
Symmetri sympleti spaeswith Rii-type urvatureM. Cahen�mahen�ulb.a.beUniversit�e Libre de BruxellesCampus Plaine, CP 218bd du Triomphe1050 Brussels, BelgiumS. Gutt�sgutt�ulb.a.beUniversit�e Libre de BruxellesCampus Plaine, CP 218bd du Triomphe1050 Brussels, Belgium and Universit�e de MetzIle du Sauly57045 Metz Cedex 01, FraneJ. Rawnsleyj.rawnsley�warwik.a.ukMathematis InstituteUniversity of WarwikCoventry CV4 7AL, UKDeember 1999AbstratWe determine the isomorphism lasses of symmetri sympleti manifolds of dimen-sion at least 4 whih are onneted, simply-onneted and have a urvature tensor whihhas only one non-vanishing irreduible omponent { the Rii tensor.Keywords: Sympleti onnetion, symmetri spaeMathematis Subjet Classi�ation (1991): 53C05, 58C35, 53C57.Mosh�e Flato has been a lose and wonderful friend and an inspiration for usfor more than twenty years. This ontribution is dediated to him, alwayspresent in our hearts.To appear in the proeedings of the Conferene Mosh�e Flato, Dijon, 1999.�Researh supported by the Communaut�e fran�aise de Belgique, through an Ation de Reherhe Conert�eede la Diretion de la Reherhe Sienti�que.



1 IntrodutionOn any sympleti manifold (M;!) the spae of sympleti onnetions (linear onnetionsr with vanishing torsion and suh that r! = 0) is in�nite dimensional. In order to selet asmaller family of sympleti onnetions, a variational priniple was introdued in [2℄. Thispriniple has Euler-Lagrange equations(rXr)(Y; Z) + (rY r)(Z;X)+ (rZr)(X; Y ) = 0 (1)for all vetor �elds X; Y; Z; r denotes the Rii tensor of rr(X; Y ) = Tr(Z 7! R(X;Z)Y ):In [2℄ the ase where dimM = 2 was examined in omplete detail so we shall assumethroughout the dimM � 2.It was observed in [3℄ that the �eld equations (1) are identially satis�ed if one assumesthat the irreduible omponent of the urvature, denoted there by W (see also [5℄), vanishesW = 0: (2)The tensorW is the sympleti analogue of the Weyl or onformal urvature of a Riemannianonnetion. The vanishing of W (equation (2)) is equivalent to the requirement that theurvature tensor R of r is expressed in terms of its Rii tensor byR(X; Y )Z = 12(n+ 1)�2!(X; Y )AZ + !(X;Z)AY � !(Y;AZ)X�!(Y; Z)AX + !(X;AZ)Y � (3)where dimM = 2n, n � 2, where X; Y; Z are vetor �elds and where A is the Rii tensorviewed as an endomorphism of the tangent bundle using !:r(X; Y ) = !(X;AY ): (4)The Rii tensor is symmetri so A is an in�nitesimal sympleti endomorphism of eahtangent spae.Equations (2) (or (3)) imply the existene of a 1-form u on (M;!) suh that(rXr)(Y; Z) = !(X; Y )u(Z) + !(X;Z)u(Y ): (5)If u = 0, then rr = 0 and sine R is expressed in terms of r (3), r is loally symmetri.The ondition W = 0 also appears as the integrability ondition for the almost omplexstruture naturally de�ned from a sympleti onnetion on (M;!) on the manifold J (M)of almost omplex stutures on M whih are ompatible with !.In this note we prove, amongst other things, the following two results.2



Theorem 1 Let (M;!) = (M1; !1)� (M2; !2) be sympleti manifolds of dimension greaterthan zero and r = r1 +r2 be a sympleti onnetion. If Wr = 0 then r;r1;r2 are at.Theorem 2 Let (M;!; s) be a onneted, simply-onneted, symmetri sympleti spae ofdimension 2n(� 4); let r be its anonial invariant sympleti onnetion and let r be itsRii tensor; let A be the orresponding endomorphism!(X;AY ) = r(X; Y ):Assume Wr = 0. Then A2 = � Idfor some real number �.If � 6= 0, the transvetion group G of (M;!; s) is semisimple and, up to overings,M = G=K with either G = SL(n + 1;R) and K = GL(n;R) or G = SU(p + 1; q) andK = U(p; q) where dimM = 2n, p+ q = n.If � = 0 and Rank(A) > 1, the transvetion group G of (M;!; s) is neither solvable norsemisimple. The radial of G is 2-step unipotent if Rank(A) < n and abelian in Rank(A) =n. If � = 0 and Rank(A) = 1, the transvetion group G of (M;!; s) is solvable.2 Proof of Theorem 1Let (M;!) = (M1; !1)� (M2; !2) be sympleti manifolds and r = r1+r2 be a sympletionnetion. Then R(X; Y )Z = R1(X1; Y1)Z1 + R2(X2; Y2)Z2 where X = X1 + X2, Y =Y1 + Y2, Z = Z1 +Z2 and suÆes indiate omponents tangent to M1 and M2, respetively.Then also r(X; Y ) = r1(X1; Y1) + r2(X2; Y2). On the other hand, the relation between W ,W1 and W2 involves ross terms C(X; Y )Z:W (X; Y )Z = W1(X1; Y1)Z1 +W2(X2; Y2)Z2 + C(X; Y )Z:These an be read o� equation (3). Then W = 0 implies W1 = 0, W2 = 0 and C = 0. Wehave C(X1; Y1)Z2 = 12(n+ 1)��2!(X1; Y1)A2Z2�so A2 = 0 and interhanging 1 and 2 we see also A1 = 0. Thus r1 = 0 and r2 = 0, and heneR1 = 0 and R2 = 0.3 Some fats about symmetri sympleti spaesAÆne symmetri spaes are studied in Loos [4℄, sympleti symmetri spaes are studied inBieliavsky [1℄. 3



De�nition 3 A symmetri sympleti manifold is a triple (M;!; s) where M is asmooth onneted manifold, where ! is a smooth sympleti form on M and where s isa smooth map M �M !M , (x; y) 7! sx(y), suh that:(i) for eah x in M , sx is an involutive sympleti di�eomorphism of (M;!) (alled thesymmetry at x) and x is an isolated �xed point of sx,(ii) sxsysx = ssx(y) for all x; y in M .The transvetion group G of (M;!; s) is the group generated by produts of an evennumber of symmetries.We reall below some general fats about symmetri spaes ([4℄, [1℄).(1) (M;!; s) has a unique onnetion r suh that r! = 0 and suh that eah sym-metry sx is an aÆne transformation of (M;r). Observe that sx�x = � IdTxM beause(sx�x)2 = IdTxM and x is an isolated �xed point of sx. Sine !x(rXY; Z) = 12(!x(rXY; Z)+(sx�!)x(rXY; Z)), the onnetion is given by!x(rXY; Z) = 12Xx(!(Y + sx � Y; Z)) (6)for x 2M , where X; Y; Z are vetor �elds on M and (sx � Y )y = sx�Ysx(y). This onnetionr has no torsion and is thus a sympleti onnetion. The symmetry sx oinides with thegeodesi symmetry around x, sine an aÆnity is determined by its 1-jet at a point.(2) The automorphism group Aut = Aut(M;!; s) of (M;!; s) is the set of sympletiautomorphisms ' of (M;!) suh ' Æ sx = s'(x) Æ ', 8x 2 M . It is the intersetion of theaÆne group of (M;r) and the sympleti di�eomorphism group of (M;!). It is thus a Liegroup ontaining the transvetion group so ats transitively on M (sine any two points inM an be joined by a broken geodesi).Choose a base point o in M . Denote by e� the onjugation by the symmetry so, it is aninvolutive automorphism of Aut.Let K 0 denote the stabilizer of o in Aut and let Ae� (respetively Ae�o ) denote the groupof �xed points of e� in Aut (respetively its onneted omponent). Then Ae� � K 0 � Ae�o .Hene, if a (respetively k0) is the Lie algebra of Aut (respetively K 0) and if � = e�?Id,then k0 is the subalgebra of a of �xed points of �.(3) Let p = fX 2 a j �(X) = �Xg. Then a = k0 � p.Denote by �0 the projetion Aut! M given by �0(g) = g � o. Then �0�ejp: p! ToM is alinear isomorphism whih identi�es the tangent spae ToM with p.4



Denote by Exp:ToM !M the exponential map given by the onnetion r at the pointo and by exp the exponential map from the Lie algebra a to the Lie group Aut.Observe that sExp t2Xso, X 2 ToM , is an aÆnity in G whih realises the parallel transportalong Exp tX , sine sExpuX� for any u 2 R maps a vetor �eld whih is parallel along thegeodesi Exp tX to another suh parallel vetor �eld. Hene sExp t2�0?eXso = exp tX , 8X 2 p.It follows that the transvetion group G, whih is stable by e�, is the onneted Liesubgroup of Aut(M;!; s) whose Lie algebra isg = k� p where k = [p; p℄: (7)Indeed, if G1 denotes that subgroup, learly by the above G1 � G and the parallel transportalong a geodesi Exp tX is in G1, but then any x 2M an be written as x = g � o for g 2 G1hene sxso = gsog�1so = ge�(g�1) 2 G1 and G � G1.Let K denote the stabilizer of o in G. Its Lie algebra is k and k = fX 2 g j �(X) = Xg.Sine the Lie group G ats e�etively on M , the representation of K on ToM , k 7! k�o, isfaithful so k ats faithfully on p.(4) Denote by � the projetion �:G ! M where �(g) = g � o. Denote by X� the vetor�eld on M whih is the image under �� of the right invariant vetor �eld on G, i.e. X�g�o =ddt exp tX �g �ojt=0. Observe that [X�; Y �℄ = �[X; Y ℄�. Sine ! is invariant under G, formula(6) yields !x(rY �X�; Z�) = 12!x([Y �; X�+sx �X�℄; Z�) so (rX�Y �)x = [X�; Y �℄+ 12 [Y �; X�+sx �X�℄. But sg�o �X� = g � so � g�1 �X� = (Ad g�(Adg�1X))� so the onnetion has the form(rX�Y �)g�o = ([Y;Adg(Ad g�1X)p℄)�g�o (8)where Zp denotes the omponent in p of Z 2 g relatively to the deomposition g = p� k andwhere [ ; ℄ is the braket in g.Sine any G-invariant tensor on M is parallel, the urvature tensor of (M;r) is parallel(rR = 0) and if X; Y; Z belong to p, one has,Ro(X�o ; Y �o )Z�o = �([[X; Y ℄; Z℄)�o: (9)De�nition 4 A symmetri sympleti triple is a triple (g; �;
) where g is a �nitedimensional real Lie algebra, � is an involutive automorphism of g suh that if we writeg = k� p with � = Idk�� Idp, then� [p; p℄ = k;� the ation of k on p is faithful 5



and where 
 is a non degenerate skewsymmetri 2-form on p, invariant by k under the adjointation.We have seen above that to any onneted symmetri sympleti manifold (M;!; s),when one hooses a base point o 2M , one assoiates a symmetri sympleti triple (g; �;
)with g the Lie algebra of its transvetion group, with � the di�erential at the identity of theonjugation by the symmetry so and with 
 = !o with the identi�ation between ToM andp. Reiproally, given a symmetri sympleti triple (g; �;
), one builds a simply-onnetedsymmetri sympleti spae (M;!; s) with M = G=K where G is the simply-onneted Liegroup with Lie algebra g and K is its onneted subgroup with Lie algebra k, with ! theG-invariant 2-form on M whose value at eK is given by 
 (identifying TeKM and p viathe di�erential of the anonial projetion �:G ! G=K) and with symmetries de�ned bys�(g)�(g0) = �(ge�(g�1g0)) where e� is the automorphism of G whose di�erential at e is �.4 Proof of Theorem 2Consider a symmetri sympleti spae (M;!; s) and assume that its anonial invariantsympleti onnetion r has a urvature with W = 0.Sine rR = 0, the Rii tensor r and its assoiated endomorphism A (where r(X; Y ) =!(X;AY )) are ovariantly onstant and hene A ommutes with the urvature endomorph-isms AR(X; Y ) = R(X; Y )A:This implies, when we substitute R by its expression in terms of A into equation (3)�!(X;Z)A2Y + !(Y; Z)A2X = !(Y;A2Z)X � !(X;A2Z)Y:If Y 6= 0 is arbitrary, Z = Y , and we pik X so that !(X; Y ) = 1, then !(Y;A2Y ) =!(AY;AY ) = 0, so A2Y = �Y Y for some funtion �Y . Substituting bak into the equationshows that �Y = � is independent of Y , and sine A is ovariant onstant, � must beonstant.Remark that if � 6= 0 then r is a non-degenerate parallel symmetri bilinear form so ris its Levi-Civita onnetion and (M; r; s) is a pseudo-Riemannian symmetri spae.Let G be the transvetion group of our symmetri sympleti spae. Choose a base pointo 2M and let (g; �;
) be the symmetri triple assoiated to (M;!; s). Let g = k+ p be thedeomposition of the Lie algebra of G into the +1 and �1 eigenspaes of �. Then 
(X; Y ) =!o(X�o ; Y �o ) and with a slight abuse of notations we denote by R the map R: p�p! End(p) so6



that (R(X; Y )Z)�o = Ro(X�o ; Y �o )Z�o and by A the map A: p! p so that (A(X))�o = Ao(X�o ).Sine k ats faithfully on p, we view k as a subset of End(p); by formula (9),k = fR(X; Y ) 2 End(p) j X; Y 2 pg (10)and the brakets on g � p� End(p) are[(C;X); (D; Y )℄ = ([C;D℄�R(X; Y ); CY �DX) (11)where C;D 2 k � End(p), and X; Y 2 p.De�ne the 1-form on p orresponding to a vetor X 2 p by X = i(X)
. Formula (3)giving the urvature when W = 0 is equivalent toR(X; Y ) = k (2
(X; Y )A+AY 
X �AX 
 Y +X 
 AY � Y 
AX)where k = 1=(m+2) if m = dimM = 2n. Note that, for a sympleti symmetri spae builtfrom a Lie algebra g = k + p whose braket of p into k is given by this formula, then theanonial onnetion will have urvature given by this formula and hene W will vanish.De�ne B = Y 
X �X 
Y . Clearly B satis�es 
(U;BV ) = 
(BU; V ) and any antisym-pleti endomorphism of p an be written as a sum of suh operators. ThenR(X; Y ) = k(Tr(B)A +AB + BA)and, if we put B0 = k(B + 12 Tr(B)I), the RHS beomes C = AB0 +B0A.Lemma 5 For any �,k = fC = AB + BA j B 2 End(p) and 
(X;BY ) = 
(BX; Y )g:If � 6= 0 then k is the set of endomorphisms C 2 End(p) whih are in�nitesimally sympletiand ommute with A.Proof The �rst part follows from the onsiderations above and the fat that the mapB 7! B + 12 Tr(B) is a bijetion on the spae of antisympleti endomorphisms of p. Commutes with A sine AC = �B0 + AB0A = CA. Also 
(X;CY ) = �
(AX;B0Y ) +
(B0X;AY ) = �
(B0AX; Y )� 
(AB0X; Y ) = �
(CX; Y ).Conversely, if � 6= 0, given C ommuting with A and suh that 
(X;CY ) = �
(CX; Y ),let B = 12��1AC; then BA +AB = 12��12�C = C: 27



4.1 Case � > 0Write � = a2, a > 0. Then p = V + � V � where V � = fX 2 p j AX = �aXg. Let P� bethe projetion onto V �. Then A = a(P+ � P�). Clearly!(V +; V +) = !(V �; V �) = 0R(V +; V +) = R(V �; V�) = 0R(X; Y ) = 2ka(
(X; Y )(P+ � P�)� Y 
X �X 
 Y );for X 2 V +, Y 2 V �. It follows that V � are Lagrangian subspaes of p. Identifying V �with (V +)� via Y 7! Y jV + and renaming V + as V , we have identi�ed p with V � V � withits standard sympleti struture 
(X + �;X 0 + �0) = �hX; �0i+ hX 0; �i, and A ats as +aon V , �a on V �. With this notation the urvature has the formR(X; �) = 2ak(�hX; �i(IdV � IdV �) + � 
X �X 
 �):The sympleti entraliser of A an then be identi�ed with End(V ) = gl(V ), identifyingthe element in End(p) = End(V � V �) given by C 00 �tC !with the element C 2 gl(V ).So k = gl(V ) and as a vetor spae g = gl(V )� V � V � with the brakets[(C;X; �); (C0; X 0; �0)℄ = ([C;C 0℄ + 2ka(hX; �0i � hX 0; �i)I+2kaX 
 �0 � 2kaX 0
 �;CX 0 � C 0X;�tC�0 + tC 0�):The map j: g! sl(V �R) given byj(C;X; �) =  C � 2kTr(C)I sXs t� �2kTr(C) !has the brakets above provided s2 = 2ka.Thus when � > 0, M = G=K where G = SL(n + 1;R), K = GL(n;R). The involution� is given by � C v� �Tr(C) ! =  C �v�� �Tr(C) !and, writing (X; �) for  0 X� 0 !, the sympleti form is given by
 �(X; �); (X 0; �0)� = �hX; �0i+ hX 0; �i:8



The urvature of the anonial onnetion on this sympleti symmetri spae at the basepoint eK is R((X; �); (X 0; �0))(X 00; �00) = (X 00(hX 0; �i � hX; �0i)�XhX 00; �0i+X 0hX 00; �i ; �0hX; �00i � �hX 0; �00i � �00(hX 0; �i � hX; �0i))r((X; �); (X 0; �0)) = (n+ 1)(hX; �0i+ hX 0; �i)A(x; �) = (n+ 1)(x;��)and formula (3) holds so R is of Rii-type.4.2 Case � < 0We write � = �b2 where b < 0. If we put J = b�1A then J de�nes a omplex struture onthe vetor spae p. We write V for p viewed as an n-dimensional omplex vetor spae. Vhas a (pseudo-)Hermitean struture given byhX; Y i = 
(X; JY ) + i
(X; Y )whih is C -linear in the seond variable. The in�nitesimally sympleti transformationswhih ommute with A, or equivalently J , are the omplex linear transformations of Vwhih are skew-Hermitean with respet to this Hermitean struture. Thus k is the (pseudo-)unitary Lie algebra u(V; h ; i).The urvature has the formR(X; Y ) = kb (2
(X; Y )J + Y 
 hX; : i �X 
 hY; : i) :Then g = u(V; h ; i)� V with braket[(C;X); (C 0; X 0)℄ = ([C;C 0℄ + kb(X 
 hX 0; : i �X 0 
 hX; : i�2
(X;X 0)J); CX 0� C 0X):and g an be identi�ed with su(V � C ; hh ; ii) viaj(C;X) =  C � 2kTr(C)I sX�shX; : i �2kTr(C) !with hh(v; r); (w; t)ii= hv; wi+ rtprovided ss = �kb:9



Hene when � < 0 then M = G=K with g = su(p+ 1; q), p+ q = n, k = u(p; q),� C v�hv; : i �Tr(C) ! =  C �vhv; : i �Tr(C) !and 
(v; w) = Imhhv; wii:The urvature of the anonial onnetion on this symmetri sympleti spae at eK isR(v; w)z = vhw; zi � whv; zi+ z(�hv; wi+ hw; vi)r(v; z) = �2(n+ 1)hv; ziA(v) = �2(n+ 1)ivand formula (3) holds so R is of Rii-type.4.3 Case � = 0In this ase A is nilpotent sine A2 = 0. Let Z = ImageA and eZ = KerA. Then Z � eZ,and Z and eZ are sympleti orthogonals of eah other. If V denotes a omplement for Zin eZ, then the restrition of 
 to V is non-degenerate. Z is ontained in the 
-orthogonalof V ; let Z 0 be a omplement so that V ? = Z � Z 0. V ? is a sympleti subspae and Z ismaximal isotropi so we an also suppose that Z 0 is maximal isotropi. 
 gives a duality ofZ with Z 0.In other words, we have written p as Z � Z� � V where Z � Z� has its standard sym-pleti struture and V is a sympleti vetor spae. A is non-zero only on Z� and maps itisomorphially onto Z, and as suh it is symmetri. In blok form, the sympleti struture
 is given by 0BB� 0 �I 0I 0 00 0 J 0 1CCAand A by 0BB� 0 A0 00 0 00 0 0 1CCAwhere A0, by a suitable hoie of basis is diagonal with �1 on the diagonal. An easy al-ulation shows that matries of the form AB + BA with 
(X;BY ) = 
(BX; Y ) have the10



form 0BB� K L �tMJ 00 �tK 00 M 0 1CCAwhere tKA0 + A0K = 0, tL = L. The matries with K = 0 form an ideal whih is 2-stepnilpotent (abelian when RankA = n = 12 dimM) and the matries with L = M = 0 asubalgebra isomorphi to so(p; q), where p+ q = r = RankA, p the number of +'s and q thenumber of �'s in A0 (hene (p; q) is the signature of the non degenerate symmetri bilinearform naturally indued on p=KerA by the Rii tensor 
(X;AY )).The braket of p into k is given, using formulas (11) and (3) by26640BB� uvw 1CCA ;0BB� u0v0w0 1CCA3775 = �k0BB� ~K = A0(v0tv � vtv0) ~L �t ~MJ 0)0 �t ~K 00 ~M 0 1CCAwhere ~L = A0B+tBA0+2(TrB+twJ 0w0)A0 withB = vtu0�v0tu and ~M = �t(A0(v0tw�vtw0)).Then g = k + p = f(K;L;M; u; v;w) j K 2 so(p; q); L 2 Mat(r � r;R); tL = L;M 2Mat(2n � 2r � r;R); u 2 Z = Rr; v 2 Z�; w 2 W = R2n�2rg. The brakets are given, withobvious notations, by[(K;L;M); (K0; L0;M 0)℄ = ([K;K 0℄; L00;�M tK0 +M 0tK)where L00 = KL0 � LtK 0 �K 0L+ L0tK � tMJ 0M 0 + tM 0J 0M ,[(K;L;M); (u; v;w)℄ = (Ku+ Lv � tMJ 0w;�tKv;Mv);[(u; v; w); (u0; v0; w0)℄ = (�kA0(v0tv � vtv0);�k ~L; k t(A0(v0tw � vtw0)))where ~L is de�ned as above.We an ombine so(p; q) with Z� to give so(p; q + 1) via(K; v) 7!  K �k1=2A0v�k1=2 tv 0 ! :The subset r = f(0; L;M; u; 0; w) 2 gg is a 2-step nilpotent ideal of g (abelian when r = ni.e. when the rank of the Rii tensor is half the dimension of the manifold). Hene, whenp + q = r > 1, r is the radial of g and the semisimple Levi fator of g is isomorphi toso(p; q + 1). 11



5 Some orollariesCorollary 6 Let (Mi; !i; si), i = 1; 2 be symmetri sympleti spaes of the same dimension2n with Wi = 0 with semisimple transvetion groups Gi. Then GC1 = GC2 .Proof SL(n+ 1;R) and SU(p+ 1; q) both have SL(n+ 1; C ) as omplexi�ation. 2Corollary 7 Let (M;!; s) be a ompat, simply-onneted symmetri sympleti spae ofdimension 2n suh that W = 0 then (M;!; s) is Pn(C ).Proof This follows immediately from the list in Theorem 2. The only ase where G=K isompat is when G = SU(n+ 1) and K = U(n). 2In dimension 4 we have the following list of possibilities (up to overings) for M :� SL(3;R)=GL(2;R);� SU(1; 2)=U(2);� SU(2; 1)=U(1; 1);� SU(3)=U(2);� � = 0 ases orresponding to:Æ RankA = 1, p = 0 or p = 1;Æ RankA = 2, p = 0, p = 1 or p = 2.Referenes[1℄ P. Bieliavsky, Espaes sym�etriques sympletiques , th�ese de dotorat, Universit�e Libre deBruxelles, 1995.[2℄ F. Bourgeois and M. Cahen, A variational priniple for sympleti onnetions, J. Geo-metry and Physis 30 (1999), 233{265.[3℄ M. Cahen, S. Gutt and J. Rawnsley, Sympleti onnetions with parallel Rii tensor.To appear in the Banah Center Publiations.[4℄ O. Loos, Symmetri Spaes, Benjamin, New York, 1969.[5℄ I. Vaisman, Sympleti urvature tensors, Monatshefte Math. 100 (1985), 299{327.12


