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Abstract

We derive necessary conditions on a Lie algebra from the existence of a star

product on a neighbourhood of the origin in the dual of the Lie algebra for the

coadjoint Poisson structure which is both di�erential and tangential to all the

coadjoint orbits. In particular we show that when the Lie algebra is semisimple

there are no di�erential and tangential star products on any neighbourhood of the

origin in the dual of its Lie algebra.
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1. Introduction

The notion of star-product on a Poisson manifold, introduced in [1], [2], has been exten-

sively studied in the literature. The existence of star-products has been shown in com-

plete generality in the case of symplectic manifolds using several di�erent approaches.

See [5], [6], [11] and the references cited therein. Recently some progress has been made

for Poisson manifolds in various special cases [6], [10], [12].

Any Poisson manifold is foliated by symplectic manifolds [14] called symplectic leaves

and it is natural to ask if star-products can be constructed on Poisson manifolds by gluing

together star-products on the symplectic leaves. Such a star-product we call tangential.

In the case of regular Poisson manifolds where the leaves have constant dimension the

symplectic methods extend to yield tangential star-products.

The simplest Poisson structures are those where the Poisson tensor is linear in co-

ordinates and these are obtained as the dual of a Lie algebra (the structure constants

are obtained from the Poisson brackets of linear functions). These Poisson tensors are

not regular as they must vanish at the origin. The dual of the Lie algebra of SU(2) has

symplectic leaves the round 2-spheres centered at the origin and so is regular outside

the origin. We initially tried to see if we could choose Fedosov style star-products on

the leaves in a way which would extend over the origin. To be tangential at the origin

would require the higher order terms to vanish there. We found this led already to

a contradiction at the second order terms even if we allowed the choice of symplectic

connection to vary from leaf to leaf.

In this paper we work from the opposite direction with a given Lie algebra by as-

suming that we have a tangential star-product on its dual and seeing what conditions

are imposed on the Lie algebra by the smoothness of the second order terms.

We show that, when we have a tangential star-product on the dual of a Lie algebra,

each invariant quadratic form on the dual forces an associated ideal to be two-step

nilpotent. If the quadratic form is non-degenerate then the ideal is the whole Lie algebra.

The proof uses only the existence of the star-product in a neighbourhood of the origin

and only needs existence and associativity to second order. It essentially says that when

a Lie algebra has a su�ciently complicated coadjoint orbit structure near the origin then

it cannot also have a tangential star-product. In particular we obtain (corollary 3.12):

Theorem 1.1 If g is a semisimple Lie algebra there is no di�erential star-product on

any neighbourhood of the origin in g
� which is tangential to the coadjoint orbits.

Let K be a compact semisimple Lie group and KC = KAN a Iwasawa decomposi-

tion of its complexi�cation. Lu and Weinstein [8] show how K and AN have Poisson

structures which make them into Poisson Lie groups. The Poisson structure on AN is

locally isomorphic to that on k
� in neighbourhoods of the identity and origin respec-

tively. By theorem 1.1 AN gives an example of a Poisson Lie group which does not

have a di�erential star-product which is tangential to the symplectic leaves. We do not

know if the same is true for the Poisson Lie structure on K. See remark 3.14 for more

information.

2. Notation

In what follows we employ the summation convention on pairs of upper and lower indices.
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Let G be a connected Lie group with Lie algebra g. If X1; : : : ; Xn is a basis for g

the structure constants Cij
k are de�ned by

[Xi; Xj] = Cij
kXk

so Cij
k = �Cji

k and the Jacobi Identity translates as

Cij
lClk

m + Cjk
lCli

m + Cki
lClj

m = 0:

Let g� be the dual space of g and �1; : : : ; �n the dual basis so that h�a; Xbi = �ab . The

basis determines linear coordinate functions x1; : : : ; xn on g
� by

� = xa(�)�
a; xa(�) = h�;Xai:

(g; �) 7! g � � = � �Adg�1 denotes the coadjoint action of G on g
� and this di�erentiates

to give the action X � � = �� � adX of g.

Let � be a symmetric bilinear form on g
� with associated quadratic form �(�) =

�(�; �). Then � = �abxaxb where �
ab = �(�a; �b). � de�nes a linear map b� : g� ! g by

h�; b�(�)i = �(�; �); 8�; � 2 g
�:

We transfer the coadjoint action to bilinear forms by (g � �)(�; �) = �(g�1 � �; g�1 � �).

Then

h�; dg � �(�)i = (g � �)(�; �)

= �(g�1 � �; g�1 � �)

= hg�1 � �; b�(g�1 � �)i

= h�;Adg b�(g�1 � �)i

so
dg � � = Adg � b� � g�1:

Say � is invariant if g �� = �; 8g 2 G, then � is invariant if and only if b� intertwines the

adjoint and coadjoint representations. Since G is connected, � is invariant if and only if

the di�erentiated condition

�(X � �; �) + �(�;X � �) = 0; 8X 2 g; �; � 2 g
�

holds. This is equivalent to

�abCbd
c + �cbCbd

a = 0: (1)

If we de�ne

Ci
jk = �jbCib

k; Ci
j
k
= �iaCaj

k; Cijk = �ia�jbCab
k (2)

then invariance of � implies that C is odd when permuting any upper indices.

If � is invariant then the equivariance condition di�erentiates to give

[X; b�(�)] = adX b�(�) = b�(X � �)
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so the image b�(g�) of b� is an ideal in g.

We shall consider the Hochschild coboundary operator � for the algebra N of smooth

functions on a manifold M . A p-cochain is a p-linear map from N � � � � �N (p copies)

to N . On 1- and 2-cochains � is given by

(�F )(u; v) = uF (v)� F (uv) + F (u)v;

(�C)(u; v; w) = uC(v; w)� C(uv; w) + C(u; vw)� C(u; v)w:

We consider only cochains which vanish on the constants. A cochain is called di�erential

if it is given by di�erential operators on each argument.

It has been shown by Vey [13], that any di�erential 2-cocycle C can be written as

C = �F +B

where F vanishes on the constants if C does and B is an antisymmetric di�erential

2-cocycle which is of order 1 in each argument.

3. Tangential star products

Let (M;P ) be a Poisson manifold with Poisson bracket

fu; vg = hdu ^ dv; P i

and set N = C1(M). (M;P ) is called regular if P has constant rank. Recall [1] that a

star-product on (M;P ) is a multiplication map � : N �N ! N [[h]]

u � v = uv +
X
r�1

hrCr(u; v)

such that the binary operation it induces on N [[h]] is associative, has the constant

function 1 for identity and the commutator at �rst order is given by the Poisson bracket

C1(u; v)� C1(v; u) = 2fu; vg:

We say the star-product is di�erential if all its cochains are.

We are interested in di�erential 2-cochains C(u; v) which are tangential to the sym-

plectic leaves of the Poisson manifold and there are a number of ways to de�ne this

depending on how close to regular the Poisson structure is. However we shall not need

the full strength of tangential, but only require that the 2-cochain does not di�erentiate

any function that is constant on the symplectic leaves. If � is such a function then we

say the 2-cochain C(u; v) is �-tangential if it vanishes on constants and satis�es

C(�u; v) = �C(u; v) = C(u;�v); 8u; v 2 N: (3)

Lemma 3.1 A 2-cocycle C is �-tangential if and only if

C(1; u) = C(u; 1) = C(�; u) = C(u;�) = 0; 8u 2 N:
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Proof Vanishing on constants is common to both conditions. If C is �-tangential

then C(�; u) = C(�1; u) = �C(1; u) = 0 and similarly for the second argument.

Conversely, �C = 0 implies that C(�u; v) = �C(u; v)+C(�; uv)�C(�; u)v = �C(u; v)

if C(�; u) = 0 and similarly for the second argument. 2

Note that this lemma is not true for general 2-cochains. Since coboundaries are

cocycles we obtain immediately

Corollary 3.2 A 2-coboundary �F of a 1-cochain F vanishing on constants is �-

tangential if and only if

F (�u) = �F (u) + F (�)u; 8u 2 N:

Remark 3.3 If �F is �-tangential then F (�) = 0 if and only if F (�u) = �F (u), for

all u 2 N .

Remark 3.4 If F (�u) = �F (u), for all u 2 N and � is a �-tangential star-product

then the equivalent star-product �0 de�ned by

u �0 v = (1� hF )�1(((1� hF )u) � ((1� hF )v))

is also �-tangential and the �rst order term is given by C 0
1 = C1 � �F .

Remark 3.5 Given any star-product � which is �-tangential then C1, which is a cocycle

from associativity at order 1, is given by the Poisson bracket plus a coboundary �F where

�F is �-tangential. If we show (c.f. lemma 3.6 below) that �F = �F 0 where F 0(�) = 0

then the star-product �0 given in remark 3.4 is �-tangential and its �rst order term is

the Poisson bracket.

In the case where M = g
� is the dual of a Lie algebra with its coadjoint Poisson

structure, then G-invariant functions � will be constant on leaves and so satisfy (3).

Lemma 3.6 Let F be a 1-cochain vanishing on constants whose 2-coboundary �F is

�-tangential where � is an invariant quadratic polynomial on g
� then �F = �F 0 where

F 0(�) = 0.

Proof Take linear coordinates xi on g
� and suppose F is a di�erential operator of

order k

F (v) =
kX

r=1

A
(r)

i1���ir
@i1���irv

where the coe�cients are smooth and symmetric with respect to permutations of the

indices. We have �F (�; v) = 0 and hence,

kX
r=2

rA
(r)

i1���ir
@i1�@i2���irv +

kX
r=3

r(r�1)

2
A
(r)
i1���ir

@i1i2�@i3���irv = 0
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or, relabelling,

k�1X
s=1

(s+ 1)A
(s+1)
i1j1���js

@i1�@j1���jsv +

k�2X
s=1

(s+1)(s+2)

2
A
(s+2)

i1i2j1���js
@i1i2�@j1���jsv = 0:

Since v is arbitrary, we must have

A
(k)

i1j1���jk�1
@i1� = 0; (4)

A
(s+1)
i1j1���js

@i1�+ s+2
2
A
(s+2)
i1i2j1���js

@i1i2� = 0; s = 1; : : : ; k � 2; (5)

Now

F (�) = A
(1)

i @i�+ A
(2)

i1i2
@i1i2�: (6)

We try to replace the second derivatives in (6) by �rst order terms which we can do

recursively using (5). However it is the �rst of the two terms in (5) which has to be

used, and that has the wrong number of derivatives on �. When we di�erentiate this

also adds a derivative to the other terms. This means that when we come to the next

step we need two derivatives and so on, up to the top term which will need k � 2

derivatives. The process terminates here since there is no @i1i2� term in (4) before

di�erentiating. Proceeding in this way, we reduce all the derivatives in F (�) to �rst

order, say F (�) = X(�). Since this process does not introduce any 0th order terms, it

follows X is a derivation. If we now set F 0 = F �X we have the result. 2

Remark 3.7 It is worth observing that the process for constructing the derivation X

in the above proof is the same for all quadratic functions � so that X depends only on

F and not on �.

As a consequence of this lemma and remark 3.5, in studying �-tangential star-

products on g
� for invariant quadratic forms � we are free to assume that the �rst order

term is the Poisson bracket.

Lemma 3.8 Let Aijk 2 C1(U) where U is a star-shaped neighbourhood of 0 in g
�,

symmetric with respect to permutations of all its indices. If � is an invariant symmetric

bilinear form on g
� and

xr�
rkAijk = xrxs�

abCai
rCbj

s (7)

on U then b�(g�) is two-step nilpotent: [ b�(g�); [ b�(g�); b�(g�)]] = 0.

Proof Since U is star-shaped with respect to 0, Aijk has a Taylor expansion at 0 to

any order. Let aijk
lxl be the linear term, then comparing quadratic terms in (7) we have

xr�
rkaijk

sxs = xrxs�
abCai

rCbj
s;
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hence

�rkaijk
s + �skaijk

r = �abCai
rCbj

s + �abCai
sCbj

r:

If we de�ne
baabcd = �ai�bj�ckaijk

d

then we have, using the symmetry of a in its �rst three indices,

barijs + basijr = �abCa
irCb

js + �abCa
isCb

jr (8)

using (2).

Interchanging r and i in (8) we have

barijs + basrji = ��abCa
irCb

js + �abCa
rsCb

ji (9)

Now

�abCa
rsCb

ji = ��asCa
rbCb

ji

= ��as�cr�djCac
bCbd

i

= �as�cr�dj(Ccd
bCba

i + Cda
bCbc

i)

= �abCb
jrCa

is � �abCb
jsCa

ir

hence (9) becomes

barijs + basrji = �2�abCa
irCb

js + �abCa
isCb

jr: (10)

Adding twice equation (8) to equation (10) gives

3barijs + 2basijr + basrji = 3�abCa
isCb

jr:

The right-hand side of this equation is skew symmetric in j and r, so taking the skew

part of the left-hand side gives

basijr � basirj = 3�abCa
isCb

jr:

But the right-hand side is also skew in i and s and the left-hand side is now symmetric

in i and s, so both must vanish. Thus

0 = �abCa
isCb

jr = ��asCa
ibCb

jr:

Contracting with Xr gives

�as�ic�jd[[Xa; Xc]; Xd] = 0

which is the required condition. 2

In the coordinates x1; : : : ; xn the Poisson structure on C1(g�) is given by

fu; vg = xrCi1j1
r@i1u@j1v:

De�ne a 2-cochain on C1(g�) by

C(u; v) = 1
2
xrxsCi1j1

rCi2j2
s@i1i2u@j1j2v � 1

3
xrCi1j1

sCsi2
r
�
@i1i2u@j1v + @j1u@i1i2v

�
:

Up to a normalization this is the order 2 term in the star product coming from the

enveloping algebra via Poincar�e{Birkho�{Witt. We leave the routine veri�cation of the

following lemma to the reader.
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Lemma 3.9

�C(u; v; w) = ffu; wg; vg

Proposition 3.10 Let g be a Lie algebra, � an invariant bilinear form on g
�, and

� 2 C1(g�) be de�ned as above. If there is a di�erential 2-cochain D(u; v) on C1(U),

where U is a neighbourhood of 0 in g
�, and satisfying

(i) D(�; v) = 0; 8v 2 C1(U);

(ii) �D(u; v; w) = ffu; wg; vg

then b�(g�) is two-step nilpotent.

Proof Shrinking U if necessary we may assume it is star-shaped with respect to 0.

We show that the existence of such a cochain D implies the existence of functions Aijk

satisfying the conditions of lemma 3.8.

By condition (ii) and lemma 3.9 it follows that �(D � C) = 0 hence D � C has the

form

D � C = �T +B

where B is a 2-cocycle involving di�erential operators of order (1; 1) and T is an arbitrary

1-cochain. From condition (i) it follows that

C(�; v) + �T (�; v) +B(�; v) = 0; 8v 2 C1(U)

and hence that C(�; v) + �T (�; v) is a di�erential operator on v of order 1. Let k be

the order of T , then �T (�; v) has order k � 1 whilst

C(�; v) = 1
2
xrxsCi1j1

rCi2j2
s2�i1a �

i2
b �

ab@j1j2v

� 1
3
xrCi1j1

sCsi2
r2�i1a �

i2
b �

ab@j1v � 1
3
xrCi1j1

sCsi2
r2�j1bxb@

i1i2v

= xrxsCaj1
rCbj2

s�ab@j1j2v

� 2
3
xrxsCj2b

aCaj1
r�sb@j1j2v � 2

3
xrCaj1

sCsb
r�ab@j1v

= xrxsCaj1
rCbj2

s�ab@j1j2v

+ 2
3
xrxsCj2b

sCaj1
r�ab@j1j2v � 2

3
xrCaj1

sCsb
r�ab@j1v

= 1
3
xrxsCaj1

rCbj2
s�ab@j1j2v � 2

3
xrCaj1

sCsb
r�ab@j1v:

Hence

�T (�; v) + 1
3
xrxsCaj1

rCbj2
s�ab@j1j2v (11)

is a di�erential operator in v of order 1.

We write T as

T (v) =
kX

r=0

A
(r)

i1���ir
@i1���irv
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where the coe�cients are smooth functions on U , symmetric with respect to permuta-

tions of the indices. Considering terms of order 2 or greater in (11) we have

kX
r=3

rA
(r)

i1���ir
@i1�@i2���irv +

kX
r=4

r(r�1)

2
A
(r)

i1���ir
@i1i2�@i3���irv = 1

3
xpxqCaj1

pCbj2
q�ab@j1j2v

so that

A
(r)

i1���ir
@i1�+ (r�1)

2
A
(r)

i1���ir
@i1i2� = 0; r � 4; (12)

A
(3)

i1j1j2
@i1�+ A

(4)

i1i2j1j2
@i1i2� = 1

3
xpxqCaj1

pCbj2
q�ab: (13)

The argument now follows the same lines as in lemma 3.6: we express the terms

A
(4)

i1i2j1j2
@i1i2� in (13) as �rst order operators acting on � using equation (12) recur-

sively. Renaming the left-hand side as 3
2
Ai1j1j2@

i1� this will satisfy

1
2
Ai1j1j2@

i1� = xrxsCaj1
rCbj2

s�ab

where Aijk is completely symmetric. Since @i1� = 2xr�
ri1 we have a smooth solution of

(7) on a neighbourhood of the origin and so can apply lemma 3.8 to give the result. 2

This proposition yields immediately the following theorem:

Theorem 3.11 If g is a Lie algebra with a star-product on a neighbourhood of 0 in g
�

which is both di�erential and tangential to the coadjoint orbits then b�(g�) is two-step

nilpotent for every invariant bilinear form � on g
�.

Proof An invariant bilinear form will yield a quadratic form � which is constant on

each coadjoint orbit so the cochains of the tangential star-product are �-tangential. If

necessary we replace the given star-product by one whose �rst order term is the Poisson

bracket and which is also �-tangential. The second order term in the star-product will

now satisfy the conditions of the proposition. 2

Corollary 3.12 If g is a semisimple Lie algebra there is no di�erential star-product on

any neighbourhood of the origin in g
� which is tangential to the coadjoint orbits.

Proof If such a star-product existed it would be �-tangential where � is the Killing

form and � the associated quadratic form on g
�. Since the Killing form of a semisimple

Lie algebra is non-degenerate the image of b� is the whole of g. Since g cannot be both

semisimple and two-step nilpotent, no tangential star-product can exist. 2

Remark 3.13 If g is two-step nilpotent, the star-product on g
� induced by the linear

isomorphism between the symmetric algebra S(g) � C1(g�) and the universal envelop-

ing algebra U(g) given by total symmetrization is tangential and di�erential.
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Let � be an invariant bilinear form on g
� and b� : g� ! g the corresponding equivariant

map. We have observed that the image h = b�(g�) is an ideal in g. It is also clear that

there is a well-de�ned bilinear form � on h such that

�( b�(�); b�(�)) = �(�; �)

since � and b� have the same kernel K � g
�. It is equally clear that � is invariant under

all the automorphisms of h induced by the adjoint action of G. Moreover, K is the

annihilator of h in g
�.

Conversely, let g be a Lie algebra with h an ideal and � a G-invariant non-degenerate

bilinear form on h. Then � induces a bilinear form �
�
on h

� which can be extended to

g
� by zero on the annihilator of h:

�(�; �) = �
�
(�jh; �jh):

It is easy to check that � is G-invariant.

So we get a 1{1 correspondence between G-invariant bilinear forms on g
� and G-

invariant non-degenerate bilinear forms on ideals in g.

Thus the algebras which are of interest are two-step nilpotent and have a non-

degenerate invariant bilinear form. We do not know of a classi�cation of these Lie

algebras. To show that we can not in general reduce the problem any further we observe

that we can obtain examples of such algebras by taking a Lie algebra k without centre

and having a nondegenerate invariant bilinear form �0. We set g = k� k as vector spaces

with bracket

[(X;X 0); (Y; Y 0)] = (0; [X; Y ])

and bilinear form

�((X;X 0); (Y; Y 0)) = �0(X; Y
0) + �0(X

0; Y ):

The invariance of � is equivalent to the invariance of �0.

Remark 3.14 Let k be a compact semisimple Lie algebra, g its complexi�cation and

g = k+ a+ n a Iwasawa decomposition when viewed as a real Lie algebra, where ia is a

maximal toral subalgebra of k. In [8] Lu and Weinstein showed that (g; k; a+ n) has the

structure of a Manin triple. This gives the simply connected Lie group AN a Poisson

Lie group structure whose Poisson tensor has linear part at the identity element the

coadjoint Poisson structure on k
�. Since k is compact semisimple, it follows from a result

of Conn [4] that the Poisson structure on AN is linearizable in a neighbourhood of the

identity element. In fact, in [9] Ginzburg and Weinstein have shown that the Poisson

structures on k
� and AN are globally di�eomorphic, a result which was conjectured

by Lu and Ratiu in [7]. Thus any tangential di�erential star product on AN which is

tangential to the symplectic leaves would induce a tangential di�erential star product

on k
� and as we have seen that is not possible for semisimple k. Hence the groups AN

with their Poisson structure coming from the Iwasawa decomposition give examples of

Poisson Lie groups which have no di�erential star product tangential to the symplectic

leaves.

A similar argument does not apply to the Poisson Lie structure on K since we know

from [3] that if K is not a product of copies of SU(2) then its Poisson Lie structure is not
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isomorphic near the identity element to a neighbourhood of the origin in (a+ n)�. Not

only that, but it is not di�cult to show (using Remark 3.13) that (a+n)� has no invariant

bilinear forms, so our approach imposes no conditions on tangential deformations. Thus

it is an open question whether or not there is a di�erential star product on K or on

(a+ n)� which is tangential to the symplectic leaves.
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