
differential-equation model for spiral meandering.

This work provides the first steps towards explaining why the spiral-tip flower
patterns shown in Figs. 1 and 2 are so pervasive in experiments on, and simula-
tions of, excitable media. From the bifurcation-theoretic view point such flowers
follow inevitably when, in the presence of symmetries of the plane, a rotating wave
becomes unstable at a frequency near its rotational frequency. This is true inde-
pendently of system details. All the flowers seen in Figs. 10 and 11 are obtained
from differential equations which do not depend on the properties of any particular
excitable medium, and in a sense, apply universally to all excitable media.

There remains, then, a crucial open question “Why do periodically rotating
spiral waves in excitable media become unstable in the first place 77 The analysis
of the preceding section explains which dynamics can be expected should a spiral
become unstable, but the analysis does not tell us why spirals become unstable
or why the bifurcating frequency is generally close to the rotation frequency of
the spiral wave. The answer to these questions depends, at least to some extent,
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on the details of excitable media, and so must come from outside the bifurcation
approach taken here. In this regard it is hoped that ongoing work on spiral waves
using either the kinematical approach, e.g. Refs. [22, 40, 39], or the free-boundary
approach, e.g. Refs. [41, 42, 43, 44, 45], will provide needed insight into the
existence of the spiral organizing center.

Finally, even within the bifurcation approach, the ODE model presented is
not complete. For example, including more variables in the model can affect its
dynamics, as can higher-order terms in the functions f,g, and h in Egs. (10).
(These effects have not yet been considered because, as a first step, I wanted to
consider only the simplest case.) Moreover, no direct correspondence has been
established between parameters of the ODE model and the parameters of any
excitable media, though a comparison of the phase diagrams for the ODE model
and the reaction-diffusion equations suggests that this might be accomplished.
There is every reason to believe that it will be possible to capture completely the
dynamics of spiral waves in excitable media with a low-dimensional model similar
to the ODE model considered in this chapter, in spirit if not in form.
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