Symmetric symplectic spaces with Ricci-type curvature

M. Cahen*
mcahen@ulb.ac.be
Université Libre de Bruxelles
Campus Plaine, CP 218
bd du Triomphe
1050 Brussels, Belgium

S. Gutt*
 sgutt@ulb.ac.be

Université Libre de Bruxelles	and
Campus Plaine, CP 218	Université de Metz
bd du Triomphe	Ile du Saulcy
1050 Brussels, Belgium	57045 Metz Cedex 01, France

J. Rawnsley
j.rawnsley@warwick.ac.uk

Mathematics Institute
University of Warwick
Coventry CV4 7AL, UK
December 1999

Abstract

We determine the isomorphism classes of symmetric symplectic manifolds of dimension at least 4 which are connected, simply-connected and have a curvature tensor which has only one non-vanishing irreducible component - the Ricci tensor.

Keywords: Symplectic connection, symmetric space
Mathematics Subject Classification (1991): 53C05, 58C35, 53C57.

Moshé Flato has been a close and wonderful friend and an inspiration for us for more than twenty years. This contribution is dedicated to him, always present in our hearts.

[^0]
1 Introduction

On any symplectic manifold (M, ω) the space of symplectic connections (linear connections ∇ with vanishing torsion and such that $\nabla \omega=0$) is infinite dimensional. In order to select a smaller family of symplectic connections, a variational principle was introduced in [2]. This principle has Euler-Lagrange equations

$$
\begin{equation*}
\left(\nabla_{X} r\right)(Y, Z)+\left(\nabla_{Y} r\right)(Z, X)+\left(\nabla_{Z} r\right)(X, Y)=0 \tag{1}
\end{equation*}
$$

for all vector fields $X, Y, Z ; r$ denotes the Ricci tensor of ∇

$$
r(X, Y)=\operatorname{Tr}(Z \mapsto R(X, Z) Y)
$$

In [2] the case where $\operatorname{dim} M=2$ was examined in complete detail so we shall assume throughout the $\operatorname{dim} M \geq 2$.

It was observed in [3] that the field equations (1) are identically satisfied if one assumes that the irreducible component of the curvature, denoted there by W (see also [5]), vanishes

$$
\begin{equation*}
W=0 . \tag{2}
\end{equation*}
$$

The tensor W is the symplectic analogue of the Weyl or conformal curvature of a Riemannian connection. The vanishing of W (equation (2)) is equivalent to the requirement that the curvature tensor R of ∇ is expressed in terms of its Ricci tensor by

$$
\begin{gather*}
R(X, Y) Z=\frac{1}{2(n+1)}[2 \omega(X, Y) A Z+\omega(X, Z) A Y-\omega(Y, A Z) X \\
-\omega(Y, Z) A X+\omega(X, A Z) Y] \tag{3}
\end{gather*}
$$

where $\operatorname{dim} M=2 n, n \geq 2$, where X, Y, Z are vector fields and where A is the Ricci tensor viewed as an endomorphism of the tangent bundle using ω :

$$
\begin{equation*}
r(X, Y)=\omega(X, A Y) \tag{4}
\end{equation*}
$$

The Ricci tensor is symmetric so A is an infinitesimal symplectic endomorphism of each tangent space.

Equations (2) (or (3)) imply the existence of a 1 -form u on (M, ω) such that

$$
\begin{equation*}
\left(\nabla_{X} r\right)(Y, Z)=\omega(X, Y) u(Z)+\omega(X, Z) u(Y) \tag{5}
\end{equation*}
$$

If $u=0$, then $\nabla r=0$ and since R is expressed in terms of $r(3), \nabla$ is locally symmetric.
The condition $W=0$ also appears as the integrability condition for the almost complex structure naturally defined from a symplectic connection on (M, ω) on the manifold $\mathcal{J}(M)$ of almost complex stuctures on M which are compatible with ω.

In this note we prove, amongst other things, the following two results.

Theorem 1 Let $(M, \omega)=\left(M_{1}, \omega_{1}\right) \times\left(M_{2}, \omega_{2}\right)$ be symplectic manifolds of dimension greater than zero and $\nabla=\nabla_{1}+\nabla_{2}$ be a symplectic connection. If $W^{\nabla}=0$ then $\nabla, \nabla_{1}, \nabla_{2}$ are flat.

Theorem 2 Let (M, ω, s) be a connected, simply-connected, symmetric symplectic space of dimension $2 n(\geq 4)$; let ∇ be its canonical invariant symplectic connection and let r be its Ricci tensor; let A be the corresponding endomorphism

$$
\omega(X, A Y)=r(X, Y)
$$

Assume $W^{\nabla}=0$. Then

$$
A^{2}=\lambda \mathrm{Id}
$$

for some real number λ.
If $\lambda \neq 0$, the transvection group G of (M, ω, s) is semisimple and, up to coverings, $M=G / K$ with either $G=S L(n+1, \mathbb{R})$ and $K=G L(n, \mathbb{R})$ or $G=S U(p+1, q)$ and $K=U(p, q)$ where $\operatorname{dim} M=2 n, p+q=n$.

If $\lambda=0$ and $\operatorname{Rank}(A)>1$, the transvection group G of (M, ω, s) is neither solvable nor semisimple. The radical of G is 2-step unipotent if $\operatorname{Rank}(A)<n$ and abelian in $\operatorname{Rank}(A)=$ n. If $\lambda=0$ and $\operatorname{Rank}(A)=1$, the transvection group G of (M, ω, s) is solvable.

2 Proof of Theorem 1

Let $(M, \omega)=\left(M_{1}, \omega_{1}\right) \times\left(M_{2}, \omega_{2}\right)$ be symplectic manifolds and $\nabla=\nabla_{1}+\nabla_{2}$ be a symplectic connection. Then $R(X, Y) Z=R_{1}\left(X_{1}, Y_{1}\right) Z_{1}+R_{2}\left(X_{2}, Y_{2}\right) Z_{2}$ where $X=X_{1}+X_{2}, Y=$ $Y_{1}+Y_{2}, Z=Z_{1}+Z_{2}$ and suffices indicate components tangent to M_{1} and M_{2}, respectively. Then also $r(X, Y)=r_{1}\left(X_{1}, Y_{1}\right)+r_{2}\left(X_{2}, Y_{2}\right)$. On the other hand, the relation between W, W_{1} and W_{2} involves cross terms $C(X, Y) Z$:

$$
W(X, Y) Z=W_{1}\left(X_{1}, Y_{1}\right) Z_{1}+W_{2}\left(X_{2}, Y_{2}\right) Z_{2}+C(X, Y) Z
$$

These can be read off equation (3). Then $W=0$ implies $W_{1}=0, W_{2}=0$ and $C=0$. We have

$$
C\left(X_{1}, Y_{1}\right) Z_{2}=\frac{1}{2(n+1)}\left[-2 \omega\left(X_{1}, Y_{1}\right) A_{2} Z_{2}\right]
$$

so $A_{2}=0$ and interchanging 1 and 2 we see also $A_{1}=0$. Thus $r_{1}=0$ and $r_{2}=0$, and hence $R_{1}=0$ and $R_{2}=0$.

3 Some facts about symmetric symplectic spaces

Affine symmetric spaces are studied in Loos [4], symplectic symmetric spaces are studied in Bieliavsky [1].

Definition 3 A symmetric symplectic manifold is a triple (M, ω, s) where M is a smooth connected manifold, where ω is a smooth symplectic form on M and where s is a smooth map $M \times M \rightarrow M,(x, y) \mapsto s_{x}(y)$, such that:
(i) for each x in M, s_{x} is an involutive symplectic diffeomorphism of (M, ω) (called the symmetry at x) and x is an isolated fixed point of s_{x},
(ii) $s_{x} s_{y} s_{x}=s_{s_{x}(y)}$ for all x, y in M.

The transvection group G of (M, ω, s) is the group generated by products of an even number of symmetries.

We recall below some general facts about symmetric spaces ([4], [1]).
(1) (M, ω, s) has a unique connection ∇ such that $\nabla \omega=0$ and such that each symmetry s_{x} is an affine transformation of (M, ∇). Observe that $s_{x * x}=-\operatorname{Id}_{T_{x} M}$ because $\left(s_{x * x}\right)^{2}=\operatorname{Id}_{T_{x} M}$ and x is an isolated fixed point of s_{x}. Since $\omega_{x}\left(\nabla_{X} Y, Z\right)=\frac{1}{2}\left(\omega_{x}\left(\nabla_{X} Y, Z\right)+\right.$ $\left.\left(s_{x}{ }^{*} \omega\right)_{x}\left(\nabla_{X} Y, Z\right)\right)$, the connection is given by

$$
\begin{equation*}
\omega_{x}\left(\nabla_{X} Y, Z\right)=\frac{1}{2} X_{x}\left(\omega\left(Y+s_{x} \cdot Y, Z\right)\right) \tag{6}
\end{equation*}
$$

for $x \in M$, where X, Y, Z are vector fields on M and $\left(s_{x} \cdot Y\right)_{y}=s_{x *} Y_{s_{x}(y)}$. This connection ∇ has no torsion and is thus a symplectic connection. The symmetry s_{x} coincides with the geodesic symmetry around x, since an affinity is determined by its 1 -jet at a point.
(2) The automorphism group Aut $=\operatorname{Aut}(M, \omega, s)$ of (M, ω, s) is the set of symplectic automorphisms φ of (M, ω) such $\varphi \circ s_{x}=s_{\varphi(x)} \circ \varphi, \forall x \in M$. It is the intersection of the affine group of (M, ∇) and the symplectic diffeomorphism group of (M, ω). It is thus a Lie group containing the transvection group so acts transitively on M (since any two points in M can be joined by a broken geodesic).

Choose a base point o in M. Denote by $\widetilde{\sigma}$ the conjugation by the symmetry s_{o}, it is an involutive automorphism of Aut.

Let K^{\prime} denote the stabilizer of o in Aut and let $A^{\tilde{\sigma}}$ (respectively $A_{o}^{\tilde{\sigma}}$) denote the group of fixed points of $\tilde{\sigma}$ in Aut (respectively its connected component). Then $A^{\tilde{\sigma}} \supseteq K^{\prime} \supseteq A_{o}^{\widetilde{\sigma}}$.

Hence, if \mathfrak{a} (respectively \mathfrak{k}^{\prime}) is the Lie algebra of Aut (respectively K^{\prime}) and if $\sigma=\tilde{\sigma}_{\star I d}$, then \mathfrak{k}^{\prime} is the subalgebra of \mathfrak{a} of fixed points of σ.
(3) Let $\mathfrak{p}=\{X \in \mathfrak{a} \mid \sigma(X)=-X\}$. Then $\mathfrak{a}=\mathfrak{k}^{\prime} \oplus \mathfrak{p}$.

Denote by π^{\prime} the projection Aut $\rightarrow M$ given by $\pi^{\prime}(g)=g \cdot o$. Then $\left.\pi_{* \in}^{\prime}\right|_{\mathfrak{p}}: \mathfrak{p} \rightarrow T_{o} M$ is a linear isomorphism which identifies the tangent space $T_{o} M$ with \mathfrak{p}.

Denote by Exp: $T_{0} M \rightarrow M$ the exponential map given by the connection ∇ at the point o and by exp the exponential map from the Lie algebra \mathfrak{a} to the Lie group Aut.

Observe that $s_{\operatorname{Exp} \frac{t}{2} X} s_{0}, X \in T_{0} M$, is an affinity in G which realises the parallel transport along $\operatorname{Exp} t X$, since $s_{\operatorname{Exp} u X *}$ for any $u \in \mathbb{R}$ maps a vector field which is parallel along the geodesic $\operatorname{Exp} t X$ to another such parallel vector field. Hence $s_{\operatorname{Exp} \frac{t}{2} \pi_{\star e}^{\prime} X} s_{0}=\exp t X, \forall X \in \mathfrak{p}$.

It follows that the transvection group G, which is stable by $\widetilde{\sigma}$, is the connected Lie subgroup of $\operatorname{Aut}(M, \omega, s)$ whose Lie algebra is

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \quad \text { where } \quad \mathfrak{k}=[\mathfrak{p}, \mathfrak{p}] . \tag{7}
\end{equation*}
$$

Indeed, if G_{1} denotes that subgroup, clearly by the above $G_{1} \subset G$ and the parallel transport along a geodesic $\operatorname{Exp} t X$ is in G_{1}, but then any $x \in M$ can be written as $x=g \cdot o$ for $g \in G_{1}$ hence $s_{x} s_{0}=g s_{0} g^{-1} s_{0}=g \tilde{\sigma}\left(g^{-1}\right) \in G_{1}$ and $G \subset G_{1}$.

Let K denote the stabilizer of o in G. Its Lie algebra is \mathfrak{k} and $\mathfrak{k}=\{X \in \mathfrak{g} \mid \sigma(X)=X\}$. Since the Lie group G acts effectively on M, the representation of K on $T_{o} M, k \mapsto k_{* o}$, is faithful so \mathfrak{k} acts faithfully on \mathfrak{p}.
(4) Denote by π the projection $\pi: G \rightarrow M$ where $\pi(g)=g \cdot o$. Denote by X^{*} the vector field on M which is the image under π_{*} of the right invariant vector field on G, i.e. $X^{*}{ }_{g . o}=$ $\left.\frac{d}{d t} \exp t X \cdot g \cdot o\right|_{t=0}$. Observe that $\left[X^{*}, Y^{*}\right]=-[X, Y]^{*}$. Since ω is invariant under G, formula (6) yields $\omega_{x}\left(\nabla_{Y^{*}} X^{*}, Z^{*}\right)=\frac{1}{2} \omega_{x}\left(\left[Y^{*}, X^{*}+s_{x} \cdot X^{*}\right], Z^{*}\right)$ so $\left(\nabla_{X^{*}} Y^{*}\right)_{x}=\left[X^{*}, Y^{*}\right]+\frac{1}{2}\left[Y^{*}, X^{*}+\right.$ $\left.s_{x} \cdot X^{*}\right]$. But $s_{g \cdot 0} \cdot X^{*}=g \cdot s_{0} \cdot g^{-1} \cdot X^{*}=\left(\operatorname{Ad} g \sigma\left(\operatorname{Ad} g^{-1} X\right)\right)^{*}$ so the connection has the form

$$
\begin{equation*}
\left(\nabla_{X *} Y^{*}\right)_{g \cdot \circ}=\left(\left[Y, \operatorname{Ad} g\left(\operatorname{Ad} g^{-1} X\right)_{\mathfrak{p}}\right)_{g \cdot \circ}^{*}\right. \tag{8}
\end{equation*}
$$

where $Z_{\mathfrak{p}}$ denotes the component in \mathfrak{p} of $Z \in \mathfrak{g}$ relatively to the decomposition $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ and where [,] is the bracket in \mathfrak{g}.

Since any G-invariant tensor on M is parallel, the curvature tensor of (M, ∇) is parallel $(\nabla R=0)$ and if X, Y, Z belong to \mathfrak{p}, one has,

$$
\begin{equation*}
R_{o}\left(X_{0}^{*}, Y_{0}^{*}\right) Z_{0}^{*}=-([[X, Y], Z])_{0}^{*} . \tag{9}
\end{equation*}
$$

Definition 4 A symmetric symplectic triple is a triple ($\mathfrak{g}, \sigma, \Omega$) where \mathfrak{g} is a finite dimensional real Lie algebra, σ is an involutive automorphism of \mathfrak{g} such that if we write $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ with $\sigma=\operatorname{Id}_{\mathfrak{k}} \oplus-\mathrm{Id}_{\mathfrak{p}}$, then

- $[\mathfrak{p}, \mathfrak{p}]=\mathfrak{k} ;$
- the action of \mathfrak{k} on \mathfrak{p} is faithful
and where Ω is a non degenerate skewsymmetric 2 -form on \mathfrak{p}, invariant by \mathfrak{k} under the adjoint action.

We have seen above that to any connected symmetric symplectic manifold (M, ω, s), when one chooses a base point $o \in M$, one associates a symmetric symplectic triple ($\mathfrak{g}, \sigma, \Omega$) with \mathfrak{g} the Lie algebra of its transvection group, with σ the differential at the identity of the conjugation by the symmetry s_{0} and with $\Omega=\omega_{0}$ with the identification between $T_{0} M$ and p.

Reciprocally, given a symmetric symplectic triple ($\mathfrak{g}, \sigma, \Omega$), one builds a simply-connected symmetric symplectic space (M, ω, s) with $M=G / K$ where G is the simply-connected Lie group with Lie algebra \mathfrak{g} and K is its connected subgroup with Lie algebra \mathfrak{k}, with ω the G-invariant 2 -form on M whose value at ϵK is given by Ω (identifying $T_{\epsilon K} M$ and \mathfrak{p} via the differential of the canonical projection $\pi: G \rightarrow G / K)$ and with symmetries defined by $s_{\pi(g)} \pi\left(g^{\prime}\right)=\pi\left(g \tilde{\sigma}\left(g^{-1} g^{\prime}\right)\right)$ where $\tilde{\sigma}$ is the automorphism of G whose differential at e is σ.

4 Proof of Theorem 2

Consider a symmetric symplectic space (M, ω, s) and assume that its canonical invariant symplectic connection ∇ has a curvature with $W=0$.

Since $\nabla R=0$, the Ricci tensor r and its associated endomorphism A (where $r(X, Y)=$ $\omega(X, A Y)$) are covariantly constant and hence A commutes with the curvature endomorphisms

$$
A R(X, Y)=R(X, Y) A
$$

This implies, when we substitute R by its expression in terms of A into equation (3)

$$
-\omega(X, Z) A^{2} Y+\omega(Y, Z) A^{2} X=\omega\left(Y, A^{2} Z\right) X-\omega\left(X, A^{2} Z\right) Y
$$

If $Y \neq 0$ is arbitrary, $Z=Y$, and we pick X so that $\omega(X, Y)=1$, then $\omega\left(Y, A^{2} Y\right)=$ $\omega(A Y, A Y)=0$, so $A^{2} Y=\lambda_{Y} Y$ for some function λ_{Y}. Substituting back into the equation shows that $\lambda_{Y}=\lambda$ is independent of Y, and since A is covariant constant, λ must be constant.

Remark that if $\lambda \neq 0$ then r is a non-degenerate parallel symmetric bilinear form so ∇ is its Levi-Civita connection and (M, r, s) is a pseudo-Riemannian symmetric space.

Let G be the transvection group of our symmetric symplectic space. Choose a base point $o \in M$ and let $(\mathfrak{g}, \sigma, \Omega)$ be the symmetric triple associated to (M, ω, s). Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the decomposition of the Lie algebra of G into the +1 and -1 eigenspaces of σ. Then $\Omega(X, Y)=$ $\omega_{o}\left(X_{o}^{*}, Y_{o}^{*}\right)$ and with a slight abuse of notations we denote by R the map $R: \mathfrak{p} \times \mathfrak{p} \rightarrow \operatorname{End}(\mathfrak{p})$ so
that $(R(X, Y) Z)_{o}^{*}=R_{0}\left(X_{0}^{*}, Y_{o}^{*}\right) Z_{o}^{*}$ and by A the map $A: \mathfrak{p} \rightarrow \mathfrak{p}$ so that $(A(X))_{o}^{*}=A_{o}\left(X_{o}^{*}\right)$. Since \mathfrak{k} acts faithfully on \mathfrak{p}, we view \mathfrak{k} as a subset of $\operatorname{End}(\mathfrak{p})$; by formula (9),

$$
\begin{equation*}
\mathfrak{k}=\{R(X, Y) \in \operatorname{End}(\mathfrak{p}) \mid X, Y \in \mathfrak{p}\} \tag{10}
\end{equation*}
$$

and the brackets on $\mathfrak{g} \subset \mathfrak{p} \oplus \operatorname{End}(\mathfrak{p})$ are

$$
\begin{equation*}
[(C, X),(D, Y)]=([C, D]-R(X, Y), C Y-D X) \tag{11}
\end{equation*}
$$

where $C, D \in \mathfrak{k} \subset \operatorname{End}(\mathfrak{p})$, and $X, Y \in \mathfrak{p}$.
Define the 1 -form on \mathfrak{p} corresponding to a vector $X \in \mathfrak{p}$ by $\underline{X}=i(X) \Omega$. Formula (3) giving the curvature when $W=0$ is equivalent to

$$
R(X, Y)=k(2 \Omega(X, Y) A+A Y \otimes \underline{X}-A X \otimes \underline{Y}+X \otimes \underline{A Y}-Y \otimes \underline{A X})
$$

where $k=1 /(m+2)$ if $m=\operatorname{dim} M=2 n$. Note that, for a symplectic symmetric space built from a Lie algebra $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ whose bracket of \mathfrak{p} into \mathfrak{k} is given by this formula, then the canonical connection will have curvature given by this formula and hence W will vanish.

Define $B=Y \otimes \underline{X}-X \otimes \underline{Y}$. Clearly B satisfies $\Omega(U, B V)=\Omega(B U, V)$ and any antisymplectic endomorphism of \mathfrak{p} can be written as a sum of such operators. Then

$$
R(X, Y)=k(\operatorname{Tr}(B) A+A B+B A)
$$

and, if we put $B^{\prime}=k\left(B+\frac{1}{2} \operatorname{Tr}(B) I\right)$, the RHS becomes $C=A B^{\prime}+B^{\prime} A$.

Lemma 5 For any λ,

$$
\mathfrak{k}=\{C=A B+B A \mid B \in \operatorname{End}(\mathfrak{p}) \text { and } \Omega(X, B Y)=\Omega(B X, Y)\}
$$

If $\lambda \neq 0$ then \mathfrak{k} is the set of endomorphisms $C \in \operatorname{End}(\mathfrak{p})$ which are infinitesimally symplectic and commute with A.

Proof The first part follows from the considerations above and the fact that the map $B \mapsto B+\frac{1}{2} \operatorname{Tr}(B)$ is a bijection on the space of antisymplectic endomorphisms of $\mathfrak{p} . C$ commutes with A since $A C=\lambda B^{\prime}+A B^{\prime} A=C A$. Also $\Omega(X, C Y)=-\Omega\left(A X, B^{\prime} Y\right)+$ $\Omega\left(B^{\prime} X, A Y\right)=-\Omega\left(B^{\prime} A X, Y\right)-\Omega\left(A B^{\prime} X, Y\right)=-\Omega(C X, Y)$.

Conversely, if $\lambda \neq 0$, given C commuting with A and such that $\Omega(X, C Y)=-\Omega(C X, Y)$, let $B=\frac{1}{2} \lambda^{-1} A C$; then

$$
B A+A B=\frac{1}{2} \lambda^{-1} 2 \lambda C=C
$$

4.1 Case $\lambda>0$

Write $\lambda=a^{2}, a>0$. Then $\mathfrak{p}=V^{+} \oplus V^{-}$where $V^{ \pm}=\{X \in \mathfrak{p} \mid A X= \pm a X\}$. Let $P^{ \pm}$be the projection onto $V^{ \pm}$. Then $A=a\left(P^{+}-P^{-}\right)$. Clearly

$$
\begin{aligned}
\omega\left(V^{+}, V^{+}\right) & =\omega\left(V^{-}, V^{-}\right)=0 \\
R\left(V^{+}, V^{+}\right) & =R\left(V^{-}, V^{-}\right)=0 \\
R(X, Y) & =2 k a\left(\Omega(X, Y)\left(P^{+}-P^{-}\right)-Y \otimes \underline{X}-X \otimes \underline{Y}\right)
\end{aligned}
$$

for $X \in V^{+}, Y \in V^{-}$. It follows that $V^{ \pm}$are Lagrangian subspaces of \mathfrak{p}. Identifying V^{-} with $\left(V^{+}\right)^{*}$ via $\left.Y \mapsto \underline{Y}\right|_{V^{+}}$and renaming V^{+}as V, we have identified \mathfrak{p} with $V \oplus V^{*}$ with its standard symplectic structure $\Omega\left(X+\xi, X^{\prime}+\xi^{\prime}\right)=-\left\langle X, \xi^{\prime}\right\rangle+\left\langle X^{\prime}, \xi\right\rangle$, and A acts as $+a$ on $V,-a$ on V^{*}. With this notation the curvature has the form

$$
R(X, \xi)=2 a k\left(-\langle X, \xi\rangle\left(\operatorname{Id}_{V}-\operatorname{Id}_{V^{*}}\right)+\xi \otimes X-X \otimes \xi\right)
$$

The symplectic centraliser of A can then be identified with End $(V)=\mathfrak{g l}(V)$, identifying the element in $\operatorname{End}(p)=\operatorname{End}\left(V \oplus V^{*}\right)$ given by

$$
\left(\begin{array}{cc}
C & 0 \\
0 & -{ }^{t} C
\end{array}\right)
$$

with the element $C \in \mathfrak{g l}(V)$.
So $\mathfrak{k}=\mathfrak{g l}(V)$ and as a vector space $\mathfrak{g}=\mathfrak{g l}(V) \oplus V \oplus V^{*}$ with the brackets

$$
\begin{array}{r}
{\left[(C, X, \xi),\left(C^{\prime}, X^{\prime}, \xi^{\prime}\right)\right]=\left(\left[C, C^{\prime}\right]+2 k a\left(\left\langle X, \xi^{\prime}\right\rangle-\left\langle X^{\prime}, \xi\right\rangle\right) I\right.} \\
+2 k a X \otimes \xi^{\prime}-2 k a X^{\prime} \otimes \xi \\
\left.C X^{\prime}-C^{\prime} X,-{ }^{t} C \xi^{\prime}+{ }^{t} C^{\prime} \xi\right)
\end{array}
$$

The $\operatorname{map} j: \mathfrak{g} \rightarrow \mathfrak{s l}(V \oplus \mathbb{R})$ given by

$$
j(C, X, \xi)=\left(\begin{array}{cc}
C-2 k \operatorname{Tr}(C) I & s X \\
s^{t} \xi & -2 k \operatorname{Tr}(C)
\end{array}\right)
$$

has the brackets above provided $s^{2}=2 k a$.
Thus when $\lambda>0, M=G / K$ where $G=S L(n+1, \mathbb{R}), K=G L(n, \mathbb{R})$. The involution σ is given by

$$
\sigma\left(\begin{array}{cc}
C & v \\
\xi & -\operatorname{Tr}(C)
\end{array}\right)=\left(\begin{array}{cc}
C & -v \\
-\xi & -\operatorname{Tr}(C)
\end{array}\right)
$$

and, writing (X, ξ) for $\left(\begin{array}{cc}0 & X \\ \xi & 0\end{array}\right)$, the symplectic form is given by

$$
\Omega\left((X, \xi),\left(X^{\prime}, \xi^{\prime}\right)\right)=-\left\langle X, \xi^{\prime}\right\rangle+\left\langle X^{\prime}, \xi\right\rangle
$$

The curvature of the canonical connection on this symplectic symmetric space at the base point $e K$ is

$$
\begin{gathered}
R\left((X, \xi),\left(X^{\prime}, \xi^{\prime}\right)\right)\left(X^{\prime \prime}, \xi^{\prime \prime}\right)=\left(X^{\prime \prime}\left(\left\langle X^{\prime}, \xi\right\rangle-\left\langle X, \xi^{\prime}\right\rangle\right)-X\left\langle X^{\prime \prime}, \xi^{\prime}\right\rangle\right. \\
\left.+X^{\prime}\left\langle X^{\prime \prime}, \xi\right\rangle, \xi^{\prime}\left\langle X, \xi^{\prime \prime}\right\rangle-\xi\left\langle X^{\prime}, \xi^{\prime \prime}\right\rangle-\xi^{\prime \prime}\left(\left\langle X^{\prime}, \xi\right\rangle-\left\langle X, \xi^{\prime}\right\rangle\right)\right) \\
r\left((X, \xi),\left(X^{\prime}, \xi^{\prime}\right)\right)=(n+1)\left(\left\langle X, \xi^{\prime}\right\rangle+\left\langle X^{\prime}, \xi\right\rangle\right) \\
A(x, \xi)=(n+1)(x,-\xi)
\end{gathered}
$$

and formula (3) holds so R is of Ricci-type.

4.2 Case $\lambda<0$

We write $\lambda=-b^{2}$ where $b<0$. If we put $J=b^{-1} A$ then J defines a complex structure on the vector space \mathfrak{p}. We write V for \mathfrak{p} viewed as an n-dimensional complex vector space. V has a (pseudo-)Hermitean structure given by

$$
\langle X, Y\rangle=\Omega(X, J Y)+i \Omega(X, Y)
$$

which is \mathbb{C}-linear in the second variable. The infinitesimally symplectic transformations which commute with A, or equivalently J, are the complex linear transformations of V which are skew-Hermitean with respect to this Hermitean structure. Thus \mathfrak{k} is the (pseudo-) unitary Lie algebra $\mathfrak{u}(V,\langle\rangle$,$) .$

The curvature has the form

$$
R(X, Y)=k b(2 \Omega(X, Y) J+Y \otimes\langle X, .\rangle-X \otimes\langle Y, .\rangle)
$$

Then $\mathfrak{g}=\mathfrak{u}(V,\langle\rangle,) \oplus V$ with bracket

$$
\begin{gathered}
{\left[(C, X),\left(C^{\prime}, X^{\prime}\right)\right]=\left(\left[C, C^{\prime}\right]+k b\left(X \otimes\left\langle X^{\prime}, .\right\rangle-X^{\prime} \otimes\langle X, .\rangle\right.\right.} \\
\left.\left.-2 \Omega\left(X, X^{\prime}\right) J\right), C X^{\prime}-C^{\prime} X\right)
\end{gathered}
$$

and \mathfrak{g} can be identified with $\mathfrak{s u}(V \oplus \mathbb{C},\langle\langle\rangle\rangle$,$) via$

$$
j(C, X)=\left(\begin{array}{cc}
C-2 k \operatorname{Tr}(C) I & s X \\
-\bar{s}\langle X, .\rangle & -2 k \operatorname{Tr}(C)
\end{array}\right)
$$

with

$$
\langle\langle(v, r),(w, t)\rangle\rangle=\langle v, w\rangle+\bar{r} t
$$

provided

$$
s \bar{s}=-k b .
$$

Hence when $\lambda<0$ then $M=G / K$ with $\mathfrak{g}=\mathfrak{s u}(p+1, q), p+q=n, \mathfrak{k}=\mathfrak{u}(p, q)$,

$$
\sigma\left(\begin{array}{cc}
C & v \\
-\langle v, .\rangle & -\operatorname{Tr}(C)
\end{array}\right)=\left(\begin{array}{cc}
C & -v \\
\langle v, .\rangle & -\operatorname{Tr}(C)
\end{array}\right)
$$

and

$$
\Omega(v, w)=\operatorname{Im}\langle\langle v, w\rangle\rangle .
$$

The curvature of the canonical connection on this symmetric symplectic space at ϵK is

$$
\begin{gathered}
R(v, w) z=v\langle w, z\rangle-w\langle v, z\rangle+z(-\langle v, w\rangle+\langle w, v\rangle) \\
r(v, z)=-2(n+1)\langle v, z\rangle \\
A(v)=-2(n+1) i v
\end{gathered}
$$

and formula (3) holds so R is of Ricci-type.

4.3 Case $\lambda=0$

In this case A is nilpotent since $A^{2}=0$. Let $Z=\operatorname{Image} A$ and $\widetilde{Z}=\operatorname{Ker} A$. Then $Z \subset \widetilde{Z}$, and Z and \tilde{Z} are symplectic orthogonals of each other. If V denotes a complement for Z in \widetilde{Z}, then the restriction of Ω to V is non-degenerate. Z is contained in the Ω-orthogonal of V; let Z^{\prime} be a complement so that $V^{\perp}=Z \oplus Z^{\prime} . V^{\perp}$ is a symplectic subspace and Z is maximal isotropic so we can also suppose that Z^{\prime} is maximal isotropic. Ω gives a duality of Z with Z^{\prime}.

In other words, we have written \mathfrak{p} as $Z \oplus Z^{*} \oplus V$ where $Z \oplus Z^{*}$ has its standard symplectic structure and V is a symplectic vector space. A is non-zero only on Z^{*} and maps it isomorphically onto Z, and as such it is symmetric. In block form, the symplectic structure Ω is given by

$$
\left(\begin{array}{ccc}
0 & -I & 0 \\
I & 0 & 0 \\
0 & 0 & J^{\prime}
\end{array}\right)
$$

and A by

$$
\left(\begin{array}{ccc}
0 & A^{\prime} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where A^{\prime}, by a suitable choice of basis is diagonal with ± 1 on the diagonal. An easy calculation shows that matrices of the form $A B+B A$ with $\Omega(X, B Y)=\Omega(B X, Y)$ have the
form

$$
\left(\begin{array}{ccc}
K & L & -{ }^{t} M J^{\prime} \\
0 & -{ }^{t} K & 0 \\
0 & M & 0
\end{array}\right)
$$

where ${ }^{t} K A^{\prime}+A^{\prime} K=0,{ }^{t} L=L$. The matrices with $K=0$ form an ideal which is 2-step nilpotent (abelian when $\operatorname{Rank} A=n=\frac{1}{2} \operatorname{dim} M$) and the matrices with $L=M=0$ a subalgebra isomorphic to $\mathfrak{s o}(p, q)$, where $p+q=r=\operatorname{Rank} A, p$ the number of + 's and q the number of - 's in A^{\prime} (hence (p, q) is the signature of the non degenerate symmetric bilinear form naturally induced on $\mathfrak{p} / \operatorname{Ker} A$ by the Ricci tensor $\Omega(X, A Y)$).

The bracket of \mathfrak{p} into \mathfrak{k} is given, using formulas (11) and (3) by

$$
\left[\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right),\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right)\right]=-k\left(\begin{array}{ccc}
\tilde{K}=A^{\prime}\left(v^{\prime t} v-v^{t} v^{\prime}\right) & \tilde{L} & \left.-t \tilde{M} J^{\prime}\right) \\
0 & -^{t} \tilde{K} & 0 \\
0 & \tilde{M} & 0
\end{array}\right)
$$

where $\tilde{L}=A^{\prime} B+{ }^{t} B A^{\prime}+2\left(\operatorname{Tr} B+{ }^{t} w J^{\prime} w^{\prime}\right) A^{\prime}$ with $B=v^{t} u^{\prime}-v^{\prime t} u$ and $\tilde{M}=-{ }^{t}\left(A^{\prime}\left(v^{\prime t} w-v^{t} w^{\prime}\right)\right)$.
Then $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}=\left\{(K, L, M, u, v, w) \mid K \in \mathfrak{s o}(p, q), L \in \operatorname{Mat}(r \times r, \mathbb{R}),{ }^{t} L=L, M \in\right.$ $\left.\operatorname{Mat}(2 n-2 r \times r, \mathbb{R}), u \in Z=\mathbb{R}^{r}, v \in Z^{*}, w \in W=\mathbb{R}^{2 n-2 r}\right\}$. The brackets are given, with obvious notations, by

$$
\left[(K, L, M),\left(K^{\prime}, L^{\prime}, M^{\prime}\right)\right]=\left(\left[K, K^{\prime}\right], L^{\prime \prime},-M^{t} K^{\prime}+M^{\prime t} K\right)
$$

where $L^{\prime \prime}=K L^{\prime}-L^{t} K^{\prime}-K^{\prime} L+L^{\prime t} K-{ }^{t} M J^{\prime} M^{\prime}+{ }^{t} M^{\prime} J^{\prime} M$,

$$
\begin{gathered}
{[(K, L, M),(u, v, w)]=\left(K u+L v-{ }^{t} M J^{\prime} w,-{ }^{t} K v, M v\right)} \\
{\left[(u, v, w),\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right]=\left(-k A^{\prime}\left(v^{\prime t} v-v^{t} v^{\prime}\right),-k \tilde{L}, k^{t}\left(A^{\prime}\left(v^{\prime t} w-v^{t} w^{\prime}\right)\right)\right)}
\end{gathered}
$$

where \tilde{L} is defined as above.
We can combine $\mathfrak{s o}(p, q)$ with Z^{*} to give $\mathfrak{s o}(p, q+1)$ via

$$
(K, v) \mapsto\left(\begin{array}{cc}
K & -k^{1 / 2} A^{\prime} v \\
-k^{1 / 2 t} v & 0
\end{array}\right) .
$$

The subset $\mathfrak{r}=\{(0, L, M, u, 0, w) \in \mathfrak{g}\}$ is a 2-step nilpotent ideal of \mathfrak{g} (abelian when $r=n$ i.e. when the rank of the Ricci tensor is half the dimension of the manifold). Hence, when $p+q=r>1, \mathfrak{r}$ is the radical of \mathfrak{g} and the semisimple Levi factor of \mathfrak{g} is isomorphic to $\mathfrak{s o}(p, q+1)$.

5 Some corollaries

Corollary 6 Let $\left(M_{i}, \omega_{i}, s_{i}\right), i=1,2$ be symmetric symplectic spaces of the same dimension $2 n$ with $W_{i}=0$ with semisimple transvection groups G_{i}. Then $G_{1}^{\mathbb{C}}=G_{2}^{\mathbb{C}}$.

Proof $S L(n+1, \mathbb{R})$ and $S U(p+1, q)$ both have $S L(n+1, \mathbb{C})$ as complexification.

Corollary 7 Let (M, ω, s) be a compact, simply-connected symmetric symplectic space of dimension $2 n$ such that $W=0$ then (M, ω, s) is $\mathbb{P}_{n}(\mathbb{C})$.

Proof This follows immediately from the list in Theorem 2. The only case where G / K is compact is when $G=S U(n+1)$ and $K=U(n)$.

In dimension 4 we have the following list of possibilities (up to coverings) for M :

- $S L(3, \mathbb{R}) / G L(2, \mathbb{R})$;
- $S U(1,2) / U(2)$;
- $S U(2,1) / U(1,1)$;
- $S U(3) / U(2)$;
- $\lambda=0$ cases corresponding to:
- Rank $A=1, p=0$ or $p=1$;
- Rank $A=2, p=0, p=1$ or $p=2$.

References

[1] P. Bieliavsky, Espaces symétriques symplectiques, thèse de doctorat, Université Libre de Bruxelles, 1995.
[2] F. Bourgeois and M. Cahen, A variational principle for symplectic connections, J. Geometry and Physics 30 (1999), 233-265.
[3] M. Cahen, S. Gutt and J. Rawnsley, Symplectic connections with parallel Ricci tensor. To appear in the Banach Center Publications.
[4] O. Loos, Symmetric Spaces, Benjamin, New York, 1969.
[5] I. Vaisman, Symplectic curvature tensors, Monatshefte Math. 100 (1985), 299-327.

[^0]: To appear in the proceedings of the Conference Moshé Flato, Dijon, 1999.
 *Research supported by the Communauté française de Belgique, through an Action de Recherche Concertée de la Direction de la Recherche Scientifique.

